
1

 1790A–ATARM–11/03

Features
• Incorporates the ARM7TDMI™ ARM® Thumb® Processor

– Embedded ICE In-circuit Emulation, Debug Communication Channel Support
• 96K Bytes of Internal High-speed SRAM
• 256K Bytes of Internal High-speed ROM Integrating Default Boot Program

– Downloads Application from External Storage Medium in Internal SRAM
• Memory Controller (MC)

– Memory Protection Unit, Abort Status and Misalignment Detection
• Clock Generator and Power Management Controller (PMC)

– 3 to 20 MHz and 32 kHz On-chip Oscillators with Two PLLs
– Programmable Software Power Optimization Capabilities
– Four Programmable External Clock Signals

• Advanced Interrupt Controller (AIC)
– Thirty Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
– Seven External Interrupt Sources and One Fast Interrupt Source, Spurious

Interrupt Protected
• Two 32-bit Parallel Input/Output Controllers (PIO) PIOA and PIOB

– Sixty-three Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os
– Input Change Interrupt Capability on Each I/O Line
– Individually Programmable Open-drain and Synchronous Output

• System Timer (ST) Including a 16-bit Counter, Watchdog and Second Counter
• Real Time Clock (RTC) with Alarm Interrupt
• Debug Unit (DBGU), 2-wire USART and Support for Debug Communication Channel

– Programmable ICE Access Prevention
• Twenty Peripheral Data Controller (PDC) Channels
• USB 2.0 Full-speed (12 Mbits per second) Device Port (UDP)

– On-chip Transceiver
– 2-Kbyte Configurable FIFO for Loading and Storing Messages

• Multimedia Card Interface (MCI)
– Automatic Protocol Control and Fast Automatic Data Transfers with PDC
– MMC and SDCard Compliant, Support for up to two SDCards

• Three Synchronous Serial Controllers (SSC)
– Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
– I²S Analog Interface Support, Time Division Multiplex Support
– High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer

• Four Universal Synchronous/Asynchronous Receiver Transmitters (USART)
– Individual Baud Rate Generator
– Support for ISO7816 T0/T1 Smart Card, Hardware and Software Handshaking,

RS485 Support
– Modem Control Lines on USART 1, IrDA Infrared Modulation/Demodulation

• Master/Slave Serial Peripheral Interface (SPI)
– 8- to 16-bit Programmable Data Length
– Four External Peripheral Chip Selects

• Two Three-channel 16-bit Timer/Counters (TC)
– Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability

• Two-wire Interface (TWI)
– Master Mode Support, All Two-wire Atmel EEPROMs Supported

• IEEE 1149.1 JTAG Boundary Scan on All Digital Pins
• Required Power Supplies:

– 1.65V to 1.95V for VDDCORE, VDDOSC and VDDPLL
– 1.65V to 3.6V on VDDIO

• Fully Static Operation: 0 Hz to 66 MHz @2.7V/1.8V, up to 60 MIPS
• Available in a 100-lead LQFP Package

ARM7TDMI™-
based
Microcontroller

AT91RM3400

2 AT91RM3400
1790A–ATARM–11/03

Description The AT91RM3400 is a fully integrated member of the Atmel advanced AT91 ARM
microcontroller family. Having no external memory interface and equipped with embed-
ded SRAM and ROM, it is ideal for numerous applications with medium memory
requirements but which demand high performance.

Several options are available to download software to the internal SRAM. These include
downloading from a serial EEPROM or serial DataFlash® or downloading through the
USB Device Port. Additionally, customizing of the embedded ROM is available on
request for large volume opportunities.

The Advanced Interrupt Controller (AIC) enhances the interrupt handling performance of
the ARM7TDMI processor by providing multiple vectored, prioritized interrupt sources
and reduces the cycles taken to transfer to an interrupt handler.

The Peripheral Data Controller (PDC) provides DMA channels for all the serial peripher-
als, enabling them to transfer data to or from on-chip memories without processor
intervention. This reduces the processor overhead when dealing with transfers of contin-
uous data streams.

The set of Parallel I/O (PIO) Controllers multiplex the peripheral input/output lines with
general-purpose data I/Os, reducing the external pin count of the device and providing
an interrupt and open drain capability on each line.

The Power Management Controller (PMC) keeps system power consumption to a mini-
mum by selectively enabling and/or disabling the core and various peripherals under
software control. It uses an enhanced clock generator to provide a selection of clock sig-
nals including a slow clock (32 kHz) for power-saving mode.

The wide range of system interfaces includes USB V2.0 Full-speed Device Port, Multi-
media Card, Serial Peripheral Interface (SPI) and Two-wire Interface (TWI). Peripherals
include multiple USARTs, Timer/Counters and Serial Synchronous Controllers (SSC).

The AT91RM3400 includes an extensive set of peripherals that operate in accordance
with several industry standards, such as those used in audio, communication, computer
and smart card applications.

3

AT91RM3400

1790A–ATARM–11/03

Block Diagram Bold arrows () indicate master-to-slave dependency.

Figure 1. AT91RM3400 Block Diagram

ARM7TDMI Processor

JTAG
Scan

ICE

AIC Fast SRAM
96K bytes

P
IO

PLLB

PLLA

OSC
PMC

System
Timer

OSC RTC

PIOA/PIOB Controller

DBGU

MCI

USART0

USART1

USART2

USART3

SPI

SSC0

SSC1

SSC2

Timer Counter

TC0

TC1

TC2

Timer Counter

TC3

TC4

TC5

TWI

P
IO P

IO

FIFO

USB Device

Tr
an

sc
ei

ve
r

P
IO

P
IO

Reset
and
Test

APB

ROM
256K bytes

Misalignment
Detector

Address
Decoder

Abort
Status

Memory
Controller

Bus
Arbiter

Peripheral
Bridge

Peripheral
Data

Controller

PDC

PDC

PDC

PDC

PDC

PDC

PDC

PDC

PDC

PDC

TF0
TK0
TD0
RD0
RK0
RF0

TF1
TK1
TD1
RD1
RK1
RF1

TF2
TK2
TD2
RD2
RK2
RF2

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0
TIOA1
TIOB1
TIOA2
TIOB2

TCLK3
TCLK4
TCLK5
TIOA3
TIOB3
TIOA4
TIOB4
TIOA5
TIOB5

TWD

TWCK

TDI
TDO
TMS
TCK

FIQ

IRQ0-IRQ6

PCK0-PCK3

PLLRCB

PLLRCA

XIN

XOUT

XIN32

XOUT32

DM
DP

MCCK
MCCDA

MCDA0-MCDA3
MCCDB

RXD0
TXD0
SCK0
RTS0
CTS0

RXD1
TXD1
SCK1
RTS1
CTS1
DSR1
DTR1
DCD1

RI1

RXD2
TXD2
SCK2
RTS2
CTS2

RXD3
TXD3
SCK3
RTS3
CTS3

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

MCDB0-MCDB3

DRXD

DTXD

TST

NRST

JTAGSEL

4 AT91RM3400
1790A–ATARM–11/03

Key Features

ARM7TDMI Processor • ARM7TDMI Based on ARMv4T Architecture

• Two Instruction Sets

– ARM® High-performance 32-bit Instruction Set

– Thumb® High Code Density 16-bit Instruction Set

• Three-Stage Pipeline Architecture

– Instruction Fetch (F)

– Instruction Decode (D)

– Execute (E)

Debug and Test • Integrated Embedded In-circuit Emulator

• Debug Unit

– Two-pin UART

– Debug Communication Channel

– Chip ID Register

• IEEE1149.1 JTAG Boundary-scan on All Digital Pins

Boot ROM Program • Default Boot Program stored in ROM-based products

• Downloads and runs an application from external storage media into internal SRAM

• Downloaded code size depends on embedded SRAM size

• Automatic detection of valid application

• Bootloader supporting a wide range of non-volatile memories

– SPI DataFlash® connected on SPI NPCS0

– Two-wire EEPROM

• Boot Uploader in case no valid program is detected in external NVM and supporting
several communication media

• Serial communication on a DBGU (XModem protocol)

• USB Device Port (DFU Protocol)

Embedded Software
Services

• Compliant with ATPCS

• Compliant with ANSI/ISO Standard C

• Compiled in ARM/Thumb Interworking

• ROM Entry Service

• Tempo, Xmodem and DataFlash services

• CRC and Sine tables

Reset Controller • One reset line providing

– Initialization of the User Interface registers (defined in the user interface of
each peripheral) and sampling of the signals needed at bootup. It forces the
processor to fetch the next instruction at address zero.

– Initialization of the embedded ICE TAP controller.

Memory Controller • Bus Arbiter

5

AT91RM3400

1790A–ATARM–11/03

– Handles Requests from the ARM7TDMI and the Peripheral Data Controller

• Address Decoder Provides Selection Signals for

– Up to Four Internal 1-Mbyte Memory Areas

– One 256-Mbyte Embedded Peripheral Area

• Abort Status Registers

– Source, Type and All Parameters of the Access Leading to an Abort are
Saved

– Facilitates Debug by Detection of Bad Pointers

• Misalignment Detector

– Alignment Checking of All Data Accesses

– Abort Generation in Case of Misalignment

• Remap Command

– Allows Remapping of an Internal SRAM in Place of the Internal ROM

– Allows Handling of Dynamic Interrupt Vectors

• 16-area Memory Protection Unit

– Individually Programmable Size Between 1K Bytes and 64M Bytes

– Individually Programmable Protection Against Write and/or User Access

– Peripheral Protection Against Write and/or User Access

Advanced Interrupt
Controller

• Controls the Interrupt Lines (nIRQ and nFIQ) of an ARM® Processor

• Thirty-two Individually Maskable and Vectored Interrupt Sources

– Source 0 is Reserved for the Fast Interrupt Input (FIQ)

– Source 1 is Reserved for System Peripherals (e.g., ST, RTC, PMC, DBGU)

– Source 2 to Source 31 Control up to Thirty Embedded Peripheral Interrupts
or External Interrupts

– Programmable Edge-triggered or Level-sensitive Internal Sources

– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
External Sources

• 8-level Priority Controller

– Drives the Normal Interrupt of the Processor

– Handles Priority of the Interrupt Sources 1 to 31

– Higher Priority Interrupts Can Be Served During Service of Lower Priority
Interrupt

• Vectoring

– Optimizes Interrupt Service Routine Branch and Execution

– One 32-bit Vector Register per Interrupt Source

– Interrupt Vector Register Reads the Corresponding Current Interrupt Vector

• Protect Mode

– Easy Debugging by Preventing Automatic Operations when Protect ModeIs
Are Enabled

• Fast Forcing

– Permits Redirecting any Normal Interrupt Source on the Fast Interrupt of the
Processor

• General Interrupt Mask

6 AT91RM3400
1790A–ATARM–11/03

– Provides Processor Synchronization on Events Without Triggering an
Interrupt

Power Management
Controller

• Optimizes the Power Consumption of the Whole System

• Embeds and Controls

– One Main Oscillator and One Slow Clock Oscillator (32.768Hz)

– Two Phase Locked Loops (PLLs) and Dividers

– Clock Prescalers

• Provides

– the Processor Clock PCK

– the Master Clock MCK

– Up to two USB Clocks (depending on the USB ports embedded)

– UHPCK for the USB Host Port

– UDPCK for the USB Device Port

– Programmable Automatic PLL Switch-off in USB Device Suspend Conditions

– Up to Thirty Peripheral Clocks

– Up to Four Programmable Clock Outputs

• Four Operating Modes

– Normal Mode, Idle Mode, Slow Clock Mode, Standby Mode

System Timer • One Period Interval Timer, 16-bit Programmable Counter

• One Watchdog Timer, 16-bit Programmable Counter

• One Real-time Timer, 20-bit Free-running Counter

• Interrupt Generation on Event

Real-time Clock • Low Power Consumption

• Full Asynchronous Design

• Two Hundred Year Calendar

• Programmable Periodic Interrupt

• Alarm and Update Parallel Load

• Control of Alarm and Update Time/Calendar Data In

Debug Unit • System Peripheral to Facilitate Debug of Atmel’s ARM-based Systems

• Composed of Four Functions

– Two-pin UART

– Debug Communication Channel (DCC) Support

– Chip ID Registers

– ICE Access Prevention

• Two-pin UART

– Implemented Features are 100% Compatible with the Standard Atmel
USART

– Independent Receiver and Transmitter with a Common Programmable Baud
Rate Generator

– Even, Odd, Mark or Space Parity Generation

7

AT91RM3400

1790A–ATARM–11/03

– Parity, Framing and Overrun Error Detection

– Automatic Echo, Local Loopback and Remote Loopback Channel Modes

– Interrupt Generation

– Support for Two PDC Channels with Connection to Receiver and Transmitter

• Debug Communication Channel Support

– Offers Visibility of COMMRX and COMMTX Signals from the ARM Processor

– Interrupt Generation

• Chip ID Registers

– Identification of the Device Revision, Sizes of the Embedded Memories, Set
of Peripherals

• ICE Access Prevention

– Enables Software to Prevent System Access Through the ARM Processor’s ICE

– Prevention is Made by Asserting the NTRST Line of the ARM Processor’s ICE

Parallel Input/Output
Controller

• Up to 32 Programmable I/O Lines

• Fully Programmable through Set/Clear Registers

• Multiplexing of Two Peripheral Functions per I/O Line

• For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose
I/O)

– Input Change Interrupt

– Glitch Filter

– Multi-drive Option Enables Driving in Open Drain

– Programmable Pull Up on Each I/O Line

– Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any
Time

• Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write

Serial Peripheral
Interface

• Supports Communication with Serial External Devices

– 4 Chip Selects with External Decoder Support Allow Communication with Up
to 15 Peripherals

– Serial Memories, such as DataFlash and 3-wire EEPROMs

– Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers
and Sensors

– External Co-processors

• Master or Slave Serial Peripheral Bus Interface

– 8- to 16-bit Programmable Data Length Per Chip Select

– Programmable Phase and Polarity Per Chip Select

– Programmable Transfer Delays Between Consecutive Transfers and
Between Clock and Data Per Chip Select

– Programmable Delay Between Consecutive Transfers

– Selectable Mode Fault Detection

• Connection to PDC Channel Capabilities Optimizes Data Transfers

– One Channel for the Receiver, One Channel for the Transmitter

– Next Buffer Support

8 AT91RM3400
1790A–ATARM–11/03

Two-wire Interface • Compatibility with standard two-wire serial memory

• One, two or three bytes for slave address

• Sequential read/write operations

USART • Programmable Baud Rate Generator

• 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

– 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in
Synchronous Mode

– Parity Generation and Error Detection

– Framing Error Detection, Overrun Error Detection

– MSB- or LSB-first

– Optional Break Generation and Detection

– By 8 or by-16 Over-sampling Receiver Frequency

– Optional Hardware Handshaking RTS-CTS

– Optional Modem Signal Management DTR-DSR-DCD-RI

– Receiver Time-out and Transmitter Timeguard

– Optional Multi-Drop Mode with Address Generation and Detection

• RS485 with driver control signal

• ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

– NACK Handling, Error Counter with Repetition and Iteration Limit

• IrDA Modulation and Demodulation

– Communication at up to 115.2 Kbps

• Test Modes

– Remote Loopback, Local Loopback, Automatic Echo

• Supports Connection of Two Peripheral Data Controller Channels (PDC)

– Offers Buffer Transfer without Processor Intervention

Serial Synchronous
Controller

• Provides Serial Synchronous Communication Links Used in Audio and Telecom
Applications

• Contains an Independent Receiver and Transmitter and a Common Clock Divider

• Interfaced with Two PDC Channels (DMA Access) to Reduce Processor Overhead

• Offers a Configurable Frame Sync and Data Length

• Receiver and Transmitter can be Programmed to Start Automatically or on Detection
of Different Event on the Frame Sync Signal

• Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame
Synchronization Signal

Timer Counter • Three 16-bit Timer Counter Channels

• A Wide Range of Functions Including:

– Frequency Measurement

– Event Counting

– Interval Measurement

– Pulse Generation

– Delay Timing

9

AT91RM3400

1790A–ATARM–11/03

– Pulse Width Modulation

– Up/down Capabilities

• Each Channel is User-configurable and Contains:

– Three External Clock Inputs

– Five Internal Clock Inputs

– Two Multi-purpose Input/Output Signals

• Internal Interrupt Signal

• Two Global Registers that Act on All Three TC Channels

Multimedia Card
Interface

• Compatibility with MultiMedia Card Specification Version 2.2

• Compatibility with SD Memory Card Specification Version 1.0

• Cards clock rate up to Master Clock divided by 2

• Embedded power management to slow down clock rate when not used

• Supports up to sixteen multiplexed slots (product-dependent)

– One slot for one MultiMediaCard bus (up to 30 cards) or one SD Memory
Card

• Support for stream, block and multi-block data read and write

• Supports connection to Peripheral Data Controller

– Minimizes processor intervention for large buffer transfers

USB Device Port • USB V2.0 Full-speed Compliant, 12 Mbits per second

• Embedded USB V2.0 Full-speed Transceiver

• Embedded Dual-port RAM for Endpoints

• Suspend/Resume Logic

• Ping-pong Mode (2 Memory Banks) for Isochronous and Bulk Endpoints

10 AT91RM3400
1790A–ATARM–11/03

11

AT91RM3400

1790A–ATARM–11/03

AT91RM3400 Product Properties

Power Supplies The AT91RM3400 has four types of power supply pins:

• VDDCORE pins power the chip core and must be between 1.65V and 1.95V, 1.8V
nominal.

• VDDIO pins power the I/O lines and must be between 1.65V and 3.6V, 1.8V, 3V or 3.3V
nominal.

• VDDPLL pin powers the PLL cells and must be between 1.65V and 1.95V, 1.8V nominal.

• VDDOSC pin powers both oscillators and must be between 1.65V and 1.95V, 1.8V
nominal.

Ground pins are common for all power supplies except the VDDPLL and VDDOSC, for which
the GNDPLL and the GNDOSC pins are provided, respectively.

Powering VDDIO with a voltage lower than 3V prevents any use of the USB Device Port.

Pinout The AT91RM3400 is available in a 100-lead LQFP package.

Table 1. AT91RM3400 Pinout in 100-lead LQFP Package

1 VDDCORE 26 PA11 51 PA30 76 PB21

2 GND 27 PA12 52 PA31 77 PB22

3 VDDPLL 28 PA13 53 PB0 78 JTAGSEL

4 PLLRCB 29 VDDIO 54 PB1 79 TDI

5 GNDPLL 30 GND 55 PB2 80 TDO

6 XOUT 31 PA14 56 PB3 81 TCK

7 XIN 32 PA15 57 PB4 82 TMS

8 VDDOSC 33 PA16 58 PB5 83 VDDIO

9 GNDOSC 34 PA17 59 PB6 84 GND

10 XOUT32 35 VDDCORE 60 PB7 85 TST

11 XIN32 36 GND 61 PB8 86 NRST

12 VDDPLL 37 PA18 62 PB9 87 VDDCORE

13 PLLRCA 38 PA19 63 PB10 88 GND

14 GNDPLL 39 PA20 64 PB11 89 PB23

15 PA0 40 PA21 65 PB12 90 PB24

16 PA1 41 PA22 66 VDDIO 91 PB25

17 PA2 42 PA23 67 GND 92 PB26

18 PA3 43 PA24 68 PB13 93 PB27

19 PA4 44 PA25 69 PB14 94 PB28

20 PA5 45 PA26 70 PB15 95 PB29

21 PA6 46 PA27 71 PB16 96 PB30

22 PA7 47 PA28 72 PB17 97 DDM

23 PA8 48 VDDIO 73 PB18 98 DDP

24 PA9 49 GND 74 PB19 99 VDDIO

25 PA10 50 PA29 75 PB20 100 GND

12 AT91RM3400
1790A–ATARM–11/03

Mechanical
Overview of the
100-lead LQFP
Package

Figure 2 shows the orientation of the 100-lead LQFP package.

A detailed mechanical description is given in the section Mechanical Characteristics of the
product datasheet.

Figure 2. 100-lead LQFP Pinout (Top View)

51

76

75

50

26

251

100

13

AT91RM3400

1790A–ATARM–11/03

Peripheral
Multiplexing on
PIO Lines

The AT91RM3400 features two PIO controllers (PIOA and PIOB) that allow multiplexing of the
I/O lines of the peripheral set.

Each PIO controller controls up to 32 lines. Each line can be assigned to one of the two
peripheral functions, A or B.

The tables in the following paragraphs define how the I/O lines of the peripheral A and B are
multiplexed on the PIO controllers A and B. The two columns “Function” and “Comments”
have been inserted for the user’s own comments; they may be used to track how pins are
defined in an application.

PIO Controller A Multiplexing

Table 2. Multiplexing on PIO Controller A

PIO Controller A Application Usage

I/O Line Peripheral A Peripheral B Function Comments

PA0 MISO –

PA1 MOSI –

PA2 SPCK PCK0

PA3 NPCS0 PCK1

PA4 NPCS1 –

PA5 NPCS2 SCK1

PA6 NPCS3 SCK2

PA7 TWD PCK2

PA8 TWCK PCK3

PA9 TXD0 –

PA10 RXD0 –

PA11 SCK0 TCLK0

PA12 CTS0 TCLK1

PA13 RTS0 TCLK2

PA14 RXD1 –

PA15 TXD1 –

PA16 RTS1 TIOA0

PA17 CTS1 TIOB0

PA18 DTR1 TIOA1

PA19 DSR1 TIOB1

PA20 DCD1 TIOA2

PA21 RI1 TIOB2

PA22 RXD2 –

PA23 TXD2 –

PA24 MCCK RTS0

PA25 MCCDA RTS1

14 AT91RM3400
1790A–ATARM–11/03

PA26 MCDA0

PA27 MCDA1 –

PA28 MCDA2 RTS2

PA29 MCDA3 CTS2

PA30 DRXD –

PA31 DTXD –

Table 2. Multiplexing on PIO Controller A (Continued)

PIO Controller A Application Usage

I/O Line Peripheral A Peripheral B Function Comments

15

AT91RM3400

1790A–ATARM–11/03

PIO Controller B Multiplexing

Table 3. Multiplexing PIO controller B

PIO Controller B Application Usage

I/O Line Peripheral A Peripheral B Function Comments

PB0 TF0 TIOB3

PB1 TK0 TCLK3

PB2 TD0 RTS2

PB3 RD0 RTS3

PB4 RK0 PCK0

PB5 RF0 TIOA3

PB6 TF1 TIOB4

PB7 TK1 TCLK4

PB8 TD1 NPCS1

PB9 RD1 NPCS2

PB10 RK1 PCK1

PB11 RF1 TIOA4

PB12 TF2 TIOB5

PB13 TK2 TCLK5

PB14 TD2 NPCS3

PB15 RD2 PCK1

PB16 RK2 PCK2

PB17 RF2 TIOA5

PB18 RTS3 MCCDB

PB19 CTS3 MCDB0

PB20 TXD3 DTR1

PB21 RXD3

PB22 SCK3 PCK3

PB23 FIQ

PB24 IRQ0 TD0

PB25 IRQ1 TD1

PB26 IRQ2 TD2

PB27 IRQ3 DTXD

PB28 IRQ4 MCDB1

PB29 IRQ5 MCDB2

PB30 IRQ6 MCDB3

16 AT91RM3400
1790A–ATARM–11/03

Pin Name Description
Table 4 gives details on the pin name classified by peripheral.

Table 4. Pin Description List

Pin Name Function Type Active Level Comments

Power

VDDIO Memory I/O Lines Power Supply Power 1.65V to 3.6V

VDDPLL Oscillator and PLL Power Supply Power 1.65V to 1.95V

VDDCORE Core Chip Power Supply Power 1.65V to 1.95V

VDDOSC Oscillator Power Supply Power 1.65V to 1.95V

GND Ground Ground

GNDPLL PLL Ground Ground

GNDOSC Oscillator Ground Ground

Clock Generation and Power Management (PMC)

XIN Main Crystal Input Input

XOUT Main Crystal Output Output

XIN32 32KHz Crystal Input Input

XOUT32 32KHz Crystal Output Output

PLLRCA PLL A Filter Input

PLLRCB PLL B Filter Input

PCK0 - PCK3 Programmable Clock Output Output

ICE and JTAG

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

TMS Test Mode Select Input

JTAGSEL JTAG Selection Input

Reset/Test

NRST Microcontroller Reset Input Low No on-chip pull-up

TST Test Mode Select Input Must be tied low for normal
operation

Debug Unit

DRXD Debug Receive Data Input

DTXD Debug Transmit Data Output

AIC

IRQ0 - IRQ6 Interrupt Inputs Input

FIQ Fast Interrupt Input Input

17

AT91RM3400

1790A–ATARM–11/03

PIO

PA0 - PA31 Parallel IO Controller A I/O Pulled-up input at reset

PB0 - PB30 Parallel IO Controller B I/O Pulled-up input at reset

Multi-media Card Interface

MCCK Multimedia Card Clock Output

MCCDA Multimedia Card A Command I/O

MCDA0 - MCDA3 Multimedia Card A Data I/O

MCCDB Multimedia Card B Command I/O

MCDB0 - MCDB3 Multimedia Card B Data I/O

USART

SCK0 - SCK3 Serial Clock I/O

TXD0 - TXD3 Transmit Data I/O

RXD0 - RXD3 Receive Data Input

RTS0 - RTS3 Ready To Send Output

CTS0 - CTS3 Clear To Send Input

DSR1 Data Set Ready Input

DTR1 Data Terminal Ready Output

DCD1 Data Carrier Detect Input

RI1 Ring Indicator Input

USB Device Port

DM USB Device Port Data - Analog

DP USB Device Port Data + Analog

Synchronous Serial Controller

TD0 - TD2 Transmit Data Output

RD0 - RD2 Receive Data Input

TK0 - TK2 Transmit Clock I/O

RK0 - RK2 Receive Clock I/O

TF0 - TF2 Transmit Frame Sync I/O

RF0 - RF2 Receive Frame Sync I/O

Timer/Counter

TCLK0 - TCLK5 External Clock Input Input

TIOA0 - TIOA5 Multipurpose Timer I/O Pin A I/O

TIOB0 - TIOB5 Multipurpose Timer I/O Pin B I/O

Table 4. Pin Description List

Pin Name Function Type Active Level Comments

18 AT91RM3400
1790A–ATARM–11/03

SPI

MISO Master In Slave Out I/O

MOSI Master Out Slave In I/O

SPCK SPI Serial Clock I/O

NPCS0 - NPCS3 SPI Peripheral Chip Select 0 to 3 I/O Low

Two-wire Interface

TWD Two-wire Serial Data I/O

TWCK Two-wire Serial Clock I/O

Table 4. Pin Description List

Pin Name Function Type Active Level Comments

19

AT91RM3400

1790A–ATARM–11/03

Peripheral
Identifiers

The AT91RM3400 embeds a wide range of peripherals. Table 5 defines the Peripherals Iden-
tifiers of the AT91RM3400. A peripheral identifier is required for the control of the peripheral
interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with
the Power Management Controller.

