15 GHz Ultra - Variable Broadband Prescaler

Features

- Wide Operating Range: 0.05-15 GHz
- Variable Divide Ratios: 2 to 220
- Single-Ended and/or Differential Drive
- High Input Sensitivity
- Size: $6 \mathrm{~mm} \times 6 \mathrm{~mm}$
- Single -3.3 V Power Supply
- Low SSB Phase Noise:
- 153 dBc @ 10 kHz

Description

The MX1DS10P is a broadband 0.05 GHz to 15 GHz prescaler with a variable divide ratio between 2 and 1048576 (=220). All inputs and outputs are DC coupled using CML logic levels. The IC used in this part is manufactured in an advanced Silicon Germanium (SiGe) process. The part requires a single 3.3 V supply and measures only $6 \mathrm{~mm} \times 6 \mathrm{~mm}$.

Application

The MX1DS10P is ideal for phase locked loops and other synthesizers requiring large and variable divide ratios. Other applications include trigger generation for high-speed measurement systems. The MX1DS10P can be employed in high frequency phase locked loops that can take advantage of the low $1 / \mathrm{f}$ noise of SiGe HBT's. General purpose test instrumentation systems will also benefit from the high input sensitivity and broad frequency range.

Pad Metallization

The QFN package pad metallization consists of a 300-800 micro-inch (typical thickness 435 micro-inch or 11.04 um) 100% matte Sn plate. The plating covers a Cu (C194) leadframe. The packages are manufactured with a $>1 \mathrm{hr}$ 150C annealing/heat treating process, and the matte (non-glossy) plating, specifically to mitigate tin whisker growth.

Key Specifications ($\mathrm{T}=25^{\circ} \mathrm{C}$):
Vee $=-3.3 \mathrm{~V}$, lee $=430 \mathrm{~mA}, \mathrm{Zo}=50 \Omega$

Parameter	Description	Min	Typ	Max
Clkin (GHz)	Input Clock Frequency	0.05	-	15
Clkpwr (dBm)	Input Clock Power Max	-	-	10
Clkpwr (dBm)	Input Clock Power Min	-	-10	-
Dout (Vppk)	Output Voltage Swing	0.05	1	-
θ jec $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	Junction-Case Thermal Resistance	-	13	-

Parameter	Description	Min	Typ	Max
S11 (dB)	Input Match (Typical)	-12	-7	-5
S22 (dB)	Output Match (Typical)	-7	-5	-3

Frequency Divider Application

Return Loss of Differential Input Ports

Input Sensitivity Window

Divide-by-(8/3) Output (Input: 10 GHz ; Output: 3.75 GHz)

Return Loss of Differential Output Ports

Divide-by-2 Output (Input: 10 GHz ; Output: 5 GHz)

Divide-by-2048 Output (Input: 10 GHz ; Output: 4.9 MHz)

Functional Block Diagram

SEED $=\mathrm{A} 1+\left(\mathrm{A} 2 \times 2^{1}\right)+\left(\mathrm{A} 3 \times 2^{2}\right)+\ldots \ldots .+\left(\mathrm{A} 20 \times 2^{19}\right)\left(\right.$ Maximum valid SEED $\left.=2^{19}\right)$
Divide Ratio $=2^{20} /$ SEED (Lowest valid divide ration $=2$)
$\mathrm{Freq}_{\text {out }}=\mathrm{Freq}_{\mathrm{ck}} /$ (Divide Ratio)
Table 1: Pin Description

Port Name	Description	Notes
CK	Clock Input, Positive Terminal	CML signal levels
CKN	Clock Input, Negative Terminal	CML signal levels
MSB	Divided Output, Positive Terminal	CML signal levels
MSBN	Divided Output, Negative Terminal	CML signal levels
A1,A2...A20	Divide Ratio Selectors	Divide ratio = Value of the binary seed A1...A20
VCC	RF \& DC Ground	-
VEE	-3.3 V @ 400 mA	Negative Supply Voltage
Paddle	Backside of die	Must be connected to good heatsink (see text)

Simplified Control Logic Schematic

Application Notes

Divider Outputs:

The equivalent circuit of the divider outputs is shown below. The outputs require a DC return path capable of handling $\sim 35 \mathrm{~mA}$ per side. If DC coupling is employed, the DC resistance of the receiving circuits should be $\sim 50 \Omega$ (or less) to VCC to prevent excessive common mode voltage from saturating the prescaler outputs. If AC coupling is used, the perfect embodiment is shown in figure 2. The discrete R/L/C elements should be resonance free up to the maximum frequency of operation for broadband applications.
The output amplitude can be adjusted over a 1.5:1 range by one of the two methods The Vadj pin voltage can be set to VCC for maximum amplituded or VCC-1.3 V for an amplitude ~2/3 the max swing. Voltages between these two values will produce a linear change in output swing. Alternatively, users can use a 1 k potentiometer or fixed resistor tied between Vadj and VCC. Resistor values approaching 0 ohms will lead to the maximum swing, while values approaching 1 k will lead to the minimum output swing. Users who only need/want the maximum swing should simply tie Vadj to VCC.