Table 5. Peripheral Identifiers

Peripheral ID
Peripheral
Mnemonic Peripheral Name External Interrupt

0 AIC Advanced Interrupt Controller FIQ

1 SYSIRQ System Interrupt

2 PIOA Parallel IO Controller A

3 PIOB Parallel IO Controller B

4 – Reserved

5 – Reserved

6 US0 USART 0

7 US1 USART 1

8 US2 USART 2

9 US3 USART 3

10 MCI Multimedia Card Interface

11 UDP USB Device Port

12 TWI Two-Wire Interface

13 SPI Serial Peripheral Interface

14 SSC0 Serial Synchronous Controller 0

15 SSC1 Serial Synchronous Controller 1

16 SSC2 Serial Synchronous Controller 2

17 TC0 Timer Counter 0

18 TC1 Timer Counter 1

19 TC2 Timer Counter 2

20 TC3 Timer Counter 3

21 TC4 Timer Counter 4

22 TC5 Timer Counter 5

23 – Reserved

24 – Reserved

25 AIC Advanced Interrupt Controller IRQ0

26 AIC Advanced Interrupt Controller IRQ1

27 AIC Advanced Interrupt Controller IRQ2

28 AIC Advanced Interrupt Controller IRQ3

29 AIC Advanced Interrupt Controller IRQ4

30 AIC Advanced Interrupt Controller IRQ5

31 AIC Advanced Interrupt Controller IRQ6

20 AT91RM3400
1790A–ATARM–11/03

System Interrupt The system interrupt (Peripheral ID 1) is the wired-OR of the signal coming from:

• the Power Management Controller

• the System Timer

• the Real Time Clock

• the Debug Unit

The clock of these peripherals cannot be controlled and the Peripheral ID 1 can only be used
within the Advanced Interrupt Controller.

External Interrupts All external interrupt signals, i.e, the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to
IRQ6, use a dedicated Peripheral ID. However, there is no clock control associated with these
peripherals IDs.

Product Memory Mapping

Internal Memory
Mapping

Internal RAM The AT91RM3400 embeds a high-speed 96-Kbyte SRAM bank. After reset and until the
Remap Command is performed, the SRAM is only accessible at address 0x0020 0000. After
Remap, the SRAM also becomes available at address 0x0.

Internal ROM The AT91RM3400 features one bank of 256K bytes of ROM. At any time, the ROM is mapped
to address 0x0010 0000. It is also accessible at address 0x0 after the reset and before the
Remap Command.

Figure 3. Internal Memory Mapping

256M Bytes

ROM Before Remap
SRAM After Remap

Undefined Areas
(Abort)

0x000F FFFF

0x001F FFFF

0x002F FFFF

0x0FFF FFFF

1 M Bytes

1 M Bytes

1 M Bytes

253 M Bytes

Internal ROM

Internal SRAM

0x0000 0000

0x0010 0000

0x0020 0000

0x0030 0000

21

AT91RM3400

1790A–ATARM–11/03

Peripheral Mapping

System Peripherals
Mapping

The System Peripherals are all mapped to the highest 4K bytes of address space, between
addresses 0xFFFF F000 and 0xFFFF FFFF. Each peripheral has an address space of 256 or
512 bytes, representing 64 or 128 registers.

Figure 4. System Peripherals Mapping

0xFFFF F000

0xFFFF F200
0xFFFF F1FF

0xFFFF F3FF

0xFFFF F5FF

0xFFFF F7FF

0xFFFF FBFF

0xFFFF FCFF

0xFFFF FDFF

0xFFFF FEFF

0xFFFF FFFF

0xFFFF F400

0xFFFF F600

0xFFFF F800

0xFFFF FC00

AIC

DBGU

PIOA

PIOB

Reserved

PMC

ST

RTC

MC

Advanced Interrupt Controller 512 Bytes/128 registers

Debug Unit 512 Bytes/128 registers

PIO Controller A 512 Bytes/128 registers

PIO Controller B 512 Bytes/128 registers

Power Management Controller 256 Bytes/64 registers

System Timer 256 Bytes/64 registers

Real Time Clock 256 Bytes/64 registers

Memory Controller 256 Bytes/64 registers

0xFFFF FD00

0xFFFF FE00

0xFFFF FF00

Peripheral Name SizeAddress Peripheral

22 AT91RM3400
1790A–ATARM–11/03

User Peripherals
Mapping

Each User Peripheral is allocated 16K bytes of address space.

Figure 5. User Peripherals Mapping

16K Bytes

Peripheral Name Size

16K Bytes

16K Bytes

16K Bytes

16K Bytes

16K Bytes

16K Bytes

0xFFFA 0000

0xFFFA 3FFF

TC0, TC1, TC2 Timer/Counter 0, 1 and 2

16K Bytes

16K Bytes

16K Bytes

16K Bytes

16K Bytes

16K Bytes

Reserved

Reserved

0xFFFA 4000

0xFFFA 7FFF

TC3, TC4, TC5 Timer/Counter 3, 4 and 5

UDP USB Device Port
0xFFFB 0000

0xF000 0000

0xFFFB 3FFF

MCI Multimedia Card Interface
0xFFFB 4000

0xFFFB 7FFF

TWI Two-Wire Interface
0xFFFB 8000

0xFFFB BFFF

0xFFFB FFFF

USART0 Universal Synchronous Asynchronous
Receiver Transmitter 0

0xFFFC 0000

0xFFFC 3FFF

USART1 Universal Synchronous Asynchronous
Receiver Transmitter 1

0xFFFC 4000

0xFFFC 7FFF

USART2 Universal Synchronous Asynchronous
Receiver Transmitter 2

0xFFFC 8000

0xFFFC BFFF

USART3 Universal Synchronous Asynchronous
Receiver Transmitter 3

0xFFFC C000

0xFFFC FFFF

SSC0 Serial Synchronous Controller 0
0xFFFD 0000

0xFFFD 3FFF

SSC1 Serial Synchronous Controller 1
0xFFFD 4000

0xFFFD 7FFF

SSC2 Serial Synchronous Controller 2
0xFFFD 8000

0xFFFD BFFF

Reserved

0xFFFD FFFF

SPI Serial Peripheral Interface
0xFFFE 0000

0xFFFE 3FFF

Reserved

0xFFFE FFFF

Reserved

0xFFFD C000

0xFFFB C000

0xFFFE 4000

0xFFFA 8000

0xFFFA FFFF

23

AT91RM3400

1790A–ATARM–11/03

Peripheral Implementation

USART The USART section describes features allowing management of the Modem Signals DTR,
DSR, DCD and RI.

In the AT91RM3400, only the USART1 implements these signals, named DTR1, DSR1, DCD1
and RI1.

The USART0, USART2 and USART3 do not implement all the modem signals. Only RTS and
CTS (RTS0 and CTS0, RTS2 and CTS2, RTS3 and CTS3, respectively) are implemented in
these USARTs for other features.

Thus, programming the USART0, USART2 or the USART3 in Modem Mode may lead to
unpredictable results. In these USARTs, the commands relating to the Modem Mode have no
effect and the status bits relating the status of the modem signals are never activated.

Timer Counter The Timer Counter 0 to 5 are described with five generic clock inputs, TIMER_CLOCK1 to
TIMER_CLOCK5. In the AT91RM3400, these clock inputs are connected to the Master Clock
(MCK), to the Slow Clock (SLCK) and to divisions of the Master Clock.

Table 6 gives the correspondence between the Timer Counter clock inputs and clocks in the
AT91RM3400. Each Timer Counter 0 to 5 displays the same configuration.

USB Device Port The USB device port is V2.0 full-speed compliant. It features six general purpose endpoints
configured as follows:

Endpoint 0: 8 bytes, no support of ping-pong mode

Endpoint 1: 64 bytes, supports ping-pong mode

Endpoint 2: 64 bytes, supports ping-pong mode

Endpoint 3 : 8 bytes, no support of ping-pong mode

Endpoint 4: 256 bytes, supports ping-pong mode

Endpoint 5 : 256 bytes, supports ping-pong mode

Table 6. Timer Counter Clocks Assignment

TC Clock Input Clock

TIMER_CLOCK1 MCK/2

TIMER_CLOCK2 MCK/8

TIMER_CLOCK3 MCK/32

TIMER_CLOCK4 MCK/128

TIMER_CLOCK5 SLCK

24 AT91RM3400
1790A–ATARM–11/03

25

AT91RM3400

1790A–ATARM–11/03

ARM7TDMI Processor Overview

Overview The ARM7TDMI core executes both the 32-bit ARM® and 16-bit Thumb® instruction sets,
allowing the user to trade off between high performance and high code density.The
ARM7TDMI processor implements Von Neuman architecture, using a three-stage pipeline
consisting of Fetch, Decode, and Execute stages.

The main features of the ARM7tDMI processor are:

• ARM7TDMI Based on ARMv4T Architecture

• Two Instruction Sets

– ARM® High-performance 32-bit Instruction Set

– Thumb® High Code Density 16-bit Instruction Set

• Three-Stage Pipeline Architecture

– Instruction Fetch (F)

– Instruction Decode (D)

– Execute (E)

26 AT91RM3400
1790A–ATARM–11/03

ARM7TDMI Processor
For further details on ARM7TDMI, refer to the following ARM documents:

ARM Architecture Reference Manual (DDI 0100E)
ARM7TDMI Technical Reference Manual (DDI 0210B)

Instruction Type Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Type ARM7TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must
be aligned to four-byte boundaries and half words to two-byte boundaries.

Unaligned data access behavior depends on which instruction is used where.

ARM7TDMI
Operating Mode

The ARM7TDMI, based on ARM architecture v4T, supports seven processor modes:

User: The normal ARM program execution state

FIQ: Designed to support high-speed data transfer or channel process

IRQ: Used for general-purpose interrupt handling

Supervisor: Protected mode for the operating system

Abort mode: Implements virtual memory and/or memory protection

System: A privileged user mode for the operating system

Undefined: Supports software emulation of hardware coprocessors

Mode changes may be made under software control, or may be brought about by external
interrupts or exception processing. Most application programs execute in User mode. The
non-user modes, or privileged modes, are entered in order to service interrupts or exceptions,
or to access protected resources.

ARM7TDMI
Registers

The ARM7TDMI processor has a total of 37registers:

• 31 general-purpose 32-bit registers

• 6 status registers

These registers are not accessible at the same time. The processor state and operating mode
determine which registers are available to the programmer.

At any one time 16 registers are visible to the user. The remainder are synonyms used to
speed up exception processing.

Register 15 is the Program Counter (PC) and can be used in all instructions to reference data
relative to the current instruction.

R14 holds the return address after a subroutine call.

R13 is used (by software convention) as a stack pointer

27

AT91RM3400

1790A–ATARM–11/03

.

Registers R0 to R7 are unbanked registers. This means that each of them refers to the same
32-bit physical register in all processor modes. They are general-purpose registers, with no
special uses managed by the architecture, and can be used wherever an instruction allows a
general-purpose register to be specified.

Registers R8 to R14 are banked registers. This means that each of them depends on the cur-
rent mode of the processor.

Modes and Exception
Handling

All exceptions have banked registers for R14 and R13.

After an exception, R14 holds the return address for exception processing. This address is
used to return after the exception is processed, as well as to address the instruction that
caused the exception.

R13 is banked across exception modes to provide each exception handler with a private stack
pointer.

The fast interrupt mode also banks registers 8 to 12 so that interrupt processing can begin
without having to save these registers.

Table 7. ARM7TDMI ARM Modes and Registers Layout

User and
System
Mode

Supervisor
Mode Abort Mode

Undefined
Mode

Interrupt
Mode

Fast
Interrupt
Mode

R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8_FIQ

R9 R9 R9 R9 R9 R9_FIQ

R10 R10 R10 R10 R10 R10_FIQ

R11 R11 R11 R11 R11 R11_FIQ

R12 R12 R12 R12 R12 R12_FIQ

R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ

R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ

PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_SVC SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ

Mode-specific banked registers

28 AT91RM3400
1790A–ATARM–11/03

A seventh processing mode, System Mode, does not have any banked registers. It uses the
User Mode registers. System Mode runs tasks that require a privileged processor mode and
allows them to invoke all classes of exceptions.

Status Registers All other processor states are held in status registers. The current operating processor status
is in the Current Program Status Register (CPSR). The CPSR holds:

• four ALU flags (Negative, Zero, Carry, and Overflow)

• two interrupt disable bits (one for each type of interrupt)

• one bit to indicate ARM or Thumb execution

• five bits to encode the current processor mode

All five exception modes also have a Saved Program Status Register (SPSR) that holds the
CPSR of the task immediately preceding the exception.

Exception Types The ARM7TDMI supports five types of exception and a privileged processing mode for each
type. The types of exceptions are:

• fast interrupt (FIQ)

• normal interrupt (IRQ)

• memory aborts (used to implement memory protection or virtual memory)

• attempted execution of an undefined instruction

• software interrupts (SWIs)

Exceptions are generated by internal and external sources.

More than one exception can occur in the same time.

When an exception occurs, the banked version of R14 and the SPSR for the exception mode
are used to save state.

To return after handling the exception, the SPSR is moved to the CPSR, and R14 is moved to
the PC. This can be done in two ways:

• by using a data-processing instruction with the S-bit set, and the PC as the destination

• by using the Load Multiple with Restore CPSR instruction (LDM)

ARM Instruction
Set Overview

The ARM instruction set is divided into:

• Branch instructions

• Data processing instructions

• Status register transfer instructions

• Load and Store instructions

• Coprocessor instructions

• Exception-generating instructions

ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition
code field (bit[31:28]).

Table 8 gives the ARM instruction mnemonic list.

29

AT91RM3400

1790A–ATARM–11/03

Thumb Instruction
Set Overview

The Thumb instruction set is a re-encoded subset of the ARM instruction set.

The Thumb instruction set is divided into:

• Branch instructions

• Data processing instructions

• Load and Store instructions

• Load and Store Multiple instructions

• Exception-generating instruction

In Thumb mode, eight general-purpose registers, R0 to R7, are available that are the same
physical registers as R0 to R7 when executing ARM instructions. Some Thumb instructions
also access to the Program Counter (ARM Register 15), the Link Register (ARM Register 14)

Table 8. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

MOV Move CDP Coprocessor Data Processing

ADD Add MVN Move Not

SUB Subtract ADC Add with Carry

RSB Reverse Subtract SBC Subtract with Carry

CMP Compare RSC Reverse Subtract with Carry

TST Test CMN Compare Negated

AND Logical AND TEQ Test Equivalence

EOR Logical Exclusive OR BIC Bit Clear

MUL Multiply ORR Logical (inclusive) OR

SMULL Sign Long Multiply MLA Multiply Accumulate

SMLAL Signed Long Multiply Accumulate UMULL Unsigned Long Multiply

MSR Move to Status Register UMLAL Unsigned Long Multiply Accumulate

B Branch MRS Move From Status Register

BX Branch and Exchange BL Branch and Link

LDR Load Word SWI Software Interrupt

LDRSH Load Signed Halfword STR Store Word

LDRSB Load Signed Byte STRH Store Half Word

LDRH Load Half Word STRB Store Byte

LDRB Load Byte STRBT Store Register Byte with Translation

LDRBT Load Register Byte with Translation STRT Store Register with Translation

LDRT Load Register with Translation STM Store Multiple

LDM Load Multiple SWPB Swap Byte

SWP Swap Word MRC Move From Coprocessor

MCR Move To Coprocessor STC Store From Coprocessor

LDC Load To Coprocessor

30 AT91RM3400
1790A–ATARM–11/03

and the Stack Pointer (ARM Register 13). Further instructions allow limited access to the ARM
registers 8 to 15.

Table 9 gives the Thumb instruction mnemonic list.

Table 9. Thumb Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

MOV Move MVN Move Not

ADD Add ADC Add with Carry

SUB Subtract SBC Subtract with Carry

CMP Compare CMN Compare Negated

TST Test NEG Negate

AND Logical AND BIC Bit Clear

EOR Logical Exclusive OR ORR Logical (inclusive) OR

LSL Logical Shift Left LSR Logical Shift Right

ASR Arithmetic Shift Right ROR Rotate Right

MUL Multiply

B Branch BL Branch and Link

BX Branch and Exchange SWI Software Interrupt

LDR Load Word STR Store Word

LDRH Load Half Word STRH Store Half Word

LDRB Load Byte STRB Store Byte

LDRSH Load Signed Halfword LDRSB Load Signed Byte

LDMIA Load Multiple STMIA Store Multiple

PUSH Push Register to stack POP Pop Register from stack

31

AT91RM3400

1790A–ATARM–11/03

AT91RM3400 Debug and Test Features

Overview The AT91RM3400 features a number of complementary debug and test capabilities. A
common JTAG/ICE (In-circuit Emulator) port is used for standard debugging functions,
such as downloading code and single-stepping through programs. The Debug Unit pro-
vides a two-pin UART that can be used to upload an application into internal SRAM. It
manages the interrupt handling of the internal COMMTX and COMMRX signals that
trace the activity of the Debug Communication Channel.

A set of dedicated debug and test input/output pins give direct access to these capabili-
ties from a PC-based test environment.

Key features are:

• Integrated Embedded In-circuit Emulator

• Debug Unit

– Two-pin UART

– Debug Communication Channel

– Chip ID Register

• IEEE1149.1 JTAG Boundary-scan on All Digital Pins

32 AT91RM3400
1790A–ATARM–11/03

Block Diagram

Figure 6. AT91RM3400 Debug and Test Block Diagram

Note: TAP: Test Access Port

ICE

PDC DBGU

P
IO

DRXD

DTXD

NRST

TST

TMS

TCK

TDI

JTAGSEL

TDO

Boundary
TAP

ICE/JTAG
TAP

ARM7TDMI

Reset
and
Test

33

AT91RM3400

1790A–ATARM–11/03

Application Examples

Debug Environment Figure 7 shows a complete debug environment example. The ICE/JTAG interface is
used for standard debugging functions, such as downloading code and single-stepping
through the program.

Figure 7. AT91RM3400-based Application Debug Environment Example

Test Environment Figure 8 shows a test environment example. Test vectors are sent and interpreted by
the tester. In this example, the “board under test” is designed using a number of JTAG-
compliant devices. These devices can be connected to form a single scan chain.

Figure 8. AT91RM3400-based Application Test Environment Example

AT91RM3400-based Application Board

ICE/JTAG
Interface

ICE/JTAG
Connector

AT91RM3400 Terminal
RS232

Connector

Host Debugger

JTAG
Interface

ICE/JTAG
Connector

AT91RM3400

TesterTest Adapter

AT91RM3400-based Application Board in Test

Chip n Chip 2

Chip 1

34 AT91RM3400
1790A–ATARM–11/03

Debug and Test Pin
Description

Functional Description

Test Pin One dedicated pin, TST, is used to define the device operating mode. The user must
make sure that this pin is tied at low level to ensure normal operating conditions. Other
values associated to this pin are manufacturing test reserved.

Embedded In-circuit
Emulator

ARM7TDMI embedded In-circuit Emulator is supported via the ICE/JTAG port.The inter-
nal state of the ARM7TDMI is examined through a ICE/JTAG port.

The ARM7TDMI processor contains hardware extensions for advanced debugging
features:

• In halt mode, a store-multiple (STM) can be inserted into the instruction pipeline.
This exports the contents of the ARM7TDMI registers. This data can be serially
shifted out without affecting the rest of the system.

• In monitor mode, the JTAG interface is used to transfer data between the debugger
and a simple monitor program running on the ARM7TDMI processor.

There are three scan chains inside the ARM7TDMI processor that support testing,
debugging, and programming of the Embedded ICE. The scan chains are controlled by
the ICE/JTAG port.

Embedded ICE mode is selected when JTAGSEL is low. It is not possible to switch
directly between ICE and JTAG operations. A chip reset must be performed (NRST)
after JTAGSEL is changed.

For further details on the Embedded In-Circuit-Emulator, see the ARM7TDMI (Rev4)
Technical Reference Manual (DDI0210B).

Table 10. Debug and Test Pin List

Pin Name Function Type Active Level

Reset/Test

NRST Microcontroller Reset Input Low

TST Test Mode Select Input

ICE and JTAG

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

TMS Test Mode Select Input

JTAGSEL JTAG Selection Input

Debug Unit

DRXD Debug Receive Data Input

DTXD Debug Transmit Data Output

35

AT91RM3400

1790A–ATARM–11/03

Debug Unit The Debug Unit provides a two-pin (DXRD and TXRD) USART that can be used for sev-
eral debug and trace purposes and offers an ideal means for in-situ programming
solutions and debug monitor communication. Moreover, the association with two periph-
eral data controller channels permits packet handling of these tasks with processor time
reduced to a minimum.

The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX
signals that come from the ICE and that trace the activity of the Debug Communication
Channel.The Debug Unit allows blockage of access to the system through the ICE
interface.

The Debug Unit can be used to upload an application into the internal SRAM. It is acti-
vated by the boot program when no valid application is detected. The protocol used to
load the application is XMODEM.

A specific register, the Debug Unit Chip ID Register, informs about the product version
and its internal configuration.

AT91RM3400 Debug Unit Chip ID value is: 0x034E0941, on 32-bit width.

For further details on the Debug Unit, see the Debug Unit section.

For further details on the Debug Unit and Boot program, see Boot Program
Specifications.

IEEE 1149.1 JTAG
Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device
packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE,
EXTEST and BYPASS functions are implemented. In ICE debug mode, the ARM pro-
cessor responds with a non-JTAG chip ID that identifies the processor to the ICE
system. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG and ICE operations. A chip reset must
be performed (NRST) after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided to set up test.

JTAG Boundary-scan Register The Boundary-scan Register (BSR) contains 189 bits which correspond to active pins
and associated control signals.

Each AT91RM3400 input/output pin corresponds to a 3-bit register in the BSR. The
OUTPUT bit contains data that can be forced on the pad. The INPUT bit facilitates the
observability of data applied to the pad. The CONTROL bit selects the direction of the
pad.

Table 11. JTAG Boundary Scan Register

Bit
Number Pin Name Pin Type

Associated BSR
Cells

189

PB18/RTS3/MCCDB IN/OUT

INPUT

188 OUTPUT

187 CONTROL

186

PB19/CTS3/MCCDB0 IN/OUT

INPUT

185 OUTPUT

184 CONTROL

36 AT91RM3400
1790A–ATARM–11/03

183

PB20/TXD3/DTR1 IN/OUT

INPUT

182 OUTPUT

181 CONTROL

180

PB21/RXD3 IN/OUT

INPUT

179 OUTPUT

178 CONTROL

177

PB22/SCK3/PCK3 IN/OUT

INPUT

176 OUTPUT

175 CONTROL

174

PB23/FIQ IN/OUT

INPUT

173 OUTPUT

172 CONTROL

171

PB24/IRQ0/TD0 IN/OUT

INPUT

170 OUTPUT

169 CONTROL

168

PB25/IRQ1/TD1 IN/OUT

INPUT

167 OUTPUT

166 CONTROL

165

PB26/IRQ2/TD2 IN/OUT

INPUT

164 OUTPUT

163 CONTROL

162

PB27/IRQ3/DTXD IN/OUT

INPUT

161 OUTPUT

160 CONTROL

159

PB28/IRQ4/MCDB1 IN/OUT

INPUT

158 OUTPUT

157 CONTROL

156

PB29/IRQ5/MCDB2 IN/OUT

INPUT

155 OUTPUT

154 CONTROL

153

PB30/IRQ6/MCDB3 IN/OUT

INPUT

152 OUTPUT

151 CONTROL

Table 11. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

37

AT91RM3400

1790A–ATARM–11/03

150

PA0/MISO IN/OUT

INPUT

149 OUTPUT

148 CONTROL

147

PA1/MOSI IN/OUT

INPUT

146 OUTPUT

145 CONTROL

144

PA2/SPCK/PCK0 IN/OUT

INPUT

143 OUTPUT

142 CONTROL

141

PA3/NPCS0/PCK1 IN/OUT

INPUT

140 OUTPUT

139 CONTROL

138

PA4/NPCS1 IN/OUT

INPUT

137 OUTPUT

136 CONTROL

135

PA5/NPCS2/SCK1 IN/OUT

INPUT

134 OUTPUT

133 CONTROL

132

PA6/NPCS3/SCK2 IN/OUT

INPUT

131 OUTPUT

130 CONTROL

129

PA7/TWD/PCK2 IN/OUT

INPUT

128 OUTPUT

127 CONTROL

126

PA8/TWCK/PCK3 IN/OUT

INPUT

125 OUTPUT

124 CONTROL

123

PA9/TXD0 IN/OUT

INPUT

122 OUTPUT

121 CONTROL

120

PA10/RXD0 IN/OUT

INPUT

119 OUTPUT

118 CONTROL

Table 11. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

38 AT91RM3400
1790A–ATARM–11/03

117

PA11/SCK0/TCLK0 IN/OUT

INPUT

116 OUTPUT

115 CONTROL

114

PA12/CTS0/TCLK1 IN/OUT

INPUT

113 OUTPUT

112 CONTROL

111

PA13/RTS0/TCLK2 IN/OUT

INPUT

110 OUTPUT

109 CONTROL

108

PA14/RXD1 IN/OUT

INPUT

107 OUTPUT

106 CONTROL

105

PA15/TXD1 IN/OUT

INPUT

104 OUTPUT

103 CONTROL

102

PA16/RTS1/TIOA0 IN/OUT

INPUT

101 OUTPUT

100 CONTROL

99

PA17/CTS1/TIOB0 IN/OUT

INPUT

98 OUTPUT

97 CONTROL

96

PA18/DTR1/TIOA1 IN/OUT

INPUT

95 OUTPUT

94 CONTROL

93

PA19/DSR1/TIOB1 IN/OUT

INPUT

92 OUTPUT

91 CONTROL

90

PA20/DCD1/TIOA2 IN/OUT

INPUT

89 OUTPUT

88 CONTROL

87

PA21/RI1/TIOB2 IN/OUT

INPUT

86 OUTPUT

85 CONTROL

Table 11. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

39

AT91RM3400

1790A–ATARM–11/03

84

PA22/RXD2 IN/OUT

INPUT

83 OUTPUT

82 CONTROL

81

PA23/TXD2 IN/OUT

INPUT

80 OUTPUT

79 CONTROL

78

PA24/MCCK/RTS0 IN/OUT

INPUT

77 OUTPUT

76 CONTROL

75

PA25/MCCDA/RTS1 IN/OUT

INPUT

74 OUTPUT

73 CONTROL

72

PA26/MCDA0 IN/OUT

INPUT

71 OUTPUT

70 CONTROL

69

PA27/MCDA1 IN/OUT

INPUT

68 OUTPUT

67 CONTROL

66

PA28/MCDA2/RTS2 IN/OUT

INPUT

65 OUTPUT

64 CONTROL

63

PA29/MCDA3/CTS2 IN/OUT

INPUT

62 OUTPUT

61 CONTROL

60

PA30/DRXD IN/OUT

INPUT

59 OUTPUT

58 CONTROL

57

PA31/DTXD IN/OUT

INPUT

56 OUTPUT

55 CONTROL

54

PB0/TF0/TIOB3 IN/OUT

INPUT

53 OUTPUT

52 CONTROL

Table 11. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

40 AT91RM3400
1790A–ATARM–11/03

51

PB1/TK0/TCLK3 IN/OUT

INPUT

50 OUTPUT

49 CONTROL

48

PB2/TD0/RTS2 IN/OUT

INPUT

47 OUTPUT

46 CONTROL

45

PB3/RD0/RTS3 IN/OUT

INPUT

44 OUTPUT

43 CONTROL

42

PB4/RK0/PCK0 IN/OUT

INPUT

41 OUTPUT

40 CONTROL

39

PB5/RF0/TIOA3 IN/OUT

INPUT

38 OUTPUT

37 CONTROL

36

PB6/TF1/TIOB4 IN/OUT

INPUT

35 OUTPUT

34 CONTROL

33

PB7/TK1/TCLK4 IN/OUT

INPUT

32 OUTPUT

31 CONTROL

30

PB8/TD1/NPCS1 IN/OUT

INPUT

29 OUTPUT

28 CONTROL

27

PB9/RD1/NPCS2 IN/OUT

INPUT

26 OUTPUT

25 CONTROL

24

PB10/RK1/PCK1 IN/OUT

INPUT

23 OUTPUT

22 CONTROL

21

PB11/RF1/TIOA4 IN/OUT

INPUT

20 OUTPUT

19 CONTROL

Table 11. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

41

AT91RM3400

1790A–ATARM–11/03

18

PB12/TF2/TIOB5 IN/OUT

INPUT

17 OUTPUT

16 CONTROL

15

PB13/TK2/TCLK5 IN/OUT

INPUT

14 OUTPUT

13 CONTROL

12

PB14/TD2/NPCS3 IN/OUT

INPUT

11 OUTPUT

10 CONTROL

9

PB15/RD2/PCK1 IN/OUT

INPUT

8 OUTPUT

7 CONTROL

6

PB16/RK2/PCK2 IN/OUT

INPUT

5 OUTPUT

4 CONTROL

3

PB17/RF2/TIOA5 IN/OUT

INPUT

2 OUTPUT

1 CONTROL

Table 11. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

42 AT91RM3400
1790A–ATARM–11/03

AT91RM3400 ID Code Register
Access: Read-only

VERSION: Product Version Number

Set to 0x1.

PART NUMBER: Product Part Number

Set to 0x5B03.

MANUFACTURER IDENTITY

Set to 0x01F.

Bit[0]

Required by IEEE Std. 1149.1.

Set to 0x1.

AT91RM3400 JTAG ID Code value is 0x15B0303F.

31 30 29 28 27 26 25 24

VERSION PART NUMBER

23 22 21 20 19 18 17 16

PART NUMBER

15 14 13 12 11 10 9 8

PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0

MANUFACTURER IDENTITY 1

43

AT91RM3400

1790A–ATARM–11/03

Boot Program

Overview The Boot Program downloads an application in any of the AT91 products integrating a ROM. It
integrates a Bootloader and a boot Uploader to assure correct information download.

The Bootloader is activated first. It looks for a sequence of eight valid ARM exception vectors
in a DataFlash connected to the SPI, an EEPROM connected to the Two-wire Interface (TWI)
or an 8-bit memory device connected to the external bus interface (EBI) (if the device inte-
grates the EBI). All these vectors must be B-branch or LDR load register instructions except
for the sixth instruction. This vector is used to store information, such as the size of the image
to download and the type of DataFlash device.

If a valid sequence is found, code is downloaded into the internal SRAM. This is followed by a
remap and a jump to the first address of the SRAM.

If no valid ARM vector sequence is found, the boot Uploader is started. It initializes the Debug
Unit serial port (DBGU) and the USB Device Port. It then waits for any transaction and down-
loads a piece of code into the internal SRAM via a Device Firmware Upgrade (DFU) protocol
for USB and XMODEM protocol for the DBGU. After the end of the download, it branches to
the application entry point at the first address of the SRAM.

The main features of the Boot Program are:

• Default Boot Program stored in ROM-based products

• Downloads and runs an application from external storage media into internal SRAM

• Downloaded code size depends on embedded SRAM size

• Automatic detection of valid application

• Bootloader supporting a wide range of non-volatile memories

– SPI DataFlash® connected on SPI NPCS0

– Two-wire EEPROM

– 8-bit parallel memories on NCS0 (only for devices with EBI integrated)

• Boot Uploader in case no valid program is detected in external NVM and supporting
several communication media

• Serial communication on a DBGU (XModem protocol)

• USB Device Port (DFU Protocol)

44 AT91RM3400
1790A–ATARM–11/03

Flow Diagram
The Boot Program implements the algorithm presented in Figure 9.

Figure 9. Boot Program Algorithm Flow Diagram

Timeout 10 ms

Timeout 40 ms

Device
Setup

SPI DataFlash
Boot

TWI
EEPROM Boot

Download from
DataFlash

Download from
EEPROM

DBGU Serial
Download

Run

Run

Run

Run

OR

Yes

Yes

*DFU = Device Firmware Upgrade

Bootloader

Boot Uploader

USB Download
DFU* protocol

Parallel
Boot

Download from
8-bit Device

Run
Yes

Applicable only to parallel boot interfaces

45

AT91RM3400

1790A–ATARM–11/03

Bootloader The Boot Program is started from address 0x0000_0000 (ARM reset vector) when the on-chip
boot mode is selected (BMS high during the reset, only on devices with EBI integrated). The
first operation is the search for a valid program in the off-chip non-volatile memories. If a valid
application is found, this application is loaded into internal SRAM and executed by branching
at address 0x0000_0000 after remap. This application may be the application code or a sec-
ond-level Bootloader.

To optimize the downloaded application code size, the Boot Program embeds several func-
tions that can be reused by the application. The Boot Program is linked at address
0x0010_0000 but the internal ROM is mapped at both 0x0000_0000 and 0x0010_0000 after
reset. All the call to functions is PC relative and does not use absolute addresses. The ARM
vectors are present at both addresses, 0x0000_0000 and 0x0010_0000.

To access the functions in ROM, a structure containing chip descriptor and function entry
points is defined at a fixed address in ROM.

If no valid application is detected, the debug serial port or the USB device port must be con-
nected to allow the upload. A specific application provided by Atmel (DFU uploader) loads the
application into internal SRAM through the USB. To load the application through the debug
serial port, a terminal application (HyperTerminal) running the Xmodem protocol is required.

Figure 10. Remap Action after Download Completion

After reset, the code in internal ROM is mapped at both addresses 0x0000_0000 and
0x0010_0000:

100000 ea00000b B 0x2c 00 ea00000b B 0x2c

100004 e59ff014 LDR PC,[PC,20] 04 e59ff014 LDR PC,[PC,20]

100008 e59ff014 LDR PC,[PC,20] 08 e59ff014 LDR PC,[PC,20]

10000c e59ff014 LDR PC,[PC,20] 0c e59ff014 LDR PC,[PC,20]

100010 e59ff014 LDR PC,[PC,20] 10 e59ff014 LDR PC,[PC,20]

100014 00001234 LDR PC,[PC,20] 14 00001234 LDR PC,[PC,20]

100018 e51fff20 LDR PC,[PC,-0xf20] 18 e51fff20 LDR PC,[PC,-0xf20]

10001c e51fff20 LDR PC,[PC,-0xf20] 1c e51fff20 LDR PC,[PC,-0xf20]

REMAP

Internal
SRAM

Internal
ROM

Internal
ROM

Internal
SRAM

0x0020_0000

0x0000_0000

0x0010_0000

0x0000_0000

46 AT91RM3400
1790A–ATARM–11/03

Valid Image
Detection

The Bootloader software looks for a valid application by analyzing the first 32 bytes corre-
sponding to the ARM exception vectors. These bytes must implement ARM instructions for
either branch or load PC with PC relative addressing. The sixth vector, at offset 0x18, contains
the size of the image to download and the DataFlash parameters.

The user must replace this vector with his own vector.

Figure 11. LDR Opcode

Figure 12. B Opcode

Unconditional instruction: 0xE for bits 31 to 28

Load PC with PC relative addressing instruction:

– Rn = Rd = PC = 0xF

– I==1

– P==1

– U offset added (U==1) or subtracted (U==0)

– W==1

Example An example of valid vectors:

00 ea00000b B 0x2c

004 e59ff014 LDR PC, [PC,20]

08 e59ff014 LDR PC, [PC,20]

0c e59ff014 LDR PC, [PC,20]

10 e59ff014 LDR PC, [PC,20]

14 00001234 LDR PC, [PC,20] <- Code size = 4660 bytes
18 e51fff20 LDR PC, [PC,-0xf20]

1c e51fff20 LDR PC, [PC,-0xf20]

In download mode (DataFlash, EEPROM or 8-bit memory in device with EBI integrated), the
size of the image to load into SRAM is contained in the location of the sixth ARM vector. Thus
the user must replace this vector by the correct vector for his application.

31 28 27 24 23 20 19 16 15 12 11 0

1 1 1 0 1 1 I P U 1 W 0 Rn Rd

31 28 27 24 23 0

1 1 1 0 1 0 1 0 Offset (24 bits)

47

AT91RM3400

1790A–ATARM–11/03

Structure of ARM
Vector 6

The ARM exception vector 6 is used to store information needed by the Boot ROM down-
loader. This information is described below.

Figure 13. Structure of the ARM Vector 6

The first eight bits contain the number of blocks to download. The size of a block is 512 bytes,
allowing download of up to 128K bytes.

The bits 13 to 16 determine the DataFlash page number.

– DataFlash page number = 2(Nb of pages)

The last 15 bits contain the DataFlash page size.

Example The following vector contains the information to describe a AT45DB642 DataFlash which con-
tains 11776 bytes to download.

Vector 6 is 0x0841A017 (00001000010000011010000000010111b):

Size to download: 0x17 * 512 bytes = 11776 bytes

Number pages (1101b): 13 ==> Number of DataFlash pages = 213 = 8192

DataFlash page size(000010000100000b) = 1056

For download in the EEPROM or 8-bit external memory (if device integrates EBI), only the size
to be downloaded is decoded.

31 17 16 13 12 8 7 0

Number of
Pages

Reserved Number of 512-byte Blocks to
Download

DataFlash Page Size

Table 12. DataFlash Device

Device Density Page Size (bytes) Number of Pages

AT45DB011B 1 Mbit 264 512

AT45DB021B 2 Mbits 264 1024

AT45DB041B 4 Mbits 264 2048

AT45DB081B 8 Mbits 264 4096

AT45DB161B 16 Mbits 528 4096

AT45DB321B 32 Mbits 528 8192

AT45DB642 64 Mbits 1056 8192

AT45DB1282 128 Mbits 1056 16384

48 AT91RM3400
1790A–ATARM–11/03

Bootloader
Sequence

The Boot Program performs device initialization followed by the download procedure. If unsuc-
cessful, the upload is done via the USB or debug serial port.

Device Initialization Initialization follows the steps described below:

1. PLL setup

– PLLB is initialized to generate a 48 MHz clock necessary to use the USB Device. A
register located in the Power Management Controller (PMC) determines the
frequency of the main oscillator and thus the correct factor for the PLLB.
Table 13 defines the crystals supported by the Boot Program.

2. Stacks setup for each ARM mode

3. Main oscillator frequency detection

4. Interrupt controller setup

5. C variables initialization

6. Branch main function

Download Procedure The download procedure checks for a valid boot on several devices. The first device checked
is a serial DataFlash connected to the NPCS0 of the SPI, followed by the serial EEPROM con-
nected to the TWI and by an 8-bit parallel memory connected on NCS0 of the External Bus
Interface (if EBI is implemented in the product).

Table 13. Crystals Supported by Software Auto-detection (MHz)

3.0 3.2768 3.6864 3.84 4.0

4.433619 4.9152 5.0 5.24288 6.0

6.144 6.4 6.5536 7.159090 7.3728

7.864320 8.0 9.8304 10.0 11.05920

12.0 12.288 13.56 14.31818 14.7456

16.0 17.734470 18.432 20.0 24.0

25.0 28.224 32.0 33.0

49

AT91RM3400

1790A–ATARM–11/03

Serial DataFlash
Download

The Boot Program supports all Atmel DataFlash devices. Table 12 summarizes the parame-
ters to include in the ARM vector 6 for all devices.

The DataFlash has a Status Register that determines all the parameters required to access
the device.

Thus, to be compatible with the future design of the DataFlash, parameters are coded in the
ARM vector 6.

Figure 14. Serial DataFlash Download

End

Read the first 8 instructions (32 bytes).
Decode the sixth ARM vector

Yes

Read the DataFlash into the internal SRAM.
(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP

to jump to the downloaded application

Send status command

8 vectors
(except vector 6) are LDR

or Branch instruction ?

Yes

Start

Is status ok ? Serial Two-Wire
EEPROM Download

No

No

50 AT91RM3400
1790A–ATARM–11/03

Serial Two-wire
EEPROM Download

Generally, serial EEPROMs have no identification code. The bootloader checks for an
acknowledgment on the first read. The device address on the two-wire bus must be 0x0.

The bootloader supports the devices listed in Table 14.

Figure 15. Serial Two-Wire EEPROM Download

Table 14. Supported EEPROM Devices

Device Size Organization

AT24C16A 16 Kbits 16 bytes page write

AT24C164 16 Kbits 16 bytes page write

AT24C32 32 Kbits 32 bytes page write

AT24C64 64 Kbits 32 bytes page write

AT24C128 128 Kbits 64 bytes page write

AT24C256 256 Kbits 64 bytes page write

AT24C512 528 Kbits 128 bytes page write

End

Memory Uploader
Only for Device without

EBI integrated

Read the first 8 instructions (32 bytes).
Decode the sixth ARM vector

Yes

Read the Two-Wire EEPROM into the
internal SRAM

(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP

to jump to the downloaded application

Send Read command

8 vectors
(except vector 6) are LDR

or Branch instruction ?

Yes

Start

Device ACK ?

8-bits parallel memory
Download

Only for Device with EBI integrated
No

No

51

AT91RM3400

1790A–ATARM–11/03

8-bit Parallel Flash
Download (Only for
Products Including an
EBI)

Eight-bit parallel Flash download is supported if the product integrates an External Bus Inter-
face (EBI).

All 8-bit memory devices supported by the EBI when NCS0 is configured in 8-bit data bus
width are supported by the bootloader.

Figure 16. 8-bit Parallel Flash Download

End

Read the external memory into the
internal SRAM

(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP

to jump to the downloaded application

Setup memory controller

8 vectors
(except vector 6) are LDR

or Branch instruction ?

Yes

Start

Memory uploaderNo

Read the first 8 instructions (32 bytes).
Read the size in sixth ARM vector

52 AT91RM3400
1790A–ATARM–11/03

Boot Uploader If no valid boot device has been found during the Bootloader sequence, initialization of serial
communication devices (DBGU and USB device ports) is performed.

– Initialization of the DBGU serial port (115200 bauds, 8, N, 1) and Xmodem protocol
start

– Initialization of the USB Device Port and DFU protocol start

– Download of the application

The boot Uploader performs the DFU and Xmodem protocols to upload the application into
internal SRAM at address 0x0020_0000.

The Boot Program uses a piece of internal SRAM for variables and stacks. To prevent any
upload error, the size of the application to upload must be less than the SRAM size minus 3K
bytes.

After the download, the peripheral registers are reset, the interrupts are disabled and the
remap is performed. After the remap, the internal SRAM is at address 0x0000_0000 and the
internal ROM at address 0x0010_0000. The instruction setting the PC to 0 is the one just after
the remap command. This instruction is fetched in the pipe before doing the remap and exe-
cuted just after. This fetch cycle executes the downloaded image.

External
Communication
Channels

DBGU Serial Port The upload is performed through the DBGU serial port initialized to 115200 Baud, 8, n, 1.

The DBGU sends the character ‘C’ (0x43) to start an Xmodem protocol. Any terminal perform-
ing this protocol can be used to send the application file to the target. The size of the binary file
to send depends on the SRAM size embedded in the product (Refer to the microcontroller
datasheet to determine SRAM size embedded in the microcontroller). In all cases, the size of
the binary file must be lower than SRAM size because the Xmodem protocol requires some
SRAM memory to work.

Xmodem Protocol The Xmodem protocol supported is the 128-byte length block. This protocol uses a two char-
acter CRC-16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

– <SOH> = 01 hex

– <blk #> = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H
(not to 01)

– <255-blk #> = 1’s complement of the blk#.

– <checksum> = 2 bytes CRC16

Figure 17 shows a transmission using this protocol.

53

AT91RM3400

1790A–ATARM–11/03

Figure 17. Xmodem Transfer Example

USB Device Port A 48 MHz USB clock is necessary to use USB Device port. It has been programmed earlier in
the device initialization with PLLB configuration.

DFU Protocol The DFU allows upgrade of the firmware of USB devices. The DFU algorithm is a part of the
USB specification. For more details, refer to “USB Device Firmware Upgrade Specification,
Rev. 1.0”.

There are four distinct steps when carrying out a firmware upgrade:

1. Enumeration: The device informs the host of its capabilities.

2. Reconfiguration: The host and the device agree to initiate a firmware upgrade.

3. Transfer: The host transfers the firmware image to the device. Status requests are
employed to maintain synchronization between the host and the device.

4. Manifestation: Once the device reports to the host that it has completed the reprogram-
ming operations, the host issues a reset and the device executes the upgraded
firmware.

Figure 18. DFU Protocol

Host Device

SOH 01 FE Data[128] CRC CRC

C

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK

Host Device

Prepare for an upgrade

USB reset

DFU mode activated

Download this firmware

Prepare to exit DFU mode

USB reset

54 AT91RM3400
1790A–ATARM–11/03

Hardware and
Software
Constraints

The software limitations of the Boot Program are:

• The downloaded code size is less than the SRAM size embedded in the product.

• The device address of the EEPROM must be 0 on the TWI bus.

• The code is always downloaded from the device address 0x0000_0000 (DataFlash,
EEPROM) to the address 0x0000_0000 of the internal SRAM (after remap).

• The downloaded code must be position-independent or linked at address 0x0000_0000.

The hardware limitations of the Boot Program are:

• The DataFlash must be connected to NPCS0 of the SPI.

• The 8-bit parallel Flash must be connected to NCS0 of the EBI if the device integrates an
EBI.

The SPI and TWI drivers use several PIOs in alternate functions to communicate with devices.
Care must be taken when these PIOs are used by the application. The devices connected
could be unintentionally driven at boot time, and electrical conflicts between SPI or TWI output
pins and the connected devices may appear.

To assure correct functionality, it is recommended to plug in critical devices to other pins or to
boot on an external 16-bit parallel memory (if product integrates an EBI) by setting bit BMS.

Table 15 contains a list of pins that are driven during the Boot Program execution. These pins
are driven during the boot sequence for a period of about 6 ms if no correct boot program is
found. The download through the TWI takes about 5 sec for 64K bytes due to the TWI bit rate
(100 Kbits/s).

For the DataFlash driven by SPCK signal at 12 MHz, the time to download 64K bytes is
reduced to 66 ms.

Before performing the jump to the application in internal SRAM, all the PIOs and peripherals
used in the Boot Program are set to their reset state.

Note: 1. See “Peripheral Multiplexing on PIO Lines” on page 13.

Table 15. Pins Driven during Boot Program Execution

Pin Used SPI (Dataflash) TWI (EEPROM)

MOSI(1) O X

SPCK(1) O X

NPCS0(1) O X

TWD(1) X I/O

TWCK(1) X O

55

AT91RM3400

1790A–ATARM–11/03

Embedded Software Services

Overview An embedded software service is an independent software object that drives device resources
for frequently implemented tasks. The object-oriented approach of the software provides an
easy way to access services to build applications.

An AT91 service has several purposes:

• It gives software examples dedicated to the AT91 devices.

• It can be used on several AT91 device families.

• It offers an interface to the software stored in the ROM.

The main features of the software services are:

• Compliant with ATPCS

• Compliant with ANSI/ISO Standard C

• Compiled in ARM/Thumb Interworking

• ROM Entry Service

• Tempo, Xmodem and DataFlash services

• CRC and Sine tables

Service Definition

Service Structure

Structure Definition A service structure is defined in C header files.

This structure is composed of data members and pointers to functions (methods) and is similar
to a class definition. There is no protection of data access or methods access. However, some
functions can be used by the customer application or other services and so be considered as
public methods. Similarly, other functions are not invoked by them. They can be considered as
private methods. This is also valid for data.

Methods In the service structure, pointers to functions are supposed to be initialized by default to the
standard functions. Only the default standard functions reside in ROM. Default methods can
be overloaded by custom application methods.

Methods do not declare any static variables nor invoke global variables. All methods are
invoked with a pointer to the service structure. A method can access and update service data
without restrictions.

Similarly, there is no polling in the methods. In fact, there is a method to start the functionality
(a read to give an example), a method to get the status (is the read achieved?), and a call-
back, initialized by the start method. Thus, using service, the client application carries out a
synchronous read by starting the read and polling the status, or an asynchronous read speci-
fying a callback when starting the read operation.

Service Entry Point Each AT91 service, except for the ROM Entry Service (see Section), defines a function
named AT91F_Open_<Service>. It is the only entry point defined for a service. Even if the
functions AT91F_Open_<Service> may be compared with object constructors, they do not
act as constructors in that they initiate the service structure but they do not allocate it. Thus
the customer application must allocate it.

Example

56 AT91RM3400
1790A–ATARM–11/03

// Allocation of the service structure

AT91S_Pipe pipe;

// Opening of the service

AT91PS_Pipe pPipe = AT91F_OpenPipe(&pipe, …);

Method pointers in the service structure are initialized to the default methods defined in the
AT91 service. Other fields in the service structure are initialized to default values or with the
arguments of the function AT91F_Open_<Service>.

In summary, an application must know what the service structure is and where the function
AT91F_Open_<Service> is.

The default function AT91F_Open_<Service> may be redefined by the application or com-
prised in an application-defined function. See Section .

Using a Service

Opening a Service The entry point to a service is established by initializing the service structure. An open function
is associated with each service structure, except for the ROM Entry Service (see Section).
Thus, only the functions AT91F_Open_<service> are visible from the user side. Access to
the service methods is made via function pointers in the service structure.

The function AT91F_Open_<service> has at least one argument: a pointer to the service
structure that must be allocated elsewhere. It returns a pointer to the base service structure
or a pointer to this service structure.

The function AT91F_Open_<service> initializes all data members and method pointers. All
function pointers in the service structure are set to the service’s functions.

The advantage of this method is to offer a single entry point for a service. The methods of a
service are initialized by the open function and each member can be overloaded.

Overloading a Method Default methods are defined for all services provided in ROM. These methods may not be
adapted to a project requirement. It is possible to overload default methods by methods
defined in the project.

A method is a pointer to a funct ion. This pointer is ini t ia l ized by the funct ion
AT91F_Open_<Service>. To overload one or several methods in a service, the function
pointer must be updated to the new method.

It is possible to overload just one method of a service or all the methods of a service. In this
latter case, the functionality of the service is user-defined, but still works on the same data
structure.
Note: Calling the default function AT91F_Open_<Service> ensures that all methods and data are

initialized.

57

AT91RM3400

1790A–ATARM–11/03

This can be done by writing a new function My_OpenService(). This new Open function
must call the library-defined function AT91F_Open_<Service>, and then update one or sev-
eral function pointers:

Table 16. Overloading a Method with the Overloading of the Open Service Function

Default service behavior in ROM Overloading AT91F_ChildMethod by My_ChildMethod

// Defined in embedded_services.h

typedef struct _AT91S_Service {

char data;

char (*MainMethod) ();

char (*ChildMethod) ();

} AT91S_Service, * AT91PS_Service;

// Defined in obj_service.c (in ROM)

char AT91F_MainMethod ()

{

}

char AT91F_ChildMethod ()

{

}

// Init the service with default methods

AT91PS_Service AT91F_OpenService(

AT91PS_Service pService)

{

pService->data = 0;

pService->MainMethod =AT91F_MainMethod;

pService->ChildMethod=AT91F_ChildMethod;

return pService;

}

// My_ChildMethod will replace AT91F_ChildMethod

char My_ChildMethod ()

{

}

// Overloading Open Service Method

AT91PS_Service My_OpenService(

AT91PS_Service pService)

{

AT91F_OpenService(pService);

// Overloading ChildMethod default value

pService->ChildMethod= My_ChildMethod;

return pService;

}

// Allocation of the service structure

AT91S_Service service;

// Opening of the service

AT91PS_Service pService =
My_OpenService(&service);

58 AT91RM3400
1790A–ATARM–11/03

This also can be done directly by overloading the method after the use of AT91F_Open_<Ser-
vice> method:

Table 17. Overloading a Method without the Overloading of the Open Service Function.

Default service behavior in ROM Overloading AT91F_ChildMethod by My_ChildMethod

// Defined in embedded_services.h

typedef struct _AT91S_Service {

char data;

char (*MainMethod) ();

char (*ChildMethod) ();

} AT91S_Service, * AT91PS_Service;

// Defined in obj_service.c (in ROM)

char AT91F_MainMethod ()

{

}

char AT91F_ChildMethod ()

{

}

// Init the service with default methods

AT91PS_Service AT91F_OpenService(

AT91PS_Service pService)

{

pService->data = 0;

pService->MainMethod =AT91F_MainMethod;

pService->ChildMethod=AT91F_ChildMethod;

return pService;

}

// My_ChildMethod will replace AT91F_ChildMethod

char My_ChildMethod ()

{

}

// Allocation of the service structure

AT91S_Service service;

// Opening of the service

AT91PS_Service pService =
AT91F_OpenService(&service);

// Overloading ChildMethod default value

pService->ChildMethod= My_ChildMethod;

59

AT91RM3400

1790A–ATARM–11/03

Embedded Software Services

Definition Several AT91 products embed ROM. In most cases, the ROM integrates a bootloader and
several services that may speed up the application and reduce the application code size.

When software is fixed in the ROM, the address of each object (function, constant, table, etc.)
must be related to a customer application. This is done by providing an address table to the
linker. For each version of ROM, a new address table must be provided and all client applica-
tions must be recompiled.

The Embedded Software Services offer another solution to access objects stored in ROM. For
each embedded service, the customer application requires only the address of the Service
Entry Point (see Section).

Even if these services have only one entry point (AT91F_Open_<Service> function), they must
be specified to the linker. The Embedded Software Services solve this problem by providing a
dedicated service: the ROM Entry Service.

The goal of this product-dedicated service is to provide just one address to access all ROM
functionalities.

ROM Entry Service The ROM Entry Service of a product is a structure named AT91S_RomBoot. Some members
of this structure point to the open functions of all services stored in ROM (function
AT91F_Open_<Service>) but also the CRC and Sine Arrays. Thus, only the address of the
AT91S_RomBoot has to be published.

The application obtains the address of the ROM Entry Service and initializes an instance of
the AT91S_RomBoot structure. To obtain the Open Service Method of another service stored in
ROM, the application uses the appropriate member of the AT91S_RomBoot structure.

The address of the AT91S_RomBoot can be found at the beginning of the ROM, after the
exception vectors.

Table 18. Initialization of the ROM Entry Service and Use with an Open Service Method

Application Memory Space ROM Memory Space

// Init the ROM Entry Service

AT91S_RomBoot const *pAT91;

pAT91 = AT91C_ROM_BOOT_ADDRESS;

// Allocation of the service structure

AT91S_CtlTempo tempo;

// Call the Service Open method

pAT91->OpenCtlTempo(&tempo, ...);

// Use of tempo methods

tempo.CtlTempoCreate(&tempo, ...);

AT91S_TempoStatus AT91F_OpenCtlTempo(

AT91PS_CtlTempo pCtlTempo,

void const *pTempoTimer)

{

...