Equivalent Circuit of Output Buffer

Recommended Circuit for AC Coupled Outputs

Low Frequency Operation:

Low frequency operation is limited by external bypass capacitors and the slew rate of the input clock. The next paragraph shows the calculations for the bypass capacitors. If DC coupled, the device operates down to DC for square-wave inputs. Sine-wave inputs are limited to $\sim 50 \mathrm{MHz}$ due to the 10 dBm max input power limitation.
The values of the coupling capacitors for the high-speed inputs and outputs (I/O's) are determined by the lowest frequency the IC will be operated at.

$$
C \gg \frac{1}{2 \cdot \pi \cdot 50 \Omega \cdot f_{\text {lowest }}}
$$

For example to use the device below 30 kHz , coupling capacitors should be larger than 0.1 uF .

Package Heatsink:

The package backside provides the primary heat conduction path and should be attached to a good heatsink on the PC board to maximize performance. User PC boards should maximize the contact area to the package paddle and contain an array of vias to aid thermal conduction to either a backside heatsink or internal copper planes.

IC Assembly:

The device is designed to operate with either single-ended or differential inputs. Figures 1,2 \& 3 show the IC assembly diagrams for positive and negative supply voltages. In either case the supply should be capacitively bypassed to the ground to provide a good AC ground over the frequency range of interest. The backside of the chip should be connected to a good thermal heat sink.
All RF I/O's are connected to VCC through on-chip termination resistors. This implies that when VCC is not DC grounded (as in the case of positive supply), the RF I/O's should be AC coupled through series capacitors unless the connecting circuit can generate the correct levels through level shifting.

ESD Sensitivity:

Although SiGe IC's have robust ESD sensitivities, preventive ESD measures should be taken while storing, handling, and assembling.
Inputs are more ESD susceptible as they could expose the base of a BJT or the gate of a MOSFET. For this reason, all the inputs are protected with ESD diodes. These inputs have been tested to withstand voltage spikes up to 400 V .

CML Logic Levels for DC Coupling ($\mathrm{T}=\mathbf{2 5}^{\circ} \mathrm{C}$):
Assuming 50Ω Terminations at Inputs and Outputs

Parameter			Minimum	Typical	Maximum
Input	Differential	$\left\{\begin{array}{l}\text { Logic Inputhigh } \\ \text { Logic Input }{ }_{\text {Iow }}\end{array}\right.$	$\begin{gathered} \mathrm{Vcc} \\ \mathrm{Vcc}-0.05 \mathrm{~V} \end{gathered}$	$\begin{gathered} V c c \\ \mathrm{Vcc}-0.3 \mathrm{~V} \end{gathered}$	Vcc Vcc-1 V
	Single	$\left\{\begin{array}{l}\text { Logic } \text { Input }_{\text {tigh }} \\ \text { Logic Input }{ }_{\text {low }}\end{array}\right.$	$\begin{aligned} & V c c+0.05 V \\ & V c c-0.05 V \end{aligned}$	$\begin{aligned} & \mathrm{Vcc}+0.3 \mathrm{~V} \\ & \mathrm{Vcc}-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V c c+1 V \\ & V c c-1 V \end{aligned}$
Output	Differential \& Single	$\left\{\begin{array}{l}\text { Logic } \text { Input }_{\text {tigh }} \\ \text { Logic Input }{ }_{\text {low }}\end{array}\right.$	$\begin{gathered} \mathrm{Vcc} \\ \mathrm{Vcc}-0.2 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{Vcc} \\ \mathrm{Vcc}-0.3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{Vcc} \\ \mathrm{Vcc}-0.6 \mathrm{~V} \end{gathered}$

Differential versus Single-Ended:

The MX1DS10P is fully differential to maximize signal-to-noise ratios for high-speed operation. All high speed inputs and outputs are terminated to Vcc with on-chip resistors (refer to functional block diagram for specific resistor values). The maximum DC voltage on any terminal must be limited to V max to prevent damaging the termination resistors with excessive current. Regardless of bias conditions, the following equation should be satisfied when driving the inputs differentially:

$$
\mathrm{IVdm} / 2+\mathrm{Vcm} \mathrm{I}<\mathrm{Vcc} \geq \mathrm{Vmax}_{\mathrm{m}}
$$

where Vdm is the differential input signal and Vcm is the common-mode voltage.
In addition to the maximum input signal levels, single-ended operation imposes additional restrictions: the average DC value of the waveform at IC should be equal to Vcc for single-ended operation. In practice, this is easily achieved with a single capacitor on the input acting as a DC block. The value of the capacitor should be large enough to pass the lowest frequencies of interest. Use the positive terminals for single-ended operation while terminating the negative terminal to Vcc.