}

AT91S_TempoStatus AT91F_CtlTempoCreate (

AT91PS_CtlTempo pCtrl,

AT91PS_SvcTempo pTempo)

{

...

}

60 AT91RM3400
1790A–ATARM–11/03

Tempo Service

Presentation The Tempo Service allows a single hardware system timer to support several software timers
running concurrently. This works as an object notifier.

There are two objects defined to control the Tempo Service: AT91S_CtlTempo and
AT91S_SvcTempo.

The application declares one instance of AT91S_CtlTempo associated with the hardware
system timer. Additionally, it controls a list of instances of AT91S_SvcTempo.

Each time the application requires another timer, it asks the AT91S_CtlTempo to create a
new instance of AT91S_SvcTempo, then the application initializes all the settings of
AT91S_SvcTempo.

Tempo Service Description

Table 19. Tempo Service Methods

Associated Function Pointers & Methods Used by Default Description

// Typical Use:

pAT91->OpenCtlTempo(...);

// Default Method:

AT91S_TempoStatus AT91F_OpenCtlTempo(
AT91PS_CtlTempo pCtlTempo,

void const *pTempoTimer)

Member of AT91S_RomBoot structure.
Corresponds to the Open Service Method for the Tempo
Service.
Input Parameters:
Pointer on a Control Tempo Object.

Pointer on a System Timer Descriptor Structure.
Output Parameters:
Returns 0 if OpenCtrlTempo successful.

Returns 1 if not.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoStart(...);

// Default Method:

AT91S_TempoStatus AT91F_STStart(void * pTimer)

Member of AT91S_CtlTempo structure.

Start of the Hardware System Timer associated.
Input Parameters:
Pointer on a Void Parameter corresponding to a System Timer
Descriptor Structure.
Output Parameters:

Returns 2.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoIsStart(...);

// Default Method:

AT91S_TempoStatus AT91F_STIsStart(

AT91PS_CtlTempo pCtrl)

Member of AT91S_CtlTempo structure.
Input Parameters:
Pointer on a Control Tempo Object.

Output Parameters:
Returns the Status Register of the System Timer.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoCreate(...);

// Default Method:

AT91S_TempoStatus AT91F_CtlTempoCreate (

AT91PS_CtlTempo pCtrl,

AT91PS_SvcTempo pTempo)

Member of AT91S_CtlTempo structure.
Insert a software timer in the AT91S_SvcTempo’s list.
Input Parameters:

Pointer on a Control Tempo Object.
Pointer on a Service Tempo Object to insert.
Output Parameters:

Returns 0 if the software tempo was created.
Returns 1 if not.

61

AT91RM3400

1790A–ATARM–11/03

Note: AT91S_TempoStatus corresponds to an unsigned int.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoRemove(...);

// Default Method:

AT91S_TempoStatus AT91F_CtlTempoRemove
(AT91PS_CtlTempo pCtrl,

AT91PS_SvcTempo pTempo)

Member of AT91S_CtlTempo structure.
Remove a software timer in the list.
Input Parameters:

Pointer on a Control Tempo Object.
Pointer on a Service Tempo Object to remove.
Output Parameters:

Returns 0 if the tempo was created.
Returns 1 if not.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoTick(...);

// Default Method:

AT91S_TempoStatus AT91F_CtlTempoTick
(AT91PS_CtlTempo pCtrl)

Member of AT91S_CtlTempo structure.
Refresh all the software timers in the list. Update their timeout
and check if callbacks have to be launched. So, for example, this
function has to be used when the hardware timer starts a new
periodic interrupt if period interval timer is used.
Input Parameters:

Pointer on a Control Tempo Object.
Output Parameters:
Returns 1.

// Typical Use:

AT91S_SvcTempo svcTempo;

svcTempo.Start(...);

// Default Method:

AT91S_TempoStatus AT91F_SvcTempoStart (

AT91PS_SvcTempo pSvc,

unsigned int timeout,

unsigned int reload,

void (*callback) (AT91S_TempoStatus, void *),

void *pData)

Member of AT91S_SvcTempo structure.
Start a software timer.

Input Parameters:
Pointer on a Service Tempo Object.
Timeout to apply.

Number of times to reload the tempo after timeout completed for
periodic execution.

Callback on a method to launch once the timeout completed.
Allows to have a hook on the current service.
Output Parameters:

Returns 1.

// Typical Use:

AT91S_SvcTempo svcTempo;

svcTempo.Stop(...);

// Default Method:

AT91S_TempoStatus AT91F_SvcTempoStop (

AT91PS_SvcTempo pSvc)

Member of AT91S_SvcTempo structure.

Force to stop a software timer.
Input Parameters:
Pointer on a Service Tempo Object.

Output Parameters:
Returns 1.

Table 19. Tempo Service Methods (Continued)

Associated Function Pointers & Methods Used by Default Description

62 AT91RM3400
1790A–ATARM–11/03

Using the Service The first step is to find the address of the open service method AT91F_OpenCtlTempo using
the ROM Entry Service.

Allocate one instance of AT91S_CtlTempo and AT91S_SvcTempo in the application mem-
ory space:

// Allocate the service and the control tempo

AT91S_CtlTempo ctlTempo;

AT91S_SvcTempo svcTempo1;

Initialize the AT91S_CtlTempo instance by calling the AT91F_OpenCtlTempo function:
// Initialize service

pAT91->OpenCtlTempo(&ctlTempo, (void *) &(pAT91->SYSTIMER_DESC));

At this stage, the application can use the AT91S_CtlTempo service members.

If the application wants to overload an object member, it can be done now. For example, if
AT91F_CtlTempoCreate(&ctlTempo, &svcTempo1) method is to be replaced by the applica-
tion defined as my_CtlTempoCreate(...), the procedure is as follows:

// Overload AT91F_CtlTempoCreate

ctlTempo.CtlTempoCreate = my_CtlTempoCreate;

In mos t cases , i n i t i a l i ze the AT91S_SvcTempo ob jec t by ca l l i ng the
AT91F_CtlTempoCreate method of the AT91S_CtlTempo service:

// Init the svcTempo1, link it to the AT91S_CtlTempo object

ctlTempo.CtlTempoCreate(&ctlTempo, &svcTempo1);

Start the timeout by calling Start method of the svcTempo1 object. Depending on the function
parameters, either a callback is started at the end of the countdown or the status of the time-
out is checked by reading the TickTempo member of the svcTempo1 object.

// Start the timeout

svcTempo1.Start(&svcTempo1,100,0,NULL,NULL);

// Wait for the timeout of 100 (unity depends on the timer programmation)

// No repetition and no callback.

while (svcTempo1.TickTempo);

When the application needs another software timer to control a timeout, it:

• Allocates one instance of AT91S_SvcTempo in the application memory space
// Allocate the service

AT91S_SvcTempo svcTempo2;

• Initializes the AT91S_SvcTempo object calling the AT91F_CtlTempoCreate method of
the AT91S_CtlTempo service:
// Init the svcTempo2, link it to the AT91S_CtlTempo object

ctlTempo.CtlTempoCreate(&ctlTempo, &svcTempo2);

63

AT91RM3400

1790A–ATARM–11/03

Xmodem Service

Presentation The Xmodem service is an application of the communication pipe abstract layer. This layer is
media-independent (USART, USB, etc.) and gives entry points to carry out reads and writes
on an abstract media, the pipe.

Communication Pipe
Service

The pipe communication structure is a virtual structure that contains all the functions required
to read and write a buffer, regardless of the communication media and the memory
management.

The pipe structure defines:

• a pointer to a communication service structure AT91PS_SvcComm

• a pointer to a buffer manager structure AT91PS_Buffer

• pointers on read and write functions

• pointers to callback functions associated to the read and write functions

The following structure defines the pipe object:

typedef struct _AT91S_Pipe

{

// A pipe is linked with a peripheral and a buffer

AT91PS_SvcComm pSvcComm;

AT91PS_Buffer pBuffer;

// Callback functions with their arguments

void (*WriteCallback) (AT91S_PipeStatus, void *);

void (*ReadCallback) (AT91S_PipeStatus, void *);

void *pPrivateReadData;

void *pPrivateWriteData;

// Pipe methods

AT91S_PipeStatus (*Write) (

struct _AT91S_Pipe *pPipe,

char const * pData,

unsigned int size,

void (*callback) (AT91S_PipeStatus, void *),

void *privateData);

AT91S_PipeStatus (*Read) (

struct _AT91S_Pipe *pPipe,

char *pData,

unsigned int size,

void (*callback) (AT91S_PipeStatus, void *),

void *privateData);

AT91S_PipeStatus (*AbortWrite) (struct _AT91S_Pipe *pPipe);

AT91S_PipeStatus (*AbortRead) (struct _AT91S_Pipe *pPipe);

AT91S_PipeStatus (*Reset) (struct _AT91S_Pipe *pPipe);

char (*IsWritten) (struct _AT91S_Pipe *pPipe,char const *pVoid);

char (*IsReceived) (struct _AT91S_Pipe *pPipe,char const *pVoid);

} AT91S_Pipe, *AT91PS_Pipe;

The Xmodem protocol implementation demonstrates how to use the communication pipe.

64 AT91RM3400
1790A–ATARM–11/03

Description of the Buffer
Structure

The AT91PS_Buffer is a pointer to the AT91S_Buffer structure manages the buffers. This
structure embeds the following functions:

• pointers to functions that manage the read buffer

• pointers to functions that manage the write buffer

All the functions can be overloaded by the application to adapt buffer management.

A simple implementation of buffer management for the Xmodem Service is provided in the
boot ROM source code.

typedef struct _AT91S_Buffer

{

struct _AT91S_Pipe *pPipe;

void *pChild;

// Functions invoked by the pipe

AT91S_BufferStatus (*SetRdBuffer) (struct _AT91S_Buffer *pSBuffer, char
*pBuffer, unsigned int Size);

AT91S_BufferStatus (*SetWrBuffer) (struct _AT91S_Buffer *pSBuffer, char const
*pBuffer, unsigned int Size);

AT91S_BufferStatus (*RstRdBuffer) (struct _AT91S_Buffer *pSBuffer);

AT91S_BufferStatus (*RstWrBuffer) (struct _AT91S_Buffer *pSBuffer);

char (*MsgWritten) (struct _AT91S_Buffer *pSBuffer, char const *pBuffer);

char (*MsgRead) (struct _AT91S_Buffer *pSBuffer, char const *pBuffer);

// Functions invoked by the peripheral

AT91S_BufferStatus (*GetWrBuffer) (struct _AT91S_Buffer *pSBuffer, char const
**pData, unsigned int *pSize);

AT91S_BufferStatus (*GetRdBuffer) (struct _AT91S_Buffer *pSBuffer, char
**pData, unsigned int *pSize);

AT91S_BufferStatus (*EmptyWrBuffer) (struct _AT91S_Buffer *pSBuffer, unsigned
int size);

AT91S_BufferStatus (*FillRdBuffer) (struct _AT91S_Buffer *pSBuffer, unsigned
int size);

char (*IsWrEmpty) (struct _AT91S_Buffer *pSBuffer);

char (*IsRdFull) (struct _AT91S_Buffer *pSBuffer);

} AT91S_Buffer, *AT91PS_Buffer;

65

AT91RM3400

1790A–ATARM–11/03

Description of the
SvcComm Structure

The SvcComm structure provides the interface between low-level functions and the pipe
object.

It contains pointers of functions initialized to the lower level functions (e.g. SvcXmodem).

The Xmodem Service implementation gives an example of SvcComm use.
typedef struct _AT91S_Service

{

// Methods:

AT91S_SvcCommStatus (*Reset) (struct _AT91S_Service *pService);

AT91S_SvcCommStatus (*StartTx)(struct _AT91S_Service *pService);

AT91S_SvcCommStatus (*StartRx)(struct _AT91S_Service *pService);

AT91S_SvcCommStatus (*StopTx) (struct _AT91S_Service *pService);

AT91S_SvcCommStatus (*StopRx) (struct _AT91S_Service *pService);

char (*TxReady)(struct _AT91S_Service *pService);

char (*RxReady)(struct _AT91S_Service *pService);

// Data:

struct _AT91S_Buffer *pBuffer; // Link to a buffer object

void *pChild;

} AT91S_SvcComm, *AT91PS_SvcComm;

66 AT91RM3400
1790A–ATARM–11/03

Description of the
SvcXmodem Structure

The SvcXmodem service is a reusable implementation of the Xmodem protocol. It supports
only the 128-byte packet format and provides read and write functions. The SvcXmodem
structure defines:

• a pointer to a handler initialized to readHandler or writeHandler

• a pointer to a function that processes the xmodem packet crc

• a pointer to a function that checks the packet header

• a pointer to a function that checks data

With this structure, the Xmodem protocol can be used with all media (USART, USB, etc.).
Only private methods may be overloaded to adapt the Xmodem protocol to a new media.

The default implementation of the Xmodem uses a USART to send and receive packets. Read
and write functions implement peripheral data controller facilities to reduce interrupt overhead.
It assumes the USART is initialized, the memory buffer allocated and the interrupts
programmed.

A periodic timer is required by the service to manage timeouts and the periodic transmission of
the character “C” (Refer to Xmodem protocol). This feature is provided by the Tempo Service.

The following structure defines the Xmodem Service:

typedef struct _AT91PS_SvcXmodem {

// Public Methods:

AT91S_SvcCommStatus (*Handler) (struct _AT91PS_SvcXmodem *, unsigned int);

AT91S_SvcCommStatus (*StartTx) (struct _AT91PS_SvcXmodem *, unsigned int);

AT91S_SvcCommStatus (*StopTx) (struct _AT91PS_SvcXmodem *, unsigned int);

// Private Methods:

AT91S_SvcCommStatus (*ReadHandler) (struct _AT91PS_SvcXmodem *, unsigned int
csr);

AT91S_SvcCommStatus (*WriteHandler) (struct _AT91PS_SvcXmodem *, unsigned int
csr);

unsigned short (*GetCrc) (char *ptr, unsigned int count);

char (*CheckHeader) (unsigned char currentPacket, char *packet);

char (*CheckData) (struct _AT91PS_SvcXmodem *);

AT91S_SvcComm parent; // Base class

AT91PS_USART pUsart;

AT91S_SvcTempo tempo; // Link to a AT91S_Tempo object

char *pData;

unsigned int dataSize; // = XMODEM_DATA_STX or XMODEM_DATA_SOH

char packetDesc[AT91C_XMODEM_PACKET_SIZE];

unsigned char packetId; // Current packet

char packetStatus;

char isPacketDesc;

char eot; // end of transmition

} AT91S_SvcXmodem, *AT91PS_SvcXmodem

67

AT91RM3400

1790A–ATARM–11/03

Xmodem Service Description

Table 20. Xmodem Service Methods

Associated Function Pointers & Methods Used by Default Description

// Typical Use:

pAT91->OpenSvcXmodem(...);

// Default Method:

AT91PS_SvcComm AT91F_OpenSvcXmodem(

AT91PS_SvcXmodem pSvcXmodem,

AT91PS_USART pUsart,

AT91PS_CtlTempo pCtlTempo)

Member of AT91S_RomBoot structure.
Corresponds to the Open Service Method for the Xmodem
Service.

Input Parameters:
Pointer on SvcXmodem structure.
Pointer on a USART structure.

Pointer on a CtlTempo structure.
Output Parameters:
Returns the Xmodem Service Pointer Structure.

// Typical Use:

AT91S_SvcXmodem svcXmodem;

svcXmodem.Handler(...);

// Default read handler:

AT91S_SvcCommStatus
AT91F_SvcXmodemReadHandler(AT91PS_SvcXmodem
pSvcXmodem, unsigned int csr)

// Default write handler:

AT91S_SvcCommStatus
AT91F_SvcXmodemWriteHandler(AT91PS_SvcXmodem
pSvcXmodem, unsigned int csr)

Member of AT91S_SvcXmodem structure.
interrupt handler for xmodem read or write functionnalities

Input Parameters:
Pointer on a Xmodem Service Structure.
csr: usart channel status register .

Output Parameters:
Status for xmodem read or write.

68 AT91RM3400
1790A–ATARM–11/03

Using the Service The following steps show how to initialize and use the Xmodem Service in an application:
Variables definitions:

AT91S_RomBoot const *pAT91; // struct containing Openservice functions

AT91S_SBuffer sXmBuffer; // Xmodem Buffer allocation

AT91S_SvcXmodem svcXmodem; // Xmodem service structure allocation

AT91S_Pipe xmodemPipe;// xmodem pipe communication struct

AT91S_CtlTempo ctlTempo; // Tempo struct

AT91PS_Buffer pXmBuffer; // Pointer on a buffer structure

AT91PS_SvcComm pSvcXmodem; // Pointer on a Media Structure

Initialisations

// Call Open methods:

pAT91 = AT91C_ROM_BOOT_ADDRESS;

// OpenCtlTempo on the system timer

pAT91->OpenCtlTempo(&ctlTempo, (void *) &(pAT91->SYSTIMER_DESC));

ctlTempo.CtlTempoStart((void *) &(pAT91->SYSTIMER_DESC));

// Xmodem buffer initialisation

pXmBuffer = pAT91->OpenSBuffer(&sXmBuffer);

pSvcXmodem = pAT91->OpenSvcXmodem(&svcXmodem, AT91C_BASE_DBGU, &ctlTempo);

// Open communication pipe on the xmodem service

pAT91->OpenPipe(&xmodemPipe, pSvcXmodem, pXmBuffer);

// Init the DBGU peripheral

// Open PIO for DBGU

AT91F_DBGU_CfgPIO();

// Configure DBGU

AT91F_US_Configure (

(AT91PS_USART) AT91C_BASE_DBGU, // DBGU base address

MCK, // Master Clock

AT91C_US_ASYNC_MODE, // mode Register to be programmed

BAUDRATE , // baudrate to be programmed

0); // timeguard to be programmed

// Enable Transmitter

AT91F_US_EnableTx((AT91PS_USART) AT91C_BASE_DBGU);

// Enable Receiver

AT91F_US_EnableRx((AT91PS_USART) AT91C_BASE_DBGU);

// Initialize the Interrupt for System Timer and DBGU (shared interrupt)

// Initialize the Interrupt Source 1 for SysTimer and DBGU

AT91F_AIC_ConfigureIt(AT91C_BASE_AIC,

 AT91C_ID_SYS,

 AT91C_AIC_PRIOR_HIGHEST,

 AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE,

 AT91F_ASM_ST_DBGU_Handler);

// Enable SysTimer and DBGU interrupt

AT91F_AIC_EnableIt(AT91C_BASE_AIC, AT91C_ID_SYS);

xmodemPipe.Read(&xmodemPipe, (char *) BASE_LOAD_ADDRESS, MEMORY_SIZE,
XmodemProtocol, (void *) BASE_LOAD_ADDRESS);

69

AT91RM3400

1790A–ATARM–11/03

DataFlash Service

Presentation The DataFlash Service allows the Serial Peripheral Interface (SPI) to support several Serial
DataFlash and DataFlash Cards for reading, programming and erasing operations.

This service is based on SPI interrupts that are managed by a specific handler. It also uses the
corresponding PDC registers.

For more information on the commands available in the DataFlash Service, refer to the rele-
vant DataFlash documentation.

DataFlash Service Description

Table 21. DataFlash Service Methods

Associated Function Pointers & Methods Used by Default Description

// Typical Use:

pAT91->OpenSvcDataFlash(...);

// Default Method:

AT91PS_SvcDataFlash AT91F_OpenSvcDataFlash (

const AT91PS_PMC pApmc,

AT91PS_SvcDataFlash pSvcDataFlash)

Member of AT91S_RomBoot structure.
Corresponds to the Open Service Method for the DataFlash
Service.
Input Parameters:
Pointer on a PMC Register Description Structure.

Pointer on a DataFlash Service Structure.
Output Parameters:
Returns the DataFlash Service Pointer Structure.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.Handler(...);

// Default Method:

void AT91F_DataFlashHandler(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int status)

Member of AT91S_SvcDataFlash structure.
SPI Fixed Peripheral C interrupt handler.

Input Parameters:
Pointer on a DataFlash Service Structure.
Status: corresponds to the interruptions detected and validated
on SPI (SPI Status Register masked by SPI Mask Register).
Has to be put in the Interrupt handler for SPI.

Output Parameters:
None.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.Status(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashGetStatus(AT91PS_DataflashDesc
pDesc)

Member of AT91S_SvcDataFlash structure.
Read the status register of the DataFlash.
Input Parameters:

Pointer on a DataFlash Descriptor Structure (member of the
service structure).

Output Parameters:
Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.AbortCommand(...);

// Default Method:

void
AT91F_DataFlashAbortCommand(AT91PS_DataflashDesc
pDesc)

Member of AT91S_SvcDataFlash structure
Allows to reset PDC & Interrupts.

Input Parameters:
Pointer on a DataFlash Descriptor Structure (member of the
service structure).
Output Parameters:
None.

70 AT91RM3400
1790A–ATARM–11/03

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.PageRead(...);

// Default Method:

AT91S_SvcDataFlashStatus AT91F_DataFlashPageRead (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int src,

unsigned char *dataBuffer,

int sizeToRead)

Member of AT91S_SvcDataFlash structure
Read a Page in DataFlash.
Input Parameters:

Pointer on DataFlash Service Structure.
DataFlash address.
Data buffer destination pointer.

Number of bytes to read.
Output Parameters:
Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.ContinuousRead(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashContinuousRead (

AT91PS_SvcDataFlash pSvcDataFlash,

int src,

unsigned char *dataBuffer,

int sizeToRead)

Member of AT91S_SvcDataFlash structure.

Continuous Stream Read.
Input Parameters:
Pointer on DataFlash Service Structure.

DataFlash address.
Data buffer destination pointer.
Number of bytes to read.

Output Parameters:
Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.ReadBuffer(...);

// Default Method:

AT91S_SvcDataFlashStatus AT91F_DataFlashReadBuffer
(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned int bufferAddress,

unsigned char *dataBuffer,

int sizeToRead)

Member of AT91S_SvcDataFlash structure.
Read the Internal DataFlash SRAM Buffer 1 or 2.
Input Parameters:

Pointer on DataFlash Service Structure.
Choose Internal DataFlash Buffer 1 or 2 command.
DataFlash address.

Data buffer destination pointer.
Number of bytes to read.
Output Parameters:

Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.
Returns 4 if DataFlash Bad Command.

Returns 5 if DataFlash Bad Address.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.MainMemoryToBufferTransfert(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_MainMemoryToBufferTransfert(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned int page)

Member of AT91S_SvcDataFlash structure

Read a Page in the Internal SRAM Buffer 1 or 2.
Input Parameters:
Pointer on DataFlash Service Structure.

Choose Internal DataFlash Buffer 1 or 2 command.
Page to read.
Output Parameters:

Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.
Returns 4 if DataFlash Bad Command.

Table 21. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default Description

71

AT91RM3400

1790A–ATARM–11/03

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.PagePgmBuf(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashPagePgmBuf(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned char *src,

unsigned int dest,

unsigned int SizeToWrite)

Member of AT91S_SvcDataFlash structure
Page Program through Internal SRAM Buffer 1 or 2.
Input Parameters:

Pointer on DataFlash Service Structure.
Choose Internal DataFlash Buffer 1 or 2 command.
Source buffer.

DataFlash destination address.
Number of bytes to write.
Output Parameters:

Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.
Returns 4 if DataFlash Bad Command.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.WriteBuffer(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashWriteBuffer (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned char *dataBuffer,

unsigned int bufferAddress,

int SizeToWrite)

Member of AT91S_SvcDataFlash structure.
Write data to the Internal SRAM buffer 1 or 2.

Input Parameters:
Pointer on DataFlash Service Structure.
Choose Internal DataFlash Buffer 1 or 2 command.

Pointer on data buffer to write.
Address in the internal buffer.
Number of bytes to write.

Output Parameters:
Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.
Returns 5 if DataFlash Bad Address.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.WriteBufferToMain(...);

// Default Method:

AT91S_SvcDataFlashStatus AT91F_WriteBufferToMain (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned int dest)

Member of AT91S_SvcDataFlash structure.
Write Internal Buffer to the DataFlash Main Memory.
Input Parameters:

Pointer on DataFlash Service Structure.
Choose Internal DataFlash Buffer 1 or 2 command.
Main memory address on DataFlash.

Output Parameters:
Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.

Table 21. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default Description

72 AT91RM3400
1790A–ATARM–11/03

Note: AT91S_SvcDataFlashStatus corresponds to an unsigned int.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.PageErase(...);

// Default Method:

AT91S_SvcDataFlashStatus AT91F_PageErase (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int PageNumber)

Member of AT91S_SvcDataFlash structure.
Erase a page in DataFlash.
Input Parameters:

Pointer on a Service DataFlash Object.
Page to erase.
Output Parameters:

Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.BlockErase(...);

// Default Method:

AT91S_SvcDataFlashStatus AT91F_BlockErase (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int BlockNumber)

Member of AT91S_SvcDataFlash structure.
Erase a block of 8 pages.
Input Parameters:

Pointer on a Service DataFlash Object.
Block to erase.
Output Parameters:

Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.MainMemoryToBufferCompare(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_MainMemoryToBufferCompare(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned int page)

Member of AT91S_SvcDataFlash structure.
Compare the contents of a Page and one of the Internal SRAM
buffer.
Input Parameters:
Pointer on a Service DataFlash Object.

Internal SRAM DataFlash Buffer to compare command.
Page to compare.
Output Parameters:

Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash Ready.
Returns 4 if DataFlash Bad Command.

Table 21. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default Description

73

AT91RM3400

1790A–ATARM–11/03

Using the Service The first step is to find the address of the open service method AT91F_OpenSvcDataFlash using
the ROM Entry Service.

1. Allocate one instance of AT91S_SvcDataFlash and AT91S_Dataflash in the application
memory space:
// Allocate the service and a device structure.

AT91S_SvcDataFlash svcDataFlash;

AT91S_Dataflash Device; // member of AT91S_SvcDataFlash service

Then initialize the AT91S_SvcDataFlash instance by calling the AT91F_OpenSvcDataFlash
function:
// Initialize service

pAT91->OpenSvcDataFlash (AT91C_BASE_PMC, &svcDataFlash);

2. Initialize the SPI Interrupt:
// Initialize the SPI Interrupt

at91_irq_open (AT91C_BASE_AIC,AT91C_ID_SPI,3,

AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE ,AT91F_spi_asm_handler);

3. Configure the DataFlash structure with its correct features and link it to the device
structure in the AT91S_SvcDataFlash service structure:
// Example with an ATMEL AT45DB321B DataFlash

Device.pages_number = 8192;

Device.pages_size = 528;

Device.page_offset = 10;

Device.byte_mask = 0x300;

// Link to the service structure

svcDataFlash.pDevice = &Device;

4. Now the different methods can be used. Following is an example of a Page Read of
528 bytes on page 50:
// Result of the read operation in RxBufferDataFlash

unsigned char RxBufferDataFlash[528];

svcDataFlash.PageRead(&svcDataFlash,
(50*528),RxBufferDataFlash,528);

74 AT91RM3400
1790A–ATARM–11/03

CRC Service

Presentation This “service” differs from the preceding ones in that it is structured differently: it is composed
of an array and some methods directly accessible via the AT91S_RomBoot structure.

CRC Service Description

Table 22. CRC Service Description

Methods and Array Available Description

// Typical Use:

pAT91->CRC32(...);

// Default Method:

void CalculateCrc32(

const unsigned char *address,

unsigned int size,

unsigned int *crc)

This function provides a table driven 32bit CRC generation for
byte data. This CRC is known as the CCITT CRC32.

Input Parameters:
Pointer on the data buffer.
The size of this buffer.

A pointer on the result of the CRC.
Output Parameters:
None.

// Typical Use:

pAT91->CRC16(...);

// Default Method:

void CalculateCrc16(

const unsigned char *address,

unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is calculated with the POLYNOME 0x8005
Input Parameters:
Pointer on the data buffer.

The size of this buffer.
A pointer on the result of the CRC.
Output Parameters:

None.

// Typical Use:

pAT91->CRCHDLC(...);

// Default Method:

void CalculateCrcHdlc(

const unsigned char *address,

unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is known as the HDLC CRC.
Input Parameters:

Pointer on the data buffer.
The size of this buffer.
A pointer on the result of the CRC.

Output Parameters:
None.

// Typical Use:

pAT91->CRCCCITT(...);

// Default Method:

void CalculateCrc16ccitt(

const unsigned char *address,

unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is known as the CCITT CRC16
(POLYNOME = 0x1021).
Input Parameters:

Pointer on the data buffer.
The size of this buffer.
A pointer on the result of the CRC.

Output Parameters:
None.

// Typical Use:

char reverse_byte;

reverse_byte = pAT91->Bit_Reverse_Array[...];

// Array Embedded:

const unsigned char bit_rev[256]

Bit Reverse Array: array which allows to reverse one octet.
Frequently used in mathematical algorithms.

Used for example in the CRC16 calculation.

75

AT91RM3400

1790A–ATARM–11/03

Using the Service Compute the CRC16 CCITT of a 256-byte buffer and save it in the crc16 variable:
// Compute CRC16 CCITT

unsigned char BufferToCompute[256];

short crc16;

... (BufferToCompute Treatment)

pAT91->CRCCCITT(&BufferToCompute,256,&crc16);

76 AT91RM3400
1790A–ATARM–11/03

Sine Service

Presentation This “service” differs from the preceding one in that it is structured differently: it is composed of
an array and a method directly accessible through the AT91S_RomBoot structure.

Sine Service Description

Table 23. Sine Service Description

Method and Array Available Description

// Typical Use:

pAT91->Sine(...);

// Default Method:

short AT91F_Sinus(int step)

This function returns the amplitude coded on 16 bits, of a sine
waveform for a given step.

Input Parameters:
Step of the sine. Corresponds to the precision of the amplitude
calculation. Depends on the Sine Array used. Here, the array has
256 values (thus 256 steps) of amplitude for 180 degrees.

Output Parameters:
Amplitude of the sine waveform.

// Typical Use:

short sinus;

sinus = pAT91->SineTab[...];

// Array Embedded:

const short AT91C_SINUS180_TAB[256]

Sine Array with a resolution of 256 values for 180 degrees.

77

AT91RM3400

1790A–ATARM–11/03

Reset Controller

Overview The AT91RM3400 has one reset input line called NRST. This line provides:

• Initialization of the User Interface registers (defined in the user interface of each
peripheral) and sampling of the signals needed at bootup. It forces the processor to fetch
the next instruction at address zero.

• Initialization of the embedded ICE TAP controller.

The NRST signal is considered as the System Reset signal and the reader must take care
when designing the logic to drive this reset signal. It is an active low signal that asynchro-
nously resets the logic in the AT91RM34000.

NRST
Conditions

NRST is the active low reset input. When power is first applied to the system, a power-on reset
(also called a “cold” reset) must be applied to the AT91RM3400. During this transient state, it
is mandatory to hold the reset signal low long enough for the power supply to reach a working
nominal level and for the oscillator to reach a stable operating frequency. Typically, these fea-
tures are provided by all power supply supervisors with electrical characteristics considered as
not nominal below a certain threshold voltage limit. Power-up is not the only event that must
be considered; power-down or a brownout are also occurrences to assert the NRST signal.
This threshold voltage must be selected according to the minimum operating voltage of the
AT91RM3400 power supply lines marked as VDD in Figure 19. (See “DC Characteristics” on
page 432.).

The choice of the reset holding delay depends on the start-up time of the low frequency oscil-
lator as shown in Figure 19 (See “32 kHz Oscillator Characteristics” on page 435.).

Figure 19. Cold Reset and Oscillator Start-up Relationship

Note: 1. VDD is applicable to VDDIO, VDDPLL, VDDOSC and VDDCORE.

NRST can also be asserted in circumstances other than the power-up sequence, such as a
manual command. In this case, assertion can be performed asynchronously, but exit from
reset is synchronized internally to the default active clock. During normal operation, NRST
must be active for a minimum delay time to ensure correct behavior (see Figure 20 and Table
24).

Table 24. Reset Minimum Pulse Width

Symbol Parameter Minimum Pulse Width Unit

RST1 NRST Minimum Pulse Width 92 µs

Oscillator Stabilization
 after Power-Up

VDD(1)

NRST

XIN32

VDDmin

78 AT91RM3400
1790A–ATARM–11/03

Figure 20. NRST Assertion

Reset
Management

The system reset functionality is provided via the NRST signal.

The reset signal forces the microcontroller to assume a set of initial conditions:

• Default states (default value) of the user interface are restored.

• The processor is required to perform the next instruction fetch from address zero.

With the exception of the program counter and the Current Program Status Register, the pro-
cessor’s registers do not have defined reset states. When the microcontroller’s NRST input is
asserted, the processor immediately stops execution of the current instruction, independent of
the clock.

The system reset circuitry must take two types of reset requests into account:

• Cold reset needed for the power-up sequence

• User reset request

Both have the same effect but can have different assertion time requirements regarding the
NRST pin. In fact, the cold reset assertion has to overlap the start-up time of the system. The
user reset request requires a smaller assertion delay time than the cold reset.

Recommended
Features of the
Reset
Controller

The following table gives an overview of the recommended features of a reset controller in
order to obtain an optimal system with the AT91RM3400 device.

NRST

RST1

Table 25. Reset Controller Function Overview

Feature Description

Power Supply Monitoring
Overlaps the transient state of the system during power-up/down
and brownout.

Reset Active Timeout Period
Overlaps the start-up time of the boot-up oscillator by holding the
reset signal during this delay.

Manual Reset Command
Asserts the reset signal from a logic command and holds the reset
signal with a shorter delay than the Reset Active Timeout Period.

79

AT91RM3400

1790A–ATARM–11/03

Memory Controller (MC)

Overview The Memory Controller (MC) manages the ASB bus and controls accesses requested
by the masters, typically the ARM7TDMI processor and the Peripheral Data Controller.
It features a simple bus arbiter, an address decoder, an abort status and a misalignment
detector. In addition, the MC contains a Memory Protection Unit (MPU) consisting of 16
areas that can be protected against write and/or user accesses. Access to peripherals
can be protected in the same way.

Main features of the AT91RM3400 Memory Controller are:

• Bus Arbiter

– Handles Requests from the ARM7TDMI and the Peripheral Data Controller

• Address Decoder Provides Selection Signals for

– Up to Four Internal 1-Mbyte Memory Areas

– One 256-Mbyte Embedded Peripheral Area

• Abort Status Registers

– Source, Type and All Parameters of the Access Leading to an Abort are
Saved

– Facilitates Debug by Detection of Bad Pointers

• Misalignment Detector

– Alignment Checking of All Data Accesses

– Abort Generation in Case of Misalignment

• Remap Command

– Allows Remapping of an Internal SRAM in Place of the Internal ROM

– Allows Handling of Dynamic Interrupt Vectors

• 16-area Memory Protection Unit

– Individually Programmable Size Between 1K Bytes and 64M Bytes

– Individually Programmable Protection Against Write and/or User Access

– Peripheral Protection Against Write and/or User Access

80 AT91RM3400
1790A–ATARM–11/03

Block Diagram

Figure 21. Memory Controller Block Diagram

ARM7TDMI
Processor

Bus
Arbiter

Peripheral
Data

Controller

Memory Controller

Abort

ASB

Abort
Status

Address
Decoder

User
Interface

Peripheral 0

Peripheral 1

Internal
Memories

APB

APB
Bridge

Misalignment
Detector

From Master
to Slave

Peripheral N

Memory
Protection

Unit

81

AT91RM3400

1790A–ATARM–11/03

Functional Description
The Memory Controller handles the internal ASB bus and arbitrates the accesses of
both masters.

It is made up of:

• A bus arbiter

• An address decoder

• An abort status

• A misalignment detector

• A memory protection unit

The MC handles only little-endian mode accesses. The masters work in little-endian
mode only.

Bus Arbiter The Memory Controller has a simple, hard-wired priority bus arbiter that gives the con-
trol of the bus to one of the two masters. The Peripheral Data Controller has the highest
priority; the ARM processor has the lowest one.

Address Decoder The Memory Controller features an Address Decoder that first decodes the four highest
bits of the 32-bit address bus and defines three separate areas:

• One 256-Mbyte address space for the internal memories

• One 256-Mbyte address space reserved for the embedded peripherals

• An undefined address space of 3584M bytes representing fourteen 256-Mbyte
areas that return an Abort if accessed

Figure 22 shows the assignment of the 256-Mbyte memory areas.

Figure 22. Memory Areas

0x0000 0000

0x0FFF FFFF

0x1000 0000

0xEFFF FFFF

0xF000 0000

0xFFFF FFFF

256M Bytes

256M Bytes

14 x 256MBytes
3,584 Mbytes

Internal Memories

Undefined
(Abort)

Peripherals

82 AT91RM3400
1790A–ATARM–11/03

Internal Memory Mapping Within the Internal Memory address space, the Address Decoder of the Memory Con-
troller decodes eight more address bits to allocate 1-Mbyte address spaces for the
embedded memories.

The allocated memories are accessed all along the 1-Mbyte address space and so are
repeated n times within this address space, n equaling 1M bytes divided by the size of
the memory.

When the address of the access is undefined within the internal memory area, the
Address Decoder returns an Abort to the master.

Figure 23. Internal Memory Mapping

Internal Memory Area 0 The first 32 bytes of Internal Memory Area 0 contain the ARM processor exception vec-
tors, in particular, the Reset Vector at address 0x0.

Before execution of the remap command, the on-chip ROM is mapped into Internal
Memory Area 0, so that the ARM7TDMI reaches an executable instruction contained in
ROM. After the remap command, the internal SRAM at address 0x0020 0000 is mapped
into Internal Memory Area 0. The memory mapped into Internal Memory Area 0 is
accessible in both its original location and at address 0x0.

Remap Command After execution, the Remap Command causes the Internal SRAM to be accessed
through the Internal Memory Area 0.

As the ARM vectors (Reset, Abort, Data Abort, Prefetch Abort, Undefined Instruction,
Interrupt, and Fast Interrupt) are mapped from address 0x0 to address 0x20, the Remap
Command allows the user to redefine dynamically these vectors under software control.

The Remap Command is accessible through the Memory Controller User Interface by
writing the MC_RCR (Remap Control Register) RCB field to one.

The Remap Command can be cancelled by writing the MC_RCR RCB field to one,
which acts as a toggling command. This allows easy debug of the user-defined boot
sequence by offering a simple way to put the chip in the same configuration as after a
reset.

256M Bytes

Internal Memory Area 0

Undefined Areas
(Abort)

0x0000 0000

0x000F FFFF

0x0010 0000

0x001F FFFF

0x0020 0000

0x002F FFFF

0x0FFF FFFF

1M Bytes

1M Bytes

1M Bytes

253M bytes

Internal Memory Area 1
Internal ROM

Internal Memory Area 2
Internal SRAM

0x0030 0000

83

AT91RM3400

1790A–ATARM–11/03

Abort Status There are three reasons for an abort to occur:

• access to an undefined address

• access to a protected area without the permitted state

• an access to a misaligned address.

When an abort occurs, a signal is sent back to all the masters, regardless of which one
has generated the access. However, only the ARM7TDMI can take an abort signal into
account, and only under the condition that it was generating an access. The Peripheral
Data Controller does not handle the abort input signal. Note that the connection is not
represented in Figure 21.

To facilitate debug or for fault analysis by an operating system, the Memory Controller
integrates an Abort Status register set.

The full 32-bit wide abort address is saved in MC_AASR. Parameters of the access are
saved in MC_ASR and include:

• the size of the request (field ABTSZ)

• the type of the access, whether it is a data read or write, or a code fetch (field
ABTTYP)

• whether the access is due to accessing an undefined address (bit UNDADD), a
misaligned address (bit MISADD) or a protection violation (bit MPU)

• the source of the access leading to the last abort (bits MST0 and MST1)

• whether or not an abort occurred for each master since the last read of the register
(bit SVMST0 and SVMST1) unless this information is loaded in MST bits

In the case of a Data Abort from the processor, the address of the data access is stored.
This is useful, as searching for which address generated the abort would require disas-
sembling the instructions and full knowledge of the processor context.

In the case of a Prefetch Abort, the address may have changed, as the prefetch abort is
pipelined in the ARM processor. The ARM processor takes the prefetch abort into
account only if the read instruction is executed and it is probable that several aborts
have occurred during this time. Thus, in this case, it is preferable to use the content of
the Abort Link register of the ARM processor.

Memory Protection Unit The Memory Protection Unit allows definition of up to 16 memory spaces within the
internal memories.

After reset, the Memory Protection Unit is disabled. Enabling it requires writing the Pro-
tection Unit Enable Register (MC_PUER) with the PUEB at 1.

Programmming of the 16 memory spaces is done in the registers MC_PUIA0 to
MC_PUIA15.

The size of each of the memory spaces is programmable by a power of 2 between 1K
bytes and 4M bytes. The base address is also programmable on a number of bits
according to the size.

The Memory Protection Unit also allows the protection of the peripherals by program-
ming the Protection Unit Peripheral Register (MC_PUP) with the field PROT at the
appropriate value.

The peripheral address space and each internal memory area can be protected against
write and non-privileged access of one of the masters. When one of the masters per-
forms a forbidden access, an Abort is generated and the Abort Status traces what has
happened.

84 AT91RM3400
1790A–ATARM–11/03

There is no priority in the protection of the memory spaces. In case of overlap between
several memory spaces, the strongest protection is taken into account. If an access is
performed to an address which is not contained in any of the 16 memory spaces, the
Memory Protection Unit generates an abort. To prevent this, the user can define a mem-
ory space of 4M bytes starting at 0 and authorizing any access.

Misalignment Detector The Memory Controller features a Misalignment Detector that checks the consistency of
the accesses.

For each access, regardless of the master, the size of the access and the bits 0 and 1 of
the address bus are checked. If the type of access is a word (32-bit) and the bits 0 and 1
are not 0, or if the type of the access is a half-word (16-bit) and the bit 0 is not 0, an
abort is returned to the master and the access is cancelled. Note that the accesses of
the ARM processor when it is fetching instructions are not checked.

The misalignments are generally due to software bugs leading to wrong pointer han-
dling. These bugs are particularly difficult to detect in the debug phase.

As the requested address is saved in the Abort Status Register and the address of the
instruction generating the misalignment is saved in the Abort Link Register of the pro-
cessor, detection and fix of this kind of software bugs is simplified.

85

AT91RM3400

1790A–ATARM–11/03

AT91RM3400 Memory Controller (MC) User Interface
Base Address: 0xFFFFFF00

Table 26. MC Register Mapping

Offset Register Name Access Reset State

0x00 MC Remap Control Register MC_RCR Write-only

0x04 MC Abort Status Register MC_ASR Read-only 0x0

0x08 MC Abort Address Status Register MC_AASR Read-only 0x0

0x0C Reserved

0x10 MC Protection Unit Area 0 MC_PUIA0 Read/Write 0x0

0x14 MC Protection Unit Area 1 MC_PUIA1 Read/Write 0x0

0x18 MC Protection Unit Area 2 MC_PUIA2 Read/Write 0x0

0x1C MC Protection Unit Area 3 MC_PUIA3 Read/Write 0x0

0x20 MC Protection Unit Area 4 MC_PUIA4 Read/Write 0x0

0x24 MC Protection Unit Area 5 MC_PUIA5 Read/Write 0x0

0x28 MC Protection Unit Area 6 MC_PUIA6 Read/Write 0x0

0x2C MC Protection Unit Area 7 MC_PUIA7 Read/Write 0x0

0x30 MC Protection Unit Area 8 MC_PUIA8 Read/Write 0x0

0x34 MC Protection Unit Area 9 MC_PUIA9 Read/Write 0x0

0x38 MC Protection Unit Area 10 MC_PUIA10 Read/Write 0x0

0x3C MC Protection Unit Area 11 MC_PUIA11 Read/Write 0x0

0x40 MC Protection Unit Area 12 MC_PUIA12 Read/Write 0x0

0x44 MC Protection Unit Area 13 MC_PUIA13 Read/Write 0x0

0x48 MC Protection Unit Area 14 MC_PUIA14 Read/Write 0x0

0x4C MC Protection Unit Area 15 MC_PUIA15 Read/Write 0x0

0x50 MC Protection Unit Peripherals MC_PUP Read/Write 0x0

0x54 MC Protection Unit Enable Register MC_PUER Read/Write 0x0

86 AT91RM3400
1790A–ATARM–11/03

MC Remap Control Register
Register Name: MC_RCR

Access Type: Write-only

Absolute Address: 0xFFFF FF00

• RCB: Remap Command Bit

0: No effect.

1: This Command Bit acts on a toggle basis: writing a 1 alternatively cancels and restores the remapping of the page zero
memory devices.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – RCB

87

AT91RM3400

1790A–ATARM–11/03

MC Abort Status Register
Register Name: MC_ASR

Access Type: Read-only

Reset Value: 0x0

Absolute Address: 0xFFFF FF04

• UNDADD: Undefined Address Abort Status

0: The last abort was not due to the access of an undefined address in the address space.

1: The last abort was due to the access of an undefined address in the address space.

• MISADD: Misaligned Address Abort Status

0: The last aborted access was not due to an address misalignment.

1: The last aborted access was due to an address misalignment.

• MPU: Memory Protection Unit Abort Status

0: The last aborted access was not due to the Memory Protection Unit.

1: The last aborted access was due to the Memory Protection Unit.

• ABTSZ: Abort Size Status .

• ABTTYP: Abort Type Status .

• MST0: ARM7TDMI Abort Source

0: The last aborted access was not due to the ARM7TDMI.

1: The last aborted access was due to the ARM7TDMI.

31 30 29 28 27 26 25 24

– – – – – – SVMST1 SVMST0

23 22 21 20 19 18 17 16

– – – – – – MST1 MST0

15 14 13 12 11 10 9 8

– – – – ABTTYP ABTSZ

7 6 5 4 3 2 1 0

– – – – – MPU MISADD UNDADD

ABTSZ Abort Size

0 0 Byte

0 1 Half-word

1 0 Word

1 1 Reserved

ABTTYP Abort Type

0 0 Data Read

0 1 Data Write

1 0 Code Fetch

1 1 Reserved

88 AT91RM3400
1790A–ATARM–11/03

• MST1: PDC Abort Source

0: The last aborted access was not due to the PDC.

1: The last aborted access was due to the PDC.

• SVMST0: Saved ARM7TDMI Abort Source

0: No abort due to the ARM7TDMI occurred since the last read of MC_ASR or it is notified in the bit MST0.

1: At least one abort due to the ARM7TDMI occurred since the last read of MC_ASR.

• SVMST1: Saved PDC Abort Source

0: No abort due to the PDC occurred since the last read of MC_ASR or it is notified in the bit MST1.

1: At least one abort due to the PDC occurred since the last read of MC_ASR.

89

AT91RM3400

1790A–ATARM–11/03

MC Abort Address Status Register
Register Name: MC_AASR

Access Type: Read-only

Reset Value: 0x0

Absolute Address: 0xFFFF FF08

• ABTADD: Abort Address

This field contains the address of the last aborted access.

31 30 29 28 27 26 25 24

ABTADD

23 22 21 20 19 18 17 16

ABTADD

15 14 13 12 11 10 9 8

ABTADD

7 6 5 4 3 2 1 0

ABTADD

90 AT91RM3400
1790A–ATARM–11/03

MC Protection Unit Area 0 to 15 Registers
Register Name: MC_PUIA0 - MC_PUIA15

Access Type: Read/Write

Reset Value: 0x0

Absolute Address: 0xFFFFFF10 - 0xFFFFFF4C

• PROT: Protection :

• SIZE: Internal Area Size :

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – BA

15 14 13 12 11 10 9 8

BA – –

7 6 5 4 3 2 1 0

SIZE – – PROT

PROT

Processor Mode

Privilege User

0 0 No access No access

0 1 Read/Write No access

1 0 Read/Write Read-only

1 1 Read/Write Read/Write

SIZE Area Size LSB of BA

0 0 0 0 1 KB 10

0 0 0 1 2 KB 11

0 0 1 0 4 KB 12

0 0 1 1 8 KB 13

0 1 0 0 16 KB 14

0 1 0 1 32 KB 15

0 1 1 0 64 KB 16

0 1 1 1 128 KB 17

1 0 0 0 256 KB 18

1 0 0 1 512 KB 19

1 0 1 0 1 MB 20

1 0 1 1 2 MB 21

1 1 0 1 4 MB 22

91

AT91RM3400

1790A–ATARM–11/03

• BA: Internal Area Base Address

These bits define the Base Address of the area. Note that only the most significant bits of BA are significant. The number of
significant bits are in respect with the size of the area.

MC Protection Unit Peripheral
Register Name: MC_PUP

Access Type: Read/Write

Reset Value: 0x000000000

Absolute Address: 0xFFFFFF50

• PROT: Protection :

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – PROT

PROT

Processor Mode

Privilege User

0 0 Read/Write No access

0 1 Read/Write No access

1 0 Read/Write Read-only

1 1 Read/Write Read/Write

92 AT91RM3400
1790A–ATARM–11/03

MC Protection Unit Enable Register
Register Name: MC_PUER

Access Type: Read/Write

Reset Value: 0x000000000

Absolute Address: 0xFFFFFF54

• PUEB: Protection Unit Enable Bit

0: The Memory Controller Protection Unit is disabled.

1: The Memory Controller Protection Unit is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – PUEB

93

AT91RM3400

1790A–ATARM–11/03

Peripheral Data Controller (PDC)

Overview The Peripheral Data Controller (PDC) transfers data between on-chip serial peripherals such
as the UART, USART, SSC, SPI, MCI and the on- and off-chip memories. Using the Peripheral
Data Contoller avoids processor intervention and removes the processor interrupt-handling
overhead.This significantly reduces the number of clock cycles required for a data transfer
and, as a result, improves the performance of the microcontroller and makes it more power
efficient.
The PDC channels are implemented in pairs, each pair being dedicated to a particular periph-
eral. One channel in the pair is dedicated to the receiving channel and one to the transmitting
channel of each UART, USART, SSC and SPI.
The user interface of a PDC channel is integrated in the memory space of each peripheral. It
contains:
• A 32-bit memory pointer register

• A 16-bit transfer count register

• A 32-bit register for next memory pointer

• A 16-bit register for next transfer count

The peripheral triggers PDC transfers using transmit and receive signals. When the pro-
grammed data is transferred, an end of transfer interrupt is generated by the corresponding
peripheral.

Important features of the PDC are:

• Generates Transfers to/from Peripherals Such as DBGU, USART, SSC, SPI and MCI

• Supports Up to Twenty Channels (Product Dependent)

• One Master Clock Cycle Needed for a Transfer from Memory to Peripheral

• Two Master Clock Cycles Needed for a Transfer from Peripheral to Memory

Block Diagram Figure 24. Block Diagram

Control

PDC Channel 0

PDC Channel 1

THR

RHR

Control
Status & Control

Peripheral Peripheral Data Controller

Memory
Controller

94 AT91RM3400
1790A–ATARM–11/03

Functional
Description

Configuration The PDC channels user interface enables the user to configure and control the data transfers
for each channel. The user interface of a PDC channel is integrated into the user interface of
the peripheral (offset 0x100), which it is related to.

Per peripheral, it contains four 32-bit Pointer Registers (RPR, RNPR, TPR, and TNPR) and
four 16-bit Counter Registers (RCR, RNCR, TCR, and TNCR).

The size of the buffer (number of transfers) is configured in an internal 16-bit transfer counter
register, and it is possible, at any moment, to read the number of transfers left for each
channel.

The memory base address is configured in a 32-bit memory pointer by defining the location of
the first address to access in the memory. It is possible, at any moment, to read the location in
memory of the next transfer and the number of remaining transfers. The PDC has dedicated
status registers which indicate if the transfer is enabled or disabled for each channel. The sta-
tus for each channel is located in the peripheral status register. Transfers can be enabled
and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC Transfer Control
Register. These control bits enable reading the pointer and counter registers safely without
any risk of their changing between both reads.

The PDC sends status flags to the peripheral visible in its status-register (ENDRX, ENDTX,
RXBUFF, and TXBUFE).

ENDRX flag is set when the PERIPH_RCR register reaches zero.

RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

ENDTX flag is set when the PERIPH_TCR register reaches zero.

TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

These status flags are described in the peripheral status register.

Memory Pointers Each peripheral is connected to the PDC by a receiver data channel and a transmitter data
channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to
a location anywhere in the memory space (on-chip memory or external bus interface memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incre-
mented by 1, 2 or 4, respectively for peripheral transfers.

If a memory pointer is reprogrammed while the PDC is in operation, the transfer address is
changed, and the PDC performs transfers using the new address.

Transfer Counters There is one internal 16-bit transfer counter for each channel used to count the size of the
block already transferred by its associated channel. These counters are decremented after
each data transfer. When the counter reaches zero, the transfer is complete and the PDC
stops transferring data.

If the Next Counter Register is equal to zero, the PDC disables the trigger while activating the
related peripheral end flag.

If the counter is reprogrammed while the PDC is operating, the number of transfers is updated
and the PDC counts transfers from the new value.

Programming the Next Counter/Pointer registers chains the buffers. The counters are decre-
mented after each data transfer as stated above, but when the transfer counter reaches zero,

95

AT91RM3400

1790A–ATARM–11/03

the values of the Next Counter/Pointer are loaded into the Counter/Pointer registers in order to
re-enable the triggers.

For each channel, two status bits indicate the end of the current buffer (ENDRX, ENTX) and
the end of both current and next buffer (RXBUFF, TXBUFE). These bits are directly mapped to
the peripheral status register and can trigger an interrupt request to the AIC.

The peripheral end flag is automatically cleared when one of the counter-registers (Counter or
Next Counter Register) is written.

Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

Data Transfers The peripheral triggers PDC transfers using transmit (TXRDY) and receive (RXRDY) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the
PDC which then requests access to the system bus. When access is granted, the PDC starts
a read of the peripheral Receive Holding Register (RHR) and then triggers a write in the
memory.

After each transfer, the relevant PDC memory pointer is incremented and the number of trans-
fers left is decremented. When the memory block size is reached, a signal is sent to the
peripheral and the transfer stops.

The same procedure is followed, in reverse, for transmit transfers.