Differential vs. Single-Ended:

The MX1DS10P is fully differential to maximize signal-to-noise ratios for high-speed operation. All high speed inputs and outputs are terminated to Vcc with on-chip resistors (refer to functional block diagram for specific resistor values). The maximum DC voltage on any terminal must be limited to V max to prevent damaging the termination resistors with excessive current. Regardless of bias conditions, the following equation should be satisfied when driving the inputs differentially:

$$
\mathrm{I} \mathrm{Vdm} / 2+\mathrm{Vcm} \mathrm{I}<\mathrm{Vcc} \geq \mathrm{Vmax}
$$

where Vdm is the differential input signal and Vcm is the common-mode voltage.
In addition to the maximum input signal levels, single-ended operation imposes additional restrictions: the average DC value of the waveform at IC should be equal to Vcc for single-ended operation. In practice, this is easily achieved with a single capacitor on the input acting as a DC block.
The value of the capacitor should be large enough to pass the lowest frequencies of interest. Use the positive terminals for single-ended operation while terminating the negative terminal to Vcc.
Note that a potential oscillation mechanism exists if both inputs are static and have identical DC voltages; a small DC offset on either input is sufficient to prevent possible oscillations. Tying unused inputs directly to Vcc shorts out the internal 50Ω bias resistor, imposing a DC offset sufficient to prevent oscillations. Driving the differential inputs with DC blocks, or driving the single-ended inputs without terminating unused inputs, is not recommended without taking additional steps to eliminate the potential oscillation issues.

Positive Supply (AC Coupling)

Biasing recommendations for positive supply with AC coupling applications

Negative Supply (DC Coupling)

Biasing recommendations for negative supply with DC coupling applications
Negative Supply (AC Coupling)

Biasing recommendations for negative supply with AC coupling applications

MX1DS10P Physical Characteristics

$\begin{array}{lllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\ 20\end{array}$

Pkg size:	$6.00 \times 6.00 \mathrm{~mm}$
Pkg size tolerance:	$+/-0.25 \mathrm{~mm}$
Pkg thickness:	$0.9+/-0.1 \mathrm{~mm}$
Pad dimensions:	$0.23 \times 0.4 \mathrm{~mm}$
Center paddle:	$4.20 \times 4.20 \mathrm{~mm}$
JEDEC designator:	MO-220

Top View

Table 2: MX1DS10P Pin Definition

	Function	Notes
5,14,22,26,37 (Vcc)	RF and DC Ground	0 V
1,6,9,13,17,27,34 (Vee)	Negative Supply Voltage	Nominally -3.3 V
31,32,35,36	-	No Connection
2 (A4)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
3 (A5)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
4 (A6)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
7 (CKN)	Clock Input	Negative Terminal of differential input
8 (CK)	Clock Input	Positive Terminal of differential Input
10 (A7)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
11 (A8)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
12 (A9)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
15 (A10)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
16 (A11)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
18 (A12)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
19 (A13)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
20 (A14)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
21 (A15)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
23 (A16)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
24 (A17)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
25 (A18)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
28 (MSBN)	Divider Output	Negative Terminal of differential output
29 (MSB)	Divider Output	Positive Terminal of differential output
30 (A19)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
33 (A20)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
38 (A1)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
39 (A2)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1
40 (A3)	Divide Ratio Selector	Defaults to logic 0, connect to OV for logic 1

Table 3: Absolute Maximum Ratings

Parameter	Value	Unit
Supply Voltage (Vcc-Vee)	4	V
RF Input Power (CK,CKN)	10	dBm
Max DC Voltage Level (MSB, MSBN)	Vcc+1 V	V
Min DC Voltage Level (MSB, MSBN)	Vcc-1V	V
Max DC Voltage Level (A1,A2,...A20)	Vcc	V
Min DC Voltage Level (A1,A2,..A20)	Vee	V
Operating Temperature	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-85 to 125	${ }^{\circ} \mathrm{C}$
Junction Temperature	125	${ }^{\circ} \mathrm{C}$

Information contained in this document is proprietary to Microsem. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor nd system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

[^0]
Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

[^0]: © 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