Priority of PDC
Transfer Requests

The Peripheral Data Controller handles transfer requests from the channel according to priori-
ties fixed for each product.These priorities are defined in the product datasheet.

If simultaneous requests of the same type (receiver or transmitter) occur on identical peripher-
als, the priority is determined by the numbering of the peripherals.

If transfer requests are not simultaneous, they are treated in the order they occurred.
Requests from the receivers are handled first and then followed by transmitters requests.

96 AT91RM3400
1790A–ATARM–11/03

Peripheral Data Controller (PDC) User Interface

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (DBGU, USART, SSC, SPI, MCI etc).

PDC Receive Pointer Register
Register Name: PERIPH_RPR

Access Type: Read/Write

• RXPTR: Receive Pointer Address

Address of the next receive transfer.

Table 27. Register Mapping

Offset Register Register Name Read/Write Reset

0x100 PDC Receive Pointer Register PERIPH(1)_RPR Read/Write 0x0

0x104 PDC Receive Counter Register PERIPH_RCR Read/Write 0x0

0x108 PDC Transmit Pointer Register PERIPH_TPR Read/Write 0x0

0x10C PDC Transmit Counter Register PERIPH_TCR Read/Write 0x0

0x110 PDC Receive Next Pointer Register PERIPH_RNPR Read/Write 0x0

0x114 PDC Receive Next Counter Register PERIPH_RNCR Read/Write 0x0

0x118 PDC Transmit Next Pointer Register PERIPH_TNPR Read/Write 0x0

0x11C PDC Transmit Next Counter Register PERIPH_TNCR Read/Write 0x0

0x120 PDC Transfer Control Register PERIPH_PTCR Write-only -

0x114 PDC Transfer Status Register PERIPH_PTSR Read-only 0x0

31 30 29 28 27 26 25 24

RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8

RXPTR

7 6 5 4 3 2 1 0

RXPTR

97

AT91RM3400

1790A–ATARM–11/03

PDC Receive Counter Register
Register Name: PERIPH_RCR

Access Type: Read/Write

• RXCTR: Receive Counter Value
Number of receive transfers to be performed.

PDC Transmit Pointer Register
Register Name: PERIPH_TPR

Access Type: Read/Write

• TXPTR: Transmit Pointer Address

Address of the transmit buffer.

PDC Transmit Counter Register
Register Name: PERIPH_TCR

Access Type: Read/Write

• TXCTR: Transmit Counter Value
·TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral data transfer is stopped.

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

RXCTR

7 6 5 4 3 2 1 0

RXCTR

31 30 29 28 27 26 25 24

TXPTR

23 22 21 20 19 18 17 16

TXPTR

15 14 13 12 11 10 9 8

TXPTR

7 6 5 4 3 2 1 0

TXPTR

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

TXCTR

7 6 5 4 3 2 1 0

TXCTR

98 AT91RM3400
1790A–ATARM–11/03

PDC Receive Next Pointer Register
Register Name: PERIPH_RNPR

Access Type: Read/Write

• RXNPTR: Receive Next Pointer Address
RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

PDC Receive Next Counter Register
Register Name: PERIPH_RNCR

Access Type: Read/Write

• RXNCR: Receive Next Counter Value

·RXNCR is the size of the next buffer to receive.

PDC Transmit Next Pointer Register
Register Name: PERIPH_TNPR

Access Type: Read/Write

• TXNPTR: Transmit Next Pointer Address

TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

31 30 29 28 27 26 25 24

RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8

RXNPTR

7 6 5 4 3 2 1 0

RXNPTR

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

RXNCR

7 6 5 4 3 2 1 0

RXNCR

31 30 29 28 27 26 25 24

TXNPTR

23 22 21 20 19 18 17 16

TXNPTR

15 14 13 12 11 10 9 8

TXNPTR

7 6 5 4 3 2 1 0

TXNPTR

99

AT91RM3400

1790A–ATARM–11/03

PDC Transmit Next Counter Register
Register Name: PERIPH_TNCR

Access Type: Read/Write

• TXNCR: Transmit Next Counter Value
·TXNCR is the size of the next buffer to transmit.

PDC Transfer Control Register
Register Name: PERIPH_PTCR

Access Type: Write-only

• ·RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables the receiver PDC transfer requests if RXTDIS is not set.

• ·RXTDIS: Receiver Transfer Disable
0 = No effect.

1 = Disables the receiver PDC transfer requests.

• ·TXTEN: Transmitter Transfer Enable
0 = No effect.

1 = Enables the transmitter PDC transfer requests.

• ·TXTDIS: Transmitter Transfer Disable
0 = No effect.

1 = Disables the transmitter PDC transfer requests

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

TXNCR

7 6 5 4 3 2 1 0

TXNCR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXTDIS TXTEN

7 6 5 4 3 2 1 0

– – – – – – RXTDIS RXTEN

100 AT91RM3400
1790A–ATARM–11/03

PDC Transfer Status Register
Register Name: PERIPH_PTSR

Access Type: Read-only

• ·RXTEN: Receiver Transfer Enable
0 = Receiver PDC transfer requests are disabled.

1 = Receiver PDC transfer requests are enabled.

• ·TXTEN: Transmitter Transfer Enable
0 = Transmitter PDC transfer requests are disabled.

1 = Transmitter PDC transfer requests are enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – TXTEN

7 6 5 4 3 2 1 0

– – – – – – – RXTEN

101

AT91RM3400

1790A–ATARM–11/03

Advanced Interrupt Controller (AIC)

Overview The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored
interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to
substantially reduce the software and real-time overhead in handling internal and external
interrupts.

The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request)
inputs of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or exter-
nal interrupts coming from the product's pins.

The 8-level Priority Controller allows the user to define the priority for each interrupt source,
thus permitting higher priority interrupts to be serviced even if a lower priority interrupt is being
treated.

Internal interrupt sources can be programmed to be level sensitive or edge triggered. External
interrupt sources can be programmed to be positive-edge or negative-edge triggered or high-
level or low-level sensitive.

The fast forcing feature redirects any internal or external interrupt source to provide a fast
interrupt rather than a normal interrupt.

Important Features of the AIC are:

• Controls the Interrupt Lines (nIRQ and nFIQ) of an ARM® Processor

• Thirty-two Individually Maskable and Vectored Interrupt Sources

– Source 0 is Reserved for the Fast Interrupt Input (FIQ)

– Source 1 is Reserved for System Peripherals (ST, RTC, PMC, DBGU…)

– Source 2 to Source 31 Control up to Thirty Embedded Peripheral Interrupts or
External Interrupts

– Programmable Edge-triggered or Level-sensitive Internal Sources

– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
External Sources

• 8-level Priority Controller

– Drives the Normal Interrupt of the Processor

– Handles Priority of the Interrupt Sources 1 to 31

– Higher Priority Interrupts Can Be Served During Service of Lower Priority Interrupt

• Vectoring

– Optimizes Interrupt Service Routine Branch and Execution

– One 32-bit Vector Register per Interrupt Source

– Interrupt Vector Register Reads the Corresponding Current Interrupt Vector

• Protect Mode

– Easy Debugging by Preventing Automatic Operations when Protect ModeIs Are
Enabled

• Fast Forcing

– Permits Redirecting any Normal Interrupt Source on the Fast Interrupt of the
Processor

• General Interrupt Mask

– Provides Processor Synchronization on Events Without Triggering an Interrupt

102 AT91RM3400
1790A–ATARM–11/03

Block Diagram Figure 25. Block Diagram

Application
Block Diagram

Figure 26. Description of the Application Block

AIC Detailed
Block Diagram

Figure 27. AIC Detailed Block Diagram

AIC

APB

ARM
Processor

FIQ

IRQ0-IRQn

Embedded
PeripheralEE

PeripheralEmbedded
Peripheral

Embedded

Up to
Thirty-two
Sources

nFIQ

nIRQ

Advanced Interrupt Controller

Embedded Peripherals
External Peripherals
(External Interrupts)

Standalone
Applications RTOS Drivers

Hard Real Time Tasks

OS-based Applications

OS Drivers

General OS Interrupt Handler

FIQ

PIO
Controller

Advanced Interrupt Controller

IRQ0-IRQn
PIOIRQ

Embedded
Peripherals

External
Source
Input
Stage

Internal
Source
Input
Stage

Fast
Forcing

Interrupt
Priority

Controller

Fast
Interrupt

Controller

ARM
Processor

nFIQ

nIRQ

Power
Management

Controller

Wake UpUser Interface

APB

Processor
Clock

103

AT91RM3400

1790A–ATARM–11/03

I/O Line
Description

Product Dependencies

I/O Lines The interrupt signals FIQ and IRQ0 to IRQn are normally multiplexed through the PIO control-
lers. Depending on the features of the PIO controller used in the product, the pins must be
programmed in accordance with their assigned interrupt function. This is not applicable when
the PIO controller used in the product is transparent on the input path.

Power
Management

The Advanced Interrupt Controller is continuously clocked. The Power Management Controller
has no effect on the Advanced Interrupt Controller behavior.

The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the
ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to
wake up the processor without asserting the interrupt line of the processor, thus providing syn-
chronization of the processor on an event.

Interrupt Sources The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the
Interrupt Source 0 cannot be used.

The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wir-
ing of the system peripheral interrupt lines, such as the System Timer, the Real Time Clock,
the Power Management Controller and the Memory Controller. When a system interrupt
occurs, the service routine must first distinguish the cause of the interrupt. This is performed
by reading successively the status registers of the above mentioned system peripherals.

The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded
user peripheral or to external interrupt lines. The external interrupt lines can be connected
directly, or through the PIO Controller.

The PIO Controllers are considered as user peripherals in the scope of interrupt handling.
Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31.

The peripheral identification defined at the product level corresponds to the interrupt source
number (as well as the bit number controlling the clock of the peripheral). Consequently, to
simplify the description of the functional operations and the user interface, the interrupt
sources are named FIQ, SYS, and PID2 to PID31.

Table 28. I/O Line Description

Pin Name Pin Description Type

FIQ Fast Interrupt Input

IRQ0 - IRQn Interrupt 0 - Interrupt n Input

104 AT91RM3400
1790A–ATARM–11/03

Functional Description

Interrupt Source
Control

Interrupt Source Mode The Advanced Interrupt Controller independently programs each interrupt source. The SRC-
TYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.

The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can
be programmed either in level-sensitive mode or in edge-triggered mode. The active level of
the internal interrupts is not important for the user.

The external interrupt sources can be programmed either in high level-sensitive or low level-
sensitive modes, or in positive edge-triggered or negative edge-triggered modes.

Interrupt Source
Enabling

Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Inter-
rupt Disable Command Register). This set of registers conducts enabling or disabling in one
instruction. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does
not affect servicing of other interrupts.

Interrupt Clearing and
Setting

All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers.
Clearing or setting interrupt sources programmed in level-sensitive mode has no effect.

The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also
be used to execute an AIC-implementation of a software interrupt.

The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vec-
tor Register) is read. Only the interrupt source being detected by the AIC as the current
interrupt is affected by this operation. (See “Priority Controller” on page 107.) The automatic
clear reduces the operations required by the interrupt service routine entry code to reading the
AIC_IVR. Note that the automatic interrupt clear is disabled if the interrupt source has the Fast
Forcing feature enabled as it is considered uniquely as a FIQ source. (For further details, See
“Fast Forcing” on page 111.)

The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.

Interrupt Status For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and
its mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the
sources, whether masked or not.

The AIC_ISR register reads the number of the current interrupt (see “Priority Controller” on
page 107) and the register AIC_CISR gives an image of the signals nIRQ and nFIQ driven on
the processor.

Each status referred to above can be used to optimize the interrupt handling of the systems.

105

AT91RM3400

1790A–ATARM–11/03

Internal Interrupt
Source Input Stage

Figure 28. Internal Interrupt Source Input Stage

External Interrupt
Source Input Stage

Figure 29. External Interrupt Source Input Stage

MCK

nIRQ

Maximum IRQ Latency = 3.5 Cycles

Peripheral Interrupt
Becomes Active

Edge
Detector

ClearSet

Pos./Neg.

AIC_ISCR

AIC_ICCR

Source i

FF

Level/
Edge

High/Low
AIC_SMRi

SRCTYPE

AIC_IPR

AIC_IMR

AIC_IECR

AIC_IDCR

Fast Interrupt Controller
or
Priority Controller

106 AT91RM3400
1790A–ATARM–11/03

Interrupt Latencies Global interrupt latencies depend on several parameters, including:

• The time the software masks the interrupts.

• Occurrence, either at the processor level or at the AIC level.

• The execution time of the instruction in progress when the interrupt occurs.

• The treatment of higher priority interrupts and the resynchronization of the hardware
signals.

This section addresses only the hardware resynchronizations. It gives details of the latency
times between the event on an external interrupt leading in a valid interrupt (edge or level) or
the assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the
processor. The resynchronization time depends on the programming of the interrupt source
and on its type (internal or external). For the standard interrupt, resynchronization times are
given assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt
sources.

External Interrupt
Edge Triggered
Source

Figure 30. External Interrupt Edge Triggered Source

External Interrupt
Level Sensitive Source

Figure 31. External Interrupt Level Sensitive Source

Maximum FIQ Latency = 4 Cycles

Maximum IRQ Latency = 4 Cycles

nFIQ

nIRQ

MCK

IRQ or FIQ
(Positive Edge)

IRQ or FIQ
(Negative Edge)

Maximum IRQ
Latency = 3 Cycles

Maximum FIQ
Latency = 3 cycles

MCK

IRQ or FIQ
(High Level)

IRQ or FIQ
(Low Level)

nIRQ

nFIQ

107

AT91RM3400

1790A–ATARM–11/03

Internal Interrupt Edge
Triggered Source

Figure 32. Internal Interrupt Edge Triggered Source

Internal Interrupt Level
Sensitive Source

Figure 33. Internal Interrupt Level Sensitive Source

Normal Interrupt

Priority Controller An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt
conditions occurring on the interrupt sources 1 to 31 (except for those programmed in Fast
Forcing).

Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by
writing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the
highest priority and level 0 the lowest.

As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SVR
(Source Vector Register), the nIRQ line is asserted. As a new interrupt condition might have
happened on other interrupt sources since the nIRQ has been asserted, the priority controller
determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read.
The read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to
consider that the interrupt has been taken into account by the software.

The current priority level is defined as the priority level of the current interrupt.

If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is
read, the interrupt with the lowest interrupt source number is serviced first.

The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with
a higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment
in progress, it is delayed until the software indicates to the AIC the end of the current service
by writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is
the exit point of the interrupt handling.

MCK

nIRQ

Peripheral Interrupt
Becomes Active

Maximum IRQ Latency = 4.5 Cycles

MCK

nIRQ

Maximum IRQ Latency = 3.5 Cycles

Peripheral Interrupt
Becomes Active

108 AT91RM3400
1790A–ATARM–11/03

Interrupt Nesting The priority controller utilizes interrupt nesting in order for the highest priority interrupt to be
handled during the service of lower priority interrupts. This requires the interrupt service rou-
tines of the lower interrupts to re-enable the interrupt at the processor level.

When an interrupt of a higher priority happens during an already occurring interrupt service
routine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current
execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this
time, the current interrupt number and its priority level are pushed into an embedded hardware
stack, so that they are saved and restored when the higher priority interrupt servicing is fin-
ished and the AIC_EOICR is written.

The AIC is equipped with an 8-level wide hardware stack in order to support up to eight inter-
rupt nestings pursuant to having eight priority levels.

Interrupt Vectoring The interrupt handler addresses corresponding to each interrupt source can be stored in the
registers AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor
reads AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to
the current interrupt is returned.

This feature offers a way to branch in one single instruction to the handler corresponding to
the current interrupt, as AIC_IVR is mapped at the absolute address 0xFFFF F100 and thus
accessible from the ARM interrupt vector at address 0x0000 0018 through the following
instruction:

LDR PC,[PC,# -&F20]

When the processor executes this instruction, it loads the read value in AIC_IVR in its program
counter, thus branching the execution on the correct interrupt handler.

This feature is often not used when the application is based on an operating system (either
real time or not). Operating systems often have a single entry point for all the interrupts and
the first task performed is to discern the source of the interrupt.

However, it is strongly recommended to port the operating system on AT91 products by sup-
porting the interrupt vectoring. This can be performed by defining all the AIC_SVR of the
interrupt source to be handled by the operating system at the address of its interrupt handler.
When doing so, the interrupt vectoring permits a critical interrupt to transfer the execution on a
specific very fast handler and not onto the operating system’s general interrupt handler. This
facilitates the support of hard real-time tasks (input/outputs of voice/audio buffers and software
peripheral handling) to be handled efficiently and independently of the application running
under an operating system.

Interrupt Handlers This section gives an overview of the fast interrupt handling sequence when using the AIC. It
is assumed that the programmer understands the architecture of the ARM processor, and
especially the processor interrupt modes and the associated status bits.

It is assumed that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR registers are
loaded with corresponding interrupt service routine addresses and interrupts are
enabled.

2. The instruction at the ARM interrupt exception vector address is required to work with
the vectoring
LDR PC, [PC, # -&F20]

When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:

1. The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in
the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with

109

AT91RM3400

1790A–ATARM–11/03

0x18. In the following cycle during fetch at address 0x1C, the ARM core adjusts
R14_irq, decrementing it by four.

2. The ARM core enters Interrupt mode, if it has not already done so.

3. When the instruction loaded at address 0x18 is executed, the program counter is
loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects:

– Sets the current interrupt to be the pending and enabled interrupt with the highest
priority. The current level is the priority level of the current interrupt.

– De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR
must be read in order to de-assert nIRQ.

– Automatically clears the interrupt, if it has been programmed to be edge-triggered.

– Pushes the current level and the current interrupt number on to the stack.

– Returns the value written in the AIC_SVR corresponding to the current interrupt.

4. The previous step has the effect of branching to the corresponding interrupt service
routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link
register must be decremented by four when it is saved if it is to be restored directly into
the program counter at the end of the interrupt. For example, the instruction SUB PC,
LR, #4 may be used.

5. Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-
assertion of the nIRQ to be taken into account by the core. This can happen if an inter-
rupt with a higher priority than the current interrupt occurs.

6. The interrupt handler can then proceed as required, saving the registers that will be
used and restoring them at the end. During this phase, an interrupt of higher priority
than the current level will restart the sequence from step 1.

Note: If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared
during this phase.

7. The “I” bit in CPSR must be set in order to mask interrupts before exiting to ensure that
the interrupt is completed in an orderly manner.

8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indi-
cate to the AIC that the current interrupt is finished. This causes the current level to be
popped from the stack, restoring the previous current level if one exists on the stack. If
another interrupt is pending, with lower or equal priority than the old current level but
with higher priority than the new current level, the nIRQ line is re-asserted, but the
interrupt sequence does not immediately start because the “I” bit is set in the core.
SPSR_irq is restored. Finally, the saved value of the link register is restored directly
into the PC. This has effect of returning from the interrupt to whatever was being exe-
cuted before, and of loading the CPSR with the stored SPSR, masking or unmasking
the interrupts depending on the state saved in SPSR_irq.

Note: The “I” bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of
masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is
restored, the mask instruction is completed (interrupt is masked).

Fast Interrupt

Fast Interrupt Source The interrupt source 0 is the only source which can raise a fast interrupt request to the proces-
sor except if fast forcing is used. The interrupt source 0 is generally connected to a FIQ pin of
the product, either directly or through a PIO Controller.

Fast Interrupt Control The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is
programmed with the AIC_SMR0 and the field PRIOR of this register is not used even if it
reads what has been written. The field SRCTYPE of AIC_SMR0 enables programming the

110 AT91RM3400
1790A–ATARM–11/03

fast interrupt source to be positive-edge triggered or negative-edge triggered or high-level sen-
sitive or low-level sensitive

Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register) respectively enables and disables the fast interrupt. The bit 0 of
AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled.

Fast Interrupt
Vectoring

The fast interrupt handler address can be stored in AIC_SVR0 (Source Vector Register 0).
The value written into this register is returned when the processor reads AIC_FVR (Fast Vec-
tor Register). This offers a way to branch in one single instruction to the interrupt handler, as
AIC_FVR is mapped at the absolute address 0xFFFF F104 and thus accessible from the ARM
fast interrupt vector at address 0x0000 001C through the following instruction:

LDR PC,[PC,# -&F20]

When the processor executes this instruction it loads the value read in AIC_FVR in its pro-
gram counter, thus branching the execution on the fast interrupt handler. It also automatically
performs the clear of the fast interrupt source if it is programmed in edge-triggered mode.

Fast Interrupt
Handlers

This section gives an overview of the fast interrupt handling sequence when using the AIC. It
is assumed that the programmer understands the architecture of the ARM processor, and
especially the processor interrupt modes and associated status bits.

Assuming that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR0 is loaded with
the fast interrupt service routine address, and the interrupt source 0 is enabled.

2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector
the fast interrupt:
LDR PC, [PC, # -&F20]

3. The user does not need nested fast interrupts.

When nFIQ is asserted if the bit "F" of CPSR is 0, the sequence is:

1. The CPSR is stored in SPSR_fiq, the current value of the program counter is loaded in
the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with 0x1C. In
the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decre-
menting it by four.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is executed, the program counter is
loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automati-
cally clearing the fast interrupt, if it has been programmed to be edge triggered. In this
case only, it de-asserts the nFIQ line on the processor.

4. The previous step enables branching to the corresponding interrupt service routine. It
is not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts
are not needed.

5. The Interrupt Handler can then proceed as required. It is not necessary to save regis-
ters R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, R0 to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.

6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four
(with instruction SUB PC, LR, #4 for example). This has the effect of returning from
the interrupt to whatever was being executed before, loading the CPSR with the SPSR

111

AT91RM3400

1790A–ATARM–11/03

and masking or unmasking the fast interrupt depending on the state saved in the
SPSR.

Note: The "F" bit in SPSR is significant. If it is set, it indicates that the ARM core was just about to
mask FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is
restored, the interrupted instruction is completed (FIQ is masked).

Another way to handle the fast interrupt is to map the interrupt service routine at the address
of the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR
must be performed at the very beginning of the handler operation. However, this method
saves the execution of a branch instruction.

Fast Forcing The Fast Forcing feature of the advanced interrupt controller provides redirection of any nor-
mal Interrupt source on the fast interrupt controller.

Fast Forcing is enabled or disabled by writing to the Fast Forcing Enable Register
(AIC_FFER) and the Fast Forcing Disable Register (AIC_FFDR). Writing to these registers
results in an update of the Fast Forcing Status Register (AIC_FFSR) that controls the feature
for each internal or external interrupt source.

When Fast Forcing is disabled, the interrupt sources are handled as described in the previous
pages.

When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detec-
tion of the interrupt source is still active but the source cannot trigger a normal interrupt to the
processor and is not seen by the priority handler.

If the interrupt source is programmed in level-sensitive mode and an active level is sampled,
Fast Forcing results in the assertion of the nFIQ line to the core.

If the interrupt source is programmed in edge-triggered mode and an active edge is detected,
Fast Forcing results in the assertion of the nFIQ line to the core.

The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending
Register (AIC_IPR).

The Fast Interrupt Vector Register (AIC_FVR) reads the contents of the Source Vector Regis-
ter 0 (AIC_SVR0), whatever the source of the fast interrupt may be. The read of the FVR does
not clear the Source 0 when the fast forcing feature is used and the interrupt source should be
cleared by writing to the Interrupt Clear Command Register (AIC_ICCR).

All enabled and pending interrupt sources that have the fast forcing feature enabled and that
are programmed in edge-triggered mode must be cleared by writing to the Interrupt Clear
Command Register. In doing so, they are cleared independently and thus lost interrupts are
prevented.

The read of AIC_IVR does not clear the source that has the fast forcing feature enabled.

The source 0, reserved to the fast interrupt, continues operating normally and becomes one of
the Fast Interrupt sources.

112 AT91RM3400
1790A–ATARM–11/03

Figure 34. Fast Forcing

Protect Mode The Protect Mode permits reading the Interrupt Vector Register without performing the associ-
ated automatic operations. This is necessary when working with a debug system. When a
debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applica-
tions and updates the opened windows, it might read the AIC User Interface and thus the IVR.
This has undesirable consequences:

• If an enabled interrupt with a higher priority than the current one is pending, it is stacked.

• If there is no enabled pending interrupt, the spurious vector is returned.

In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC. This operation is generally not performed by the debug system as the
debug system would become strongly intrusive and cause the application to enter an undes-
ired state.

This is avoided by using the Protect Mode. Writing DBGM in AIC_DCR (Debug Control Regis-
ter) at 0x1 enables the Protect Mode.

When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write
access is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write
(arbitrary data) to the AIC_IVR just after reading it. The new context of the AIC, including the
value of the Interrupt Status Register (AIC_ISR), is updated with the current interrupt only
when AIC_IVR is written.

An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the
AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to
not stop the processor between the read and the write of AIC_IVR of the interrupt service rou-
tine to make sure the debugger does not modify the AIC context.

To summarize, in normal operating mode, the read of AIC_IVR performs the following opera-
tions within the AIC:

1. Calculates active interrupt (higher than current or spurious).

2. Determines and returns the vector of the active interrupt.

3. Memorizes the interrupt.

4. Pushes the current priority level onto the internal stack.

5. Acknowledges the interrupt.

Source 0 _ FIQ

Input Stage

Automatic Clear

Input Stage

Automatic Clear

Source n

AIC_IPR

AIC_IMR

AIC_FFSR

AIC_IPR

AIC_IMR

Priority
Manager

nFIQ

nIRQ

Read IVR if Source n is the current interrupt
and if Fast Forcing is disabled on Source n.

Read FVR if Fast Forcing is
disabled on Sources 1 to 31.

113

AT91RM3400

1790A–ATARM–11/03

However, while the Protect Mode is activated, only operations 1 to 3 are performed when
AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.

Software that has been written and debugged using the Protect Mode runs correctly in Normal
Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can
be removed to optimize the code.

Spurious Interrupt The Advanced Interrupt Controller features protection against spurious interrupts. A spurious
interrupt is defined as being the assertion of an interrupt source long enough for the AIC to
assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur
when:

• An external interrupt source is programmed in level-sensitive mode and an active level
occurs for only a short time.

• An internal interrupt source is programmed in level sensitive and the output signal of the
corresponding embedded peripheral is activated for a short time. (As in the case for the
Watchdog.)

• An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in
a pulse on the interrupt source.

The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt
source is pending. When this happens, the AIC returns the value stored by the programmer in
AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious
interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return
to the normal execution flow. This handler writes in AIC_EOICR and performs a return from
interrupt.

General Interrupt
Mask

The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the proces-
sor. Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in
AIC_DCR (Debug Control Register) is set. However, this mask does not prevent waking up
the processor if it has entered Idle Mode. This function facilitates synchronizing the processor
on a next event and, as soon as the event occurs, performs subsequent operations without
having to handle an interrupt. It is strongly recommended to use this mask with caution.

114 AT91RM3400
1790A–ATARM–11/03

Advanced Interrupt Controller (AIC) User Interface

Base Address The AIC is mapped at the address 0xFFFF F000. It has a total 4-Kbyte addressing space. This
permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor
supports only an ± 4-Kbyte offset.

Note: 1. The reset value of the Interrupt Pending Register depends on the level of the external interrupt source. All other sources are
cleared at reset, thus not pending.

Table 29. Register Mapping

Offset Register Name Access Reset Value

0000 Source Mode Register 0 AIC_SMR0 Read/Write 0x0

0x04 Source Mode Register 1 AIC_SMR1 Read/Write 0x0

– – – – –

0x7C Source Mode Register 31 AIC_SMR31 Read/Write 0x0

0x80 Source Vector Register 0 AIC_SVR0 Read/Write 0x0

0x84 Source Vector Register 1 AIC_SVR1 Read/Write 0x0

– – – – –

0xFC Source Vector Register 31 AIC_SVR31 Read/Write 0x0

0x100 Interrupt Vector Register AIC_IVR Read-only 0x0

0x104 Fast Interrupt Vector Register AIC_FVR Read-only 0x0

0x108 Interrupt Status Register AIC_ISR Read-only 0x0

0x10C Interrupt Pending Register AIC_IPR Read-only 0x0(1)

0x110 Interrupt Mask Register AIC_IMR Read-only 0x0

0x114 Core Interrupt Status Register AIC_CISR Read-only 0x0

0x118 Reserved – – –

0x11C Reserved – – –

0x120 Interrupt Enable Command Register AIC_IECR Write-only –

0x124 Interrupt Disable Command Register AIC_IDCR Write-only –

0x128 Interrupt Clear Command Register AIC_ICCR Write-only –

0x12C Interrupt Set Command Register AIC_ISCR Write-only –

0x130 End of Interrupt Command Register AIC_EOICR Write-only –

0x134 Spurious Interrupt Vector Register AIC_SPU Read/Write 0x0

0x138 Debug Control Register AIC_DCR Read/Write 0x0

0x13C Reserved – – –

0x140 Fast Forcing Enable Register AIC_FFER Write-only –

0x144 Fast Forcing Disable Register AIC_FFDR Write-only –

0x148 Fast Forcing Status Register AIC_FFSR Read-only 0x0

115

AT91RM3400

1790A–ATARM–11/03

AIC Source Mode Register
Register Name: AIC_SMR0..AIC_SMR31

Access Type: Read/write

Reset Value: 0x0

• PRIOR: Priority Level

Programs the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 (lowest) and 7 (highest).

The priority level is not used for the FIQ in the related SMR register AIC_SMRx.

• SRCTYPE: Interrupt Source Type

The active level or edge is not programmable for the internal interrupt sources.

AIC Source Vector Register
Register Name: AIC_SVR0..AIC_SVR31

Access Type: Read/Write

Reset Value: 0x0

• VECTOR: Source Vector

The user may store in these registers the addresses of the corresponding handler for each interrupt source.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– SRCTYPE – – PRIOR

SRCTYPE Internal Interrupt Sources

0 0 Level Sensitive

0 1 Edge Triggered

1 0 Level Sensitive

1 1 Edge Triggered

31 30 29 28 27 26 25 24

VECTOR

23 22 21 20 19 18 17 16

VECTOR

15 14 13 12 11 10 9 8

VECTOR

7 6 5 4 3 2 1 0

VECTOR

116 AT91RM3400
1790A–ATARM–11/03

AIC Interrupt Vector Register
Register Name: AIC_IVR

Access Type: Read-only

Reset Value: 0

• IRQV: Interrupt Vector Register

The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.

The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.

When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.

AIC FIQ Vector Register
Register Name: AIC_FVR

Access Type: Read-only

Reset Value: 0

• FIQV: FIQ Vector Register

The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no fast
interrupt, the Fast Interrupt Vector Register reads the value stored in AIC_SPU.

31 30 29 28 27 26 25 24

IRQV

23 22 21 20 19 18 17 16

IRQV

15 14 13 12 11 10 9 8

IRQV

7 6 5 4 3 2 1 0

IRQV

31 30 29 28 27 26 25 24

FIQV

23 22 21 20 19 18 17 16

FIQV

15 14 13 12 11 10 9 8

FIQV

7 6 5 4 3 2 1 0

FIQV

117

AT91RM3400

1790A–ATARM–11/03

AIC Interrupt Status Register
Register Name: AIC_ISR

Access Type: Read-only

Reset Value: 0

• IRQID: Current Interrupt Identifier

The Interrupt Status Register returns the current interrupt source number.

AIC Interrupt Pending Register
Register Name: AIC_IPR

Access Type: Read-only

Reset Value: 0

• FIQ, SYS, PID2-PID31: Interrupt Pending

0 = Corresponding interrupt is no pending.

1 = Corresponding interrupt is pending.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – IRQID

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

118 AT91RM3400
1790A–ATARM–11/03

AIC Interrupt Mask Register
Register Name: AIC_IMR

Access Type: Read-only

Reset Value: 0

• FIQ, SYS, PID2-PID31: Interrupt Mask

0 = Corresponding interrupt is disabled.

1 = Corresponding interrupt is enabled.

AIC Core Interrupt Status Register
Register Name: AIC_CISR

Access Type: Read-only

Reset Value: 0

• NFIQ: NFIQ Status

0 = nFIQ line is deactivated.

1 = nFIQ line is active.

• NIRQ: NIRQ Status

0 = nIRQ line is deactivated.

1 = nIRQ line is active.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – NIRQ NIFQ

119

AT91RM3400

1790A–ATARM–11/03

AIC Interrupt Enable Command Register
Register Name: AIC_IECR

Access Type: Write-only

• FIQ, SYS, PID2-PID3: Interrupt Enable

0 = No effect.

1 = Enables corresponding interrupt.

AIC Interrupt Disable Command Register
Register Name: AIC_IDCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Disable

0 = No effect.

1 = Disables corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

120 AT91RM3400
1790A–ATARM–11/03

AIC Interrupt Clear Command Register
Register Name: AIC_ICCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Clear

0 = No effect.

1 = Clears corresponding interrupt.

AIC Interrupt Set Command Register
Register Name: AIC_ISCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Set

0 = No effect.

1 = Sets corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

121

AT91RM3400

1790A–ATARM–11/03

AIC End of Interrupt Command Register
Register Name: AIC_EOICR

Access Type: Write-only

The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.

AIC Spurious Interrupt Vector Register
Register Name: AIC_SPU

Access Type: Read/Write

Reset Value: 0

• SIQV: Spurious Interrupt Vector Register

The use may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in
case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

31 30 29 28 27 26 25 24

SIQV

23 22 21 20 19 18 17 16

SIQV

15 14 13 12 11 10 9 8

SIQV

7 6 5 4 3 2 1 0

SIQV

122 AT91RM3400
1790A–ATARM–11/03

AIC Debug Control Register
Register Name: AIC_DEBUG

Access Type: Read/write

Reset Value: 0

• PROT: Protection Mode

0 = The Protection Mode is disabled.

1 = The Protection Mode is enabled.

• GMSK: General Mask

0 = The nIRQ and nFIQ lines are normally controlled by the AIC.

1 = The nIRQ and nFIQ lines are tied to their inactive state.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – GMSK PROT

123

AT91RM3400

1790A–ATARM–11/03

AIC Fast Forcing Enable Register
Register Name: AIC_FFER

Access Type: Write-only

• SYS, PID2-PID31: Fast Forcing Enable

0 = No effect.

1 = Enables the fast forcing feature on the corresponding interrupt.

AIC Fast Forcing Disable Register
Register Name: AIC_FFDR

Access Type: Write-only

• SYS, PID2-PID31: Fast Forcing Disable

0 = No effect.

1 = Disables the Fast Forcing feature on the corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –

124 AT91RM3400
1790A–ATARM–11/03

AIC Fast Forcing Status Register
Register Name: AIC_FFSR

Access Type: Read-only

• SYS, PID2-PID31: Fast Forcing Status

0 = The Fast Forcing feature is disabled on the corresponding interrupt.

1 = The Fast Forcing feature is enable on the corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –

125

AT91RM3400

1790A–ATARM–11/03

Power Management Controller (PMC)

Overview The Power Management Controller (PMC) generates all the system clocks thanks to the
integration of two oscillators and two PLLs.

The PMC provides clocks to the embedded processor and enables the idle mode by
stopping the processor clock until the next interrupt.

The PMC independently provides and controls up to thirty peripheral clocks and four
programmable clocks that can be used as outputs on pins to feed external devices. The
integration of the PLLs supplies the USB devices and host ports with a 48 MHz clock, as
required by the bus speed, and the rest of the system with a clock at another frequency.
Thus, the fully-featured Power Management Controller optimizes power consumption of
the whole system and supports the Normal, Idle, Slow Clock and Standby operating
modes.

The main features of the PMC are:

• Optimizes the Power Consumption of the Whole System

• Embeds and Controls

– One Main Oscillator and One Slow Clock Oscillator (32.768 kHz)

– Two Phase Locked Loops (PLLs) and Dividers

– Clock Prescalers

• Provides

– the Processor Clock PCK

– the Master Clock MCK

– up to two USB Clocks (depending on the USB Ports embedded)

– UHPCK for the USB Host Port

– UDPCK for the USB Device Port

– Programmable Automatic PLL Switch-off in USB Device Suspend Conditions

– up to Thirty Peripheral Clocks

– up to Four Programmable Clock Outputs

• Four Operating Modes

– Normal Mode, Idle Mode, Slow Clock Mode, Standby Mode

126 AT91RM3400
1790A–ATARM–11/03

Block Diagram

Figure 35. Power Management Controller Block Diagram

APB

PIO

PCK0-PCK3

ARM7
Processor

User Interface

UDP

UHP

Embedded
Peripherals

MCK
(Continuous)

Processor
Clock

MCK

(Individually
Switchable)

AIC

ST

RTC

SLCK

PMCIRQ

XIN32

XOUT32

XIN

XOUT

PLLRCA

PLLRCB

IRQ or FIQ

UDPCK

UHPCK

Programmable
Clocks

Memory Controller

Suspend

Slow
Clock
SLCK

Main
Clock

PLLA
Clock

PLLB
Clock

SLCK
Main Clock

PLLA Clock
PLLB Clock

Prescaler
/2,/4,...,/64

ARM920T
Processor

Processor
Clock

Processor
Clock

Controller

Idle Mode

Divider
/1,/2,/3,/4

ARM9-systems
only

Master Clock Controller

Peripherals
Clock Controller

ON/OFF

USB Clock
Controller

ON/OFF

SLCK
Main Clock

PLLA Clock
PLLB Clock

Prescaler
/2,/4,...,/64

Programmable Clock Controller

Slow
Clock
SLCK

PLLB
Clock

30

4

Slow Clock
Oscillator

Main
Oscillator

PLL and
Divider A

PLL and
Divider B

Clock Generator

Power Management Controller

127

AT91RM3400

1790A–ATARM–11/03

Product Dependencies

I/O Lines The Power Management Controller is capable of handling up to four Programmable
Clocks, PCK0 to PCK3.

A Programmable Clock is generally multiplexed on a PIO Controller. The user must first
program the PIO controllers to assign the pins of the Programmable Clock to its periph-
eral function.

Interrupt The Power Management Controller has an interrupt line connected to the Advanced
Interrupt Controller (AIC). Handling the PMC interrupt requires programming the AIC
before configuring the PMC.

Oscillator and PLL
Characteristics

The electrical characteristics of the embedded oscillators and PLLs are product-depen-
dent, even if the way to control them is similar.

All of the parameters for both oscillators and the PLLs are given in the DC Characteris-
tics section of the product datasheet. These figures are used not only for the hardware
design, as they affect the external components to be connected to the pins, but also the
software configuration, as they determine the waiting time for the startup and lock times
to be programmed.

Peripheral Clocks The Power Management Controller provides and controls up to thirty peripheral clocks.
The bit number permitting the control of a peripheral clock is the Peripheral ID of the
embedded peripheral.

When the Peripheral ID does not correspond to a peripheral, either because this is an
external interrupt or because there are less than thirty peripherals, the control bits of the
Peripheral ID are not implemented in the PMC and programming them has no effect on
the behavior of the PMC.

USB Clocks The Power Management Controller provides and controls two USB Clocks, the UHPCK
for the USB Host Port, and the UDPCK for the USB Device.

If the product does not embed the USB Host Port or the USB Device Port, the associ-
ated control bits and registers are not implemented in the PMC and programming them
has no effect on the behavior of the PMC.

128 AT91RM3400
1790A–ATARM–11/03

Functional Description

Operating Modes
Definition

The following operating modes are supported by the PMC and offer different power con-
sumption levels and event response latency times:

• Normal Mode: The ARM processor clock is enabled and peripheral clocks are
enabled depending on application requirements.

• Idle Mode: The ARM processor clock is disabled and waiting for the next interrupt
(or a main reset). The peripheral clocks are enabled depending on application
requirements. PDC transfers are still possible.

• Slow Clock Mode: Slow clock mode is similar to normal mode, but the main
oscillator and the PLL are switched off to save power and the processor and the
peripherals run in Slow Clock mode. Note that slow clock mode is the mode
selected after the reset.

• Standby Mode: Standby mode is a combination of Slow Clock mode and Idle Mode.
It enables the processor to respond quickly to a wake-up event by keeping power
consumption very low.

Clock Definitions The Power Management Controller provides the following clocks:

• Slow Clock (SLCK), typically at 32.768 kHz, is the only permanent clock within the
system.

• Master Clock (MCK), programmable from a few hundred Hz to the maximum
operating frequency of the device. It is available to the modules running
permanently, such as the AIC and the Memory Controller.

• Processor Clock (PCK), typically the Master Clock for ARM7-based systems and a
faster clock on ARM9-based systems, switched off when entering idle mode.

• Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART,
SSC, SPI, TWI, TC, MCI, etc.) and independently controllable. In order to reduce the
number of clock names in a product, the Peripheral Clocks are named MCK in the
product datasheet.

• UDP Clock (UDPCK), typically at 48 MHz, required by the USB Device Port
operations.

• UHP Clock (UHPCK), typically at 48 MHz, required by the USB Host Port
operations.

• Programmable Clock Outputs (PCK0 to PCK3) can be selected from the clocks
provided by the clock generator and driven on the PCK0 to PCK3 pins.

Clock Generator The Clock Generator embeds:

• the Slow Clock Oscillator

• the Main Oscillator

• two PLL and divider blocks, A and B

The Clock Generator integrates as an option a divider by 2. The ARM7-based systems
generally embed PLLs able to output between 20 MHz and 100 MHz and do not embed
the divider by 2. The ARM9-based systems generally embed PLLs able to output
between 80 MHz and 240 MHz. As the 48 MHz required by the USB cannot be reached
by such a PLL, the optional divider by 2 is implemented.

The block diagram of the Clock Generator is shown in Figure 36.

129

AT91RM3400

1790A–ATARM–11/03

Figure 36. Clock Generator Block Diagram

Slow Clock Oscillator

Slow Clock Oscillator
Connection

The Clock Generator integrates a low-power 32.768 kHz oscillator. The XIN32 and
XOUT32 pins must be connected to a 32.768 kHz crystal. Two external capacitors must
be wired as shown in Figure 37.

Figure 37. Typical Slow Clock Oscillator Connection

Slow Clock Oscillator Startup
Time

The startup time of the Slow Clock Oscillator is given in the section “DC Characteristics”
on page 432. As it is often higher than 500 ms and the processor requires an assertion
of the reset until it has stabilized, the user must implement an external reset supervisor
covering this startup time. However, this startup is only required in case of cold reset,
i.e. in case of system power-up. When a warm reset occurs, the length of the reset pulse
may be much lower. For further details, see the section “Reset Controller” on page 77.

Slow Clock
Oscillator

Main
Oscillator

Clock Generator

XIN32

XOUT32

XIN

XOUT

PLLRCA

PLLRCB

Slow
Clock
SLCK

Main
Clock

PLLA
Clock

PLLB
Clock

PLL ADivider A

Divider B PLL B /2
(optional)

Main Clock
Frequency

Counter

XIN32 XOUT32 GNDPLL

CL2CL1

32.768 kHz
Crystal

130 AT91RM3400
1790A–ATARM–11/03

Main Oscillator Figure 38 shows the Main Oscillator block diagram.

Figure 38. Main Oscillator Block Diagram

Main Oscillator Connections The Clock Generator integrates a Main Oscillator that is designed for a 3 to 20 MHz fun-
damental crystal. The typical crystal connection is illustrated in Figure 39. The 1 kΩ
resistor is only required for crystals with frequencies lower than 8 MHz. The oscillator
contains twenty-five pF capacitors on each XIN and XOUT pin. Consequently, CL1 and
CL2 can be removed when a crystal with a load capacitance of 12.5 pF is used. For fur-
ther details on the electrical characteristics of the Main Oscillator, see the section “DC
Characteristics” on page 432.

Figure 39. Typical Crystal Connection

Main Oscillator Startup Time The startup time of the Main Oscillator is given in the section “DC Characteristics” on
page 432. The startup time depends on the crystal frequency and increases when the
frequency rises.

Main Oscillator Control To minimize the power required to start up the system, the Main Oscillator is disabled
after reset and the Slow Clock mode is selected.

The software enables or disables the Main Oscillator so as to reduce power consump-
tion by clearing the MOSCEN bit in the Main Oscillator Register (CKGR_MOR). When
disabling the Main Oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS
bit in PMC_SR is automatically cleared indicating the Main Clock is off.

Main
Oscillator

XIN

XOUT

MOSCEN

Main
Oscillator
Counter

OSCOUNT

MOSCSSlow
Clock

Main
Clock

Main Clock
Frequency

Counter

MAINF

MAINRDY

XIN XOUT GNDPLL

CL2CL1

1K

131

AT91RM3400

1790A–ATARM–11/03

When enabling the Main Oscillator, the user must initiate the Main Oscillator counter
with a value corresponding to the startup time of the oscillator. This startup time
depends on the crystal frequency connected to the main oscillator. When the MOSCEN
bit and the OSCOUNT are written in CKGR_MOR to enable the Main Oscillator, the
MOSCS bit is cleared and the counter starts counting down on the Slow Clock divided
by 8 from the OSCOUNT value. Since the OSCOUNT value is coded with 8 bits, the
maximum startup time is about 62 ms.

When the counter reaches 0, the MOSCS bit is set, indicating that the Main Clock is
valid. Setting the MOSCS bit in PMC_IMR can trigger an interrupt to the processor on
this event.

Main Clock Frequency
Counter

The Main Oscillator features a Main Clock frequency counter that provides the quartz
frequency connected to the Main Oscillator. Generally, this value is known by the sys-
tem designer; however, it is useful for the boot program to configure the device with the
correct clock speed, independently of the application.

The Main Clock frequency counter starts incrementing at the Main Clock speed after the
next rising edge of the Slow Clock as soon as the Main Oscillator is stable, i.e., as soon
as the MOSCS bit is set. Then, at the 16th falling edge of Slow Clock, the bit MAINRDY
in CKGR_MCFR (Main Clock Frequency Register) is set and the counter stops count-
ing. Its value can be read in the MAINF field of CKGR_MCFR and gives the number of
Main Clock cycles during 16 periods of Slow Clock, so that the frequency of the crystal
connected on the Main Oscillator can be determined.

Main Oscillator Bypass The user can input a clock on the device instead of connecting a crystal. In this case, the
user has to provide the external clock signal on the pin XIN. The input characteristics of
the XIN pin under these conditions are given in the product electrical characteristics sec-
tion. The programmer has to be sure not to modify the MOSCEN bit in the Main
Oscillator Register (CKGR_MOR). This bit must remain at 0, its reset value, for the
external clock to operate properly. While this bit is at 0, the pin XIN is tied low to prevent
any internal oscillation regardless of pin connected.

The external clock signal must meet the requirements relating to the power supply
VDDPLL (i.e., between 1.65V and 1.95V) and cannot exceed 50 MHz.

132 AT91RM3400
1790A–ATARM–11/03

Divider and PLL Blocks The Clock Generator features two Divider/PLL Blocks that generates a wide range of
frequencies. Additionally, they provide a 48 MHz signal to the embedded USB device
and/or host ports, regardless of the frequency of the Main Clock.

Figure 40 shows the block diagram of the divider and PLL blocks.

Figure 40. Divider and PLL Blocks Block Diagram

PLL Filters The two PLLs require connection to an external second-order filter through the pins
PLLRC. Figure 41 shows a schematic of these filters.

Figure 41. PLL Capacitors and Resistors

Values of R, C1 and C2 to be connected to the PLLRC pins must be calculated as a
function of the PLL input frequency, the PLL output frequency and the phase margin. A
trade-off has to be found between output signal overshoot and startup time.

Divider B

PLLRCB

DIVB

PLL B

MULB

Divider A

PLLRCA

DIVA

PLL A

PLL B
Counter

PLLBCOUNT

LOCKB

PLL A
Counter

PLLACOUNT

LOCKA

MULA

OUTB

OUTA

PLL B
Output

Slow
Clock

Main
Clock

PLL A
Output

GND

C1

C2

PLL
PLLRC

R

133

AT91RM3400

1790A–ATARM–11/03

PLL Source Clock The source of PLLs A and B is respectively the output of Divider A, i.e., the Main Clock
divided by DIVA, and the output of Divider B, i.e., the Main Clock divided by DIVB.

As the input frequency of the PLLs is limited, the user has to make sure that the pro-
gramming of DIVA and DIVB are compliant with the input frequency range of the PLLs,
which is given in the section “DC Characteristics” on page 432.

Divider and Phase Lock Loop
Programming

The two dividers increase the accuracy of the PLLA and the PLLB clocks independently
of the input frequency.

The Main Clock can be divided by programming the DIVB field in CKGR_PLLBR and
the DIVA field in CKGR_PLLAR. Each divider can be set between 1 and 255 in steps of
1. When the DIVA and DIVB fields are set to 0, the output of the divider and the PLL out-
puts A and B are a continuous signal at level 0. On reset, the DIVA and DIVB fields are
set to 0, thus both PLL input clocks are set to 0.

The two PLLs of the clock generator allow multiplication of the divider’s outputs. The
PLLA and the PLLB clock signals have a frequency that depends on the respective
source signal frequency and on the parameters DIV (DIVA, DIVB) and MUL (MULA,
MULB). The factor applied to the source signal frequency is (MUL + 1)/DIV. When
MULA or MULB is written to 0, the corresponding PLL is disabled and its power con-
sumption is saved. Re-enabling the PLLA or the PLLB can be performed by writing a
value higher than 0 in the MULA or MULB field, respectively.

Whenever a PLL is re-enabled or one of its parameters is changed, the LOCKA or
LOCKB bit in PMC_SR is automatically cleared. The values written in the PLLACOUNT
or PLLBCOUNT fields in CKGR_PPLAR and CKGR_PLLBR, respectively, are loaded in
the corresponding PLL counter. The PLL counter then decrements at the speed of the
Slow Clock until it reaches 0. At this time, the corresponding LOCK bit is set in PMC_SR
and can trigger an interrupt to the processor. The user has to load the number of Slow
Clock cycles required to cover the PLL transient time into the PLLACOUNT and PLLB-
COUNT field. The transient time depends on the PLL filters. The initial state of the PLL
and its target frequency can be calculated using a specific tool provided by Atmel.

PLLB Divider by 2 In ARM9-based systems, the PLLB clock may be divided by two. This divider can be
enabled by setting the bit USB_96M of CKGR_PLLBR. In this case, the divider by 2 is
enabled and the PLLB must be programmed to output 96 MHz and not 48 MHz, thus
ensuring correct operation of the USB bus.

Clock Controllers The Power Management Controller provides the clocks to the different peripherals of the
system, either internal or external. It embeds the following elements:

• the Master Clock Controller, that selects the Master Clock.

• the Processor Clock Controller, that implements the Idle Mode.

• the Peripheral Clock Controller, that provides power saving by controlling clocks of
the embedded peripherals.

• the USB Clock Controller, that distributes the 48 MHz clock to the USB controllers.

• the Programmable Clock Controller, that allows generation of up to four
programmable clock signals on external pins.

Master Clock Controller The Master Clock Controller provides selection and division of the Master Clock (MCK).
MCK is the clock provided to all the peripherals and the memory controller.

The Master Clock is selected from one of the clocks provided by the Clock Generator.
Selecting the Slow Clock enables Slow Clock Mode by providing a 32.768 kHz signal to
the whole device. Selecting the Main Clock saves power consumption of both PLLs, but

134 AT91RM3400
1790A–ATARM–11/03

prevents using the USB ports. Selecting the PLLB Clock saves the power consumption
of the PLLA by running the processor and the peripheral at 48 MHz required by the USB
ports. Selecting the PLLA Clock runs the processor and the peripherals at their maxi-
mum speed while running the USB ports at 48 MHz.

The Master Clock Controller is made up of a clock selector and a prescaler, as shown in
Figure 42. It also contains an optional Master Clock divider in products integrating an
ARM9 processor. This allows the processor clock to be faster than the Master Clock.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in
PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of
2 of the selected clock between 1 and 64. The PRES field in PMC_MCKR programs the
prescaler.

When the Master Clock divider is implemented, it can be programmed between 1 and 4
through the MDIV field in PMC_MCKR.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is
cleared in PMC_SR. It reads 0 until the Master Clock is established. Then, the MCK-
RDY bit is set and can trigger an interrupt to the processor. This feature is useful when
switching from a high-speed clock to a lower one to inform the software when the
change is actually done.
Note: A new value to be written in PMC_MCKR must not be the same as the current value in

PMC_MCKR.

Figure 42. Master Clock Controller

Processor Clock Controller The PMC features a Processor Clock Controller that implements the Idle Mode. The
Processor Clock can be enabled and disabled by writing the System Clock Enable
(PMC_SCER) and System Clock Disable Registers (PMC_SCDR). The status of this
clock (at least for debug purpose) can be read in the System Clock Status Register
(PMC_SCSR).

Processor Clock Source The clock provided to the processor is determined by the Master Clock controller. On
ARM7-based systems, the Processor Clock source is directly the Master Clock.

On ARM9-based systems, the Processor Clock source might be 2, 3 or 4 times the Mas-
ter Clock. This ratio value is determined by programming the field MDIV of the Master
Clock Register (PMC_MCKR).

Idle Mode The Processor Clock is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Idle Mode is achieved by disabling the Processor Clock, which is
automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the
product.

SLCK

Master Clock
Prescaler

MCK
PRESCD

Master
Clock
Divider

To the Processor
Clock Controller

Main Clock

PLLA Clock

PLLB Clock

MDIV

To the Processor
Clock Controller

MCK

ARM9 Products

ARM7 Products

135

AT91RM3400

1790A–ATARM–11/03

When the Processor Clock is disabled, the current instruction is finished before the clock
is stopped, but this does not prevent data transfers from other masters of the system
bus.

Peripheral Clock Controller The PMC controls the clocks of each embedded peripheral. The user can individually
enable and disable the Master Clock on the peripherals by writing into the Peripheral
Clock Enable (PMC_PCER) and Peripheral Clock Disable (PMC_PCDR) registers. The
status of the peripheral clock activity can be read in the Peripheral Clock Status Register
(PMC_PCSR).

When a peripheral clock is disabled, the clock is immediately stopped. When the clock is
re-enabled, the peripheral resumes action where it left off. The peripheral clocks are
automatically disabled after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the
peripheral has executed its last programmed operation before disabling the clock. This
is to avoid data corruption or erroneous behavior of the system.

The bit number within the Peripheral Clock Control registers (PMC_PCER,
PMC_PCDR, and PMC_PCSR) is the Peripheral Identifier defined at the product level.
Generally, the bit number corresponds to the interrupt source number assigned to the
peripheral.

USB Clock Controller If using one of the USB ports, the user has to program the Divider and PLL B block to
output a 48 MHz signal with an accuracy of ± 0.25%.

When the clock for the USB is stable, the USB device and host clocks, UDPCK and
UHPCK, can be enabled. They can be disabled when the USB transactions are finished,
so that the power consumption generated by the 48 MHz signal on these peripherals is
saved.

The USB ports require both the 48 MHz signal and the Master Clock. The Master Clock
may be controlled via the Peripheral Clock Controller.

USB Device Clock Control The USB Device Port clock UDPCK can be enabled by writing 1 at the UDP bit in
PMC_SCER (System Clock Enable Register) and disabled by writing 1 at the bit UDP in
PMC_SCDR (System Clock Disable Register). The activity of UDPCK is shown in the bit
UDP of PMC_SCSR (System Clock Status Register).

USB Device Port Suspend When the USB Device Port detects a suspend condition, the 48 MHz clock is automati-
cally disabled, i.e., the UDP bit in PMC_SCSR is cleared. It is also possible to
automatically disable the Master Clock provided to the USB Device Port on a suspend
condition. The MCKUDP bit in PMC_SCSR configures this feature and can be set or
cleared by writing one in the same bit of PMC_SCER and PMC_SCDR.

USB Host Clock Control The USB Host Port clock UHPCK can be enabled by writing 1 at the UHP bit in
PMC_SCER (System Clock Enable Register) and disabled by writing 1 at the UHP bit in
PMC_SCDR (System Clock Disable Register). The activity of UDPCK is shown in the bit
UHP of PMC_SCSR (System Clock Status Register).

Programmable Clock Output
Controller

The PMC controls up to four signals to be output on external pins PCK0 to PCK3. Each
signal can be independently programmed via the registers PMC_PCK0 to PMC_PCK3.

PCK0 to PCK3 can be independently selected between the four clocks provided by the
Clock Generator by writing the CSS field in PMC_PCK0 to PMC_PCK3. Each output
signal can also be divided by a power of 2 between 1 and 64 by writing the field PRES
(Prescaler) in PMC_PCK0 to PMC_PCK3.

136 AT91RM3400
1790A–ATARM–11/03

Each output signal can be enabled and disabled by writing 1 in the corresponding bit
PCK0 to PCK3 of PMC_SCER and PMC_SCDR, respectively. Status of the active pro-
grammable output clocks are given in the bits PCK0 to PCK3 of PMC_SCSR (System
Clock Status Register).

Moreover, like the MCK, a status bit in PMC_SR indicates that the Programmable Clock
is actually what has been programmed in the Programmable Clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when
switching clocks, it is strongly recommended to disable the Programmable Clock before
any configuration change and to re-enable it after the change is actually performed.

Note also that it is required to assign the pin to the Programmable Clock operation in the
PIO Controller to enable the signal to be driven on the pin.

137

AT91RM3400

1790A–ATARM–11/03

Clock Switching Details

Master Clock Switching
Timings

Table 30 gives the worst case timing required for the Master Clock to switch from one
selected clock to another one. This is in the event that the prescaler is de-activated.
When the prescaler is activated, an additional time of 64 clock cycles of the new
selected clock has to be added.

Table 30. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLLA Clock PLLB Clock

To

Main Clock
–

4 x SLCK +
2.5 x Main Clock

3 x PLLA Clock +
4 x SLCK +

1 x Main Clock

3 x PLLB Clock +
4 x SLCK +

1 x Main Clock

SLCK 0.5 x Main Clock +
4.5 x SLCK

–
3 x PLLA Clock +

5 x SLCK
3 x PLLB Clock +

5 x SLCK

PLLA Clock 0.5 x Main Clock +
4 x SLCK +

PLLACOUNT x SLCK +
2.5 x PLLA Clock

2.5 x PLLA Clock +
5 x SLCK +

PLLACOUNT x SLCK

2.5 x PLLA Clock +
4 x SLCK +

PLLB COUNT x SLCK

3 x PLLA Clock +
4 x SLCK +

1.5 x PLLA Clock

PLLB Clock 0.5 x Main Clock +
4 x SLCK +

PLLBCOUNT x SLCK +
2.5 x PLLB Clock

2.5 x PLLB Clock +
5 x SLCK +

PLLBCOUNT x SLCK

3 x PLLB Clock +
4 x SLCK +

1.5 x PLLB Clock

2.5 x PLLB Clock +
4 x SLCK +

PLLACOUNT x SLCK

138 AT91RM3400
1790A–ATARM–11/03

Clock Switching Waveforms

Figure 43. Switch Master Clock from Slow Clock to PLLA Clock

Figure 44. Switch Master Clock from Main Clock to Slow Clock

Slow Clock

LOCK A

MCKRDY

Master Clock

Write PMC_MCKR

PLLA Clock

Slow Clock

Main Clock

MCKRDY

Master Clock

Write PMC_MCKR

139

AT91RM3400

1790A–ATARM–11/03

Figure 45. Change PLLA Programming

Figure 46. Programmable Clock Output Programming

Slow Clock

PLLA Clock

LOCKA

MCKRDY

Master Clock

Write CKGR_PLLAR

Slow Clock

PLLA Clock

PCKRDY

PCKx Output

Write PMC_PCKX

Write PMC_SCER

Write PMC_SCDR PCKx is disabled

PCKx is enabled

PLLA Clock is selected

140 AT91RM3400
1790A–ATARM–11/03

Power Management Controller (PMC) User Interface

Table 31. Register Mapping

Offset Register Name Access Reset Value

0x0000 System Clock Enable Register PMC_SCER Write-only –

0x0004 System Clock Disable Register PMC_SCDR Write-only –

0x0008 System Clock Status Register PMC _SCSR Read-only 0x01

0x000C Reserved – – –

0x0010 Peripheral Clock Enable Register PMC _PCER Write-only –

0x0014 Peripheral Clock Disable Register PMC_PCDR Write-only –

0x0018 Peripheral Clock Status Register PMC_PCSR Read-only 0x0

0x001C Reserved – – –

0x0020 Main Oscillator Register CKGR_MOR ReadWrite 0x0

0x0024 Main Clock Frequency Register CKGR_MCFR Read-only -

0x0028 PLL A Register CKGR_PLLAR ReadWrite 0x3F00

0x002C PLL B Register CKGR_PLLBR ReadWrite 0x3F00

0x0030 Master Clock Register PMC_MCKR Read/Write 0x00

0x0034 Reserved – – –

0x0038 Reserved – – –

0x003C Reserved – – –

0x0040 Programmable Clock 0 Register PMC_PCK0 Read/Write 0x0

0x0044 Programmable Clock 1 Register PMC_PCK1 Read/Write 0x0

0x0048 Programmable Clock 2 Register PMC_PCK2 Read/Write 0x0

0x004C Programmable Clock 3 Register PMC_PCK3 Read/Write 0x0

0x0050 Reserved – – –

0x0054 Reserved – – –

0x0058 Reserved – – –

0x005C Reserved – – –

0x0060 Interrupt Enable Register PMC_IER Write-only --

0x0064 Interrupt Disable Register PMC_IDR Write-only --

0x0068 Status Register PMC_SR Read-only --

0x006C Interrupt Mask Register PMC_IMR Read-only 0x0

141

AT91RM3400

1790A–ATARM–11/03

PMC System Clock Enable Register
Register Name: PMC_SCER

Access Type: Write-only

• PCK: Processor Clock Enable

0 = No effect.

1 = Enables the Processor Clock.

• UDP: USB Device Port Clock Enable

0 = No effect.

1 = Enables the 48 MHz clock of the USB Device Port.

• MCKUDP: USB Device Port Master Clock Automatic Disable on Suspend Enable

0 = No effect.

1 = Enables the automatic disable of the Master Clock of the USB Device Port when a suspend condition occurs.

• UHP: USB Host Port Clock Enable

0 = No effect.

1 = Enables the 48 MHz clock of the USB Host Port.

• PCK0...PCK3: Programmable Clock Output Enable

0 = No effect.

1 = Enables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – UHP – MCKUDP UDP PCK

142 AT91RM3400
1790A–ATARM–11/03

PMC System Clock Disable Register
Register Name: PMC_SCDR

Access Type: Write-only

• PCK: Processor Clock Disable

0 = No effect.

1 = Disables the Processor Clock.

• UDP: USB Device Port Clock Disable

0 = No effect.

1 = Disables the 48 MHz clock of the USB Device Port.

• MCKUDP: USB Device Port Master Clock Automatic Disable on Suspend Disable

0 = No effect.

1 = Disables the automatic disable of the Master Clock of the USB Device Port when a suspend condition occurs.

• UHP: USB Host Port Clock Disable

0 = No effect.

1 = Disables the 48 MHz clock of the USB Host Port.

• PCK0...PCK3: Programmable Clock Output Disable

0 = No effect.

1 = Disables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – UHP – MCKUDP UDP PCK

143

AT91RM3400

1790A–ATARM–11/03

PMC System Clock Status Register
Register Name: PMC_SCSR

Access Type: Read-only

• PCK: Processor Clock Status

0 = The Processor Clock is disabled.

1 = The Processor Clock is enabled.

• UDP: USB Device Port Clock Status

0 = The 48 MHz clock of the USB Device Port is disabled.

1 = The 48 MHz clock of the USB Device Port is enabled.

• MCKUDP: USB Device Port Master Clock Automatic Disable on Suspend Status

0 = The automatic disable of the Master clock of the USB Device Port when suspend condition occurs is disabled.

1 = The automatic disable of the Master clock of the USB Device Port when suspend condition occurs is enabled.

• UHP: USB Host Port Clock Status

0 = The 48 MHz clock of the USB Host Port is disabled.

1 = The 48 MHz clock of the USB Host Port is enabled.

• PCK0...PCK3: Programmable Clock Output Status

0 = The corresponding Programmable Clock output is disabled.

1 = The corresponding Programmable Clock output is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – UHP – MCKUDP UDP PCK

144 AT91RM3400
1790A–ATARM–11/03

PMC Peripheral Clock Enable Register
Register Name: PMC_PCER

Access Type: Write-only

• PID2...PID31: Peripheral Clock Enable

0 = No effect.

1 = Enables the corresponding peripheral clock.

PMC Peripheral Clock Disable Register
Register Name: PMC_PCDR

Access Type: Write-only

• PID2...PID31: Peripheral Clock Disable

0 = No effect.

1 = Disables the corresponding peripheral clock.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –

145

AT91RM3400

1790A–ATARM–11/03

PMC Peripheral Clock Status Register
Register Name: PMC_PCSR

Access Type: Read-only

• PID2...PID31: Peripheral Clock Status

0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –

146 AT91RM3400
1790A–ATARM–11/03

PMC Clock Generator Main Oscillator Register
Register Name: CKGR_MOR
Access Type: Read/Write

• MOSCEN: Main Oscillator Enable

0 = The Main Oscillator is disabled. Main Clock is the signal connected on XIN.

1 = The Main Oscillator is enabled. A crystal must be connected between XIN and XOUT.

• OSCOUNT: Main Oscillator Start-up Time

Specifies the number of Slow Clock cycles for the Main Oscillator start-up time.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
OSCOUNT

7 6 5 4 3 2 1 0
– – – – – – - MOSCEN

147

AT91RM3400

1790A–ATARM–11/03

PMC Clock Generator Main Clock Frequency Register
Register Name: CKGR_MCFR
Access Type: Read-only

• MAINF: Main Clock Frequency

Gives the number of Main Clock cycles within 16 Slow Clock periods.

• MAINRDY: Main Clock Ready

0 = MAINF value is not valid or the Main Oscillator is disabled.

1 = The Main Oscillator has been enabled previously and MAINF value is available.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – MAINRDY

15 14 13 12 11 10 9 8
MAINF

7 6 5 4 3 2 1 0
MAINF

148 AT91RM3400
1790A–ATARM–11/03

PMC Clock Generator PLL A Register
Register Name: CKGR_PLLAR
Access Type: Read/Write

Possible limitations on PLLA input frequencies and multiplier factors should be checked before using the Clock Generator.

• DIVA: Divider A

• PLLACOUNT: PLL A Counter

Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

• OUTA: PLLA Clock Frequency Range

• MULA: PLL A Multiplier

0 = The PLL A is deactivated.

1 up to 2047 = The PLLA Clock frequency is the PLLA input frequency multiplied by MULA + 1.

31 30 29 28 27 26 25 24
– – 1 – – MULA

23 22 21 20 19 18 17 16
MULA

15 14 13 12 11 10 9 8
OUTA PLLACOUNT

7 6 5 4 3 2 1 0
DIVA

DIVA Divider Selected

0 Divider output is 0

1 Divider is bypassed

2 - 255 Divider output is the Main Clock divided by DIVA.

OUTA PLLA Frequency Output Range

0 0 80 MHz to 160 MHz

0 1 Reserved

1 0 150 MHz to 240 MHz

1 1 Reserved

149

AT91RM3400

1790A–ATARM–11/03

PMC Clock Generator PLL B Register
Register Name: CKGR_PLLBR
Access Type: Read/Write

• DIVB: Divider B

• PLLBCOUNT: PLL B Counter

Specifies the number of slow clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

• OUTB: PLLB Clock Frequency Range

• MULB: PLL B Multiplier

0 = The PLL B is deactivated.

1 up to 2047 = The PLLB Clock frequency is the PLL B input frequency multiplied by MULB + 1.

• USB_96M: Divider by 2 Enable (only on ARM9-based Systems)

0 = USB ports clocks are PLLB Clock, therefore the PMC Clock Generator must be programmed for the PLLB Clock to be
48 MHz.

1 = USB ports clocks are PLLB Clock divided by 2, therefore the PMC Clock Generator must be programmed for the PLLB
Clock to be 96 MHz.

31 30 29 28 27 26 25 24
– – – USB_96M – MULB

23 22 21 20 19 18 17 16
MULB

15 14 13 12 11 10 9 8
OUTB PLLBCOUNT

7 6 5 4 3 2 1 0
DIVB

DIVB Divider Selected

0 Divider output is 0

1 Divider is bypassed

2 - 255 Divider output is the selected clock divided by DIVB.

OUTB PLLB Clock Frequency Range

0 0 80 MHz to 160 MHz

0 1 Reserved

1 0 150 MHz to 240 MHz

1 1 Reserved

150 AT91RM3400
1790A–ATARM–11/03

PMC Master Clock Register
Register Name: PMC_MCKR

Access Type: Read/Write

Note: Value to be written in PMC_MCKR must not be the same as current value in PMC_MCKR.

• CSS: Master Clock Selection

• PRES: Master Clock Prescaler

• MDIV: Master Clock Division (on ARM9-based systems only)

0 = The Master Clock and the Processor Clock are the same.

1 = The Processor Clock is twice as fast as the Master Clock.

2 = The Processor Clock is three times faster than the Master Clock.

3 = The Processor Clock is four times faster than the Master Clock.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – MDIV

7 6 5 4 3 2 1 0

– – PRES CSS

CSS Clock Source Selection

0 0 Slow Clock is selected

0 1 Main Clock is selected

1 0 PLL A Clock is selected

1 1 PLL B Clock is selected

PRES Master Clock

0 0 0 Selected clock

0 0 1 Selected clock divided by 2

0 1 0 Selected clock divided by 4

0 1 1 Selected clock divided by 8

1 0 0 Selected clock divided by 16

1 0 1 Selected clock divided by 32

1 1 0 Selected clock divided by 64

1 1 1 Reserved

151

AT91RM3400

1790A–ATARM–11/03

PMC Programmable Clock Register 0 to 3
Register Name: PMC_PCK0 - PMC-PCK3

Access Type: Read/Write

• CSS: Master Clock Selection

• PRES: Programmable Clock Prescaler

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – PRES CSS

CSS Clock Source Selection

0 0 Slow Clock is selected

0 1 Main Clock is selected

1 0 PLL A Clock is selected

1 1 PLL B Clock is selected

PRES Master Clock

0 0 0 Selected clock

0 0 1 Selected clock divided by 2

0 1 0 Selected clock divided by 4

0 1 1 Selected clock divided by 8

1 0 0 Selected clock divided by 16

1 0 1 Selected clock divided by 32

1 1 0 Selected clock divided by 64

1 1 1 Reserved

152 AT91RM3400
1790A–ATARM–11/03

PMC Interrupt Enable Register
Register Name: PMC_IER

Access Type: Write-only

• MOSCS: Main Oscillator Status

• LOCKA: PLL A Lock

• LOCKB: PLL B Lock

• MCKRDY: Master Clock Ready

• PCK0RDY - PCK3RDY: Programmable Clock Ready

0 = No effect.

1 = Enables the corresponding interrupt.

PMC Interrupt Disable Register
Register Name: PMC_IDR

Access Type: Write-only

• MOSCS: Main Oscillator Status

• LOCKA: PLL A Lock

• LOCKB: PLL B Lock

• MCKRDY: Master Clock Ready

• PCK0RDY - PCK3RDY: Programmable Clock Ready

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3RDY PCK2RDY PCK1RDY PCK0RDY

7 6 5 4 3 2 1 0

– – – – MCKRDY LOCKB LOCKA MOSCS

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3RDY PCK2RDY PCK1RDY PCK0RDY

7 6 5 4 3 2 1 0

– – – – MCKRDY LOCKB LOCKA MOSCS

153

AT91RM3400

1790A–ATARM–11/03

PMC Status Register
Register Name: PMC_SR

Access Type: Read-only

• MOSCS: MOSCS Flag Status

0 = Main oscillator is not stabilized.

1 = Main oscillator is stabilized.

• LOCKA: PLLA Lock Status

0 = PLLL A is not locked

1 = PLL A is locked.

• LOCKB: PLLB Lock Status

0 = PLL B is not locked.

1 = PLL B is locked.

• MCKRDY: Master Clock Status

0 = MCK is not ready.

1 = MCK is ready.

• PCK0RDY - PCK3RDY: Programmable Clock Ready Status

0 = Programmable Clock 0 to 3 is not ready.

1 = Programmable Clock 0 to 3 is ready.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3RDY PCK2RDY PCK1RDY PCK0RDY

7 6 5 4 3 2 1 0

– – – – MCKRDY LOCKB LOCKA MOSCS

154 AT91RM3400
1790A–ATARM–11/03

PMC Interrupt Mask Register
Register Name: PMC_IMR

Access Type: Read-only

• MOSCS: Main Oscillator Status

• LOCKA: PLL A Lock

• LOCKB: PLL B Lock

• MCKRDY: Master Clock Ready

• PCK0RDY - PCK3RDY: Programmable Clock Ready

• MOSCS: MOSCS Interrupt Mask

0 = The corresponding interrupt is enabled.

1 = The corresponding interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3RDY PCK2RDY PCK1RDY PCK0RDY

7 6 5 4 3 2 1 0

– – – – MCKRDY LOCKB LOCKA MOSCS

155

AT91RM3400

1790A–ATARM–11/03

System Timer (ST)

Overview The System Timer (ST) module integrates three different free-running timers:

• A Period Interval Timer (PIT) that sets the time base for an operating system.

• A Watchdog Timer (WDT) with system reset capabilities in case of software deadlock.

• A Real-Time Timer (RTT) counting elapsed seconds.

These timers count using the Slow Clock provided by the Power Management Controller. Typ-
ically, this clock has a frequency of 32.768 kHz, but the System Timer might be configured to
support another frequency.

The System Timer provides an interrupt line connected to one of the sources of the Advanced
Interrupt Controller (AIC). Interrupt handling requires programming the AIC before configuring
the System Timer. Usually, the System Timer interrupt line is connected to the first interrupt
source line and shares this entry with the Debug Unit (DBGU) and the Real Time Clock (RTC).
This sharing requires the programmer to determine the source of the interrupt when the
source 1 is triggered.

Important features of the System Timer include:

• One Period Interval Timer, 16-bit Programmable Counter

• One Watchdog Timer, 16-bit Programmable Counter

• One Real-time Timer, 20-bit Free-running Counter

• Interrupt Generation on Event

Block Diagram Figure 47. System Timer Block Diagram

Application
Block Diagram

Figure 48. Application Block Diagram

System Timer

Watchdog Timer

APB

NWDOVFPower
Management

Controller

STIRQ

SLCK

Advanced Interrupt Controller

Real-Time Timer

Periodic Interval Timer

OS or RTOS
Scheduler

RTTPIT WDT

Date, Time
and Alarm
Manager

System Survey
Manager

156 AT91RM3400
1790A–ATARM–11/03

Product
Dependencies

Power
Management

The System Timer is continuously clocked at 32768 Hz. The power management controller
has no effect on the system timer behavior.

Interrupt Sources The System Timer interrupt is generally connected to the source 1 of the Advanced Interrupt
Controller. This interrupt line is the result of the OR-wiring of the system peripheral interrupt
lines (System Timer, Real Time Clock, Power Management Controller, Memory Controller).
When a system interrupt happens, the service routine must first determine the cause of the
interrupt. This is accomplished by reading successively the status registers of the above men-
tioned system peripherals.

Watchdog
Overflow

The System Timer is capable of driving the NWDOVF pin. This pin might be implemented or
not in a product. When it is implemented, this pin might or not be multiplexed on the PIO Con-
trollers even though it is recommended to dedicate a pin to the watchdog function. If the
NWDOVF is multiplexed on a PIO Controller, this last should be first programmed to assign
the pin to the watchdog function before using the pin as NWDOVF.

When it is not implemented, programming the associated bits and registers has no effect on
the behavior of the System Timer.

Functional
Description

System Timer
Clock

The System Timer uses only the SLCK clock so that it is capable to provide periodic, watch-
dog, second change or alarm interrupt even if the Power Management Controller is
programmed to put the product in Slow Clock Mode. If the product has the capability to back
up the Slow Clock oscillator and the System Timer, the System Timer can continue to operate.

Period Interval
Timer (PIT)

The Period Interval Timer can be used to provide periodic interrupts for use by operating sys-
tems. The reset value of the PIT is 0 corresponding to the maximum value. It is built around a
16-bit down counter, which is preloaded by a value programmed in ST_PIMR (Period Interval
Mode Register). When the PIT counter reaches 0, the bit PITS is set in ST_SR (Status Regis-
ter), and an interrupt is generated if it is enabled.

The counter is then automatically reloaded and restarted. Writing to the ST_PIMR at any time
immediately reloads and restarts the down counter with the new programmed value.

Warning: If ST_PIMR is programmed with a period less or equal to the current MCK period,
the update of the PITS status bit and its associated interrupt generation are unpredictable.

Figure 49. Period Interval Timer

16-bit
Down Counter

SLCK
Slow Clock

PITS

PIV

157

AT91RM3400

1790A–ATARM–11/03

Watchdog Timer
(WDT)

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped
in a deadlock. It is built around a 16-bit down counter loaded with the value defined in
ST_WDMR (Watchdog Mode Register).

At reset, the value of the ST_WDMR is 0x00020000, corresponding to the maximum value of
the counter. The watchdog overflow signal is tied low during 8 slow clock cycles when a
watchdog overflow occurs (EXTEN bit set in ST_WDMR).

It uses the Slow Clock divided by 128 to establish the maximum watchdog period to be 256
seconds (with a typical slow clock of 32.768 kHz).

In normal operation, the user reloads the Watchdog at regular intervals before the timer over-
flow occurs, by setting the bit WDRST in the ST_CR (Control Register).

If an overflow does occur, the watchdog timer:

• Sets the WDOVF bit in ST_SR (Status Register), from which an interrupt can be
generated.

• Generates a pulse for 8 slow clock cycles on the external signal watchdog overflow if the
bit EXTEN in ST_WDMR is set.

• Generates an internal reset if the parameter RSTEN in ST_WDMR is set.

• Reloads and restarts the down counter.

Writing the ST_WDMR does not reload or restart the down counter. When the ST_CR is writ-
ten the watchdog counter is immediately reloaded from ST_WDMR and restarted and the
Slow Clock 128 divider is also immediately reset and restarted.

Figure 50. Watchdog Timer

Real-time Timer
(RTT)

The Real-Time Timer is used to count elapsed seconds. It is built around a 20-bit counter fed
by Slow Clock divided by a programmable value. At reset, this value is set to 0x8000, corre-
sponding to feeding the real-time counter with a 1 Hz signal when the Slow Clock is 32.768
Hz. The 20-bit counter can count up to 1048576 seconds, corresponding to more than 12
days, then roll over to 0.

The Real-Time Timer value can be read at any time in the register ST_CRTR (Current Real-
time Register). As this value can be updated asynchronously to the master clock, it is advis-
able to read this register twice at the same value to improve accuracy of the returned value.

This current value of the counter is compared with the value written in the alarm register
ST_RTAR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
TC_SR is set. The alarm register is set to its maximum value, corresponding to 0, after a reset.

The bit RTTINC in ST_SR is set each time the 20-bit counter is incremented. This bit can be
used to start an interrupt, or generate a one-second signal.

SLCK
1/128

WV

WDRST

16-bit Down
Counter

RSTEN

Internal Reset

EXTEN

NWDOVF

WDOVF Status

158 AT91RM3400
1790A–ATARM–11/03

Writing the ST_RTMR immediately reloads and restarts the clock divider with the new pro-
grammed value. This also resets the 20-bit counter.

Warning: If RTPRES is programmed with a period less or equal to the current MCK period, the update of
the RTTINC and ALMS status bits and their associated interrupt generation are unpredictable.

Figure 51. Real Time Timer

SLCK

RTPRES

RTTINC

ALMS

16-bit
Divider

20-bit
Counter

=

ALMV

159

AT91RM3400

1790A–ATARM–11/03

System Timer (ST) User Interface

ST Control Register
Register Name: ST_CR

Access Type: Write-only

• WDRST: Watchdog Timer Restart

0 = No effect.

1 = Reload the start-up value in the watchdog timer.

Table 32. System Timer Registers

Offset Register Name Access Reset Value

0x0000 Control Register ST_CR Write-only –

0x0004 Period Interval Mode Register ST_PIMR Read/Write 0x00000000

0x0008 Watchdog Mode Register ST_WDMR Read/Write 0x00020000

0x000C Real-time Mode Register ST_RTMR Read/Write 0x00008000

0x0010 Status Register ST_SR Read-only –

0x0014 Interrupt Enable Register ST_IER Write-only –

0x0018 Interrupt Disable Register ST_IDR Write-only –

0x001C Interrupt Mask Register ST_IMR Write-only 0x0

0x0020 Real-time Alarm Register ST_RTAR Read/Write 0x0

0x0024 Current Real-time Register ST_CRTR Read-only 0x0

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – WDRST

160 AT91RM3400
1790A–ATARM–11/03

ST Period Interval Mode Register
Register Name: ST_PIMR

Access Type: Read/Write

• PIV: Period Interval Value

Defines the value loaded in the 16-bit counter of the period interval timer. The maximum period is obtained by programming
PIV at 0x0 corresponding to 65536 slow clock cycles.

ST Watchdog Mode Register
Register Name: ST_WDMR

Access Type: Read/Write

• WDV: Watchdog Counter Value

Defines the value loaded in the 16-bit counter. The maximum period is obtained by programming WDV to 0x0 correspond-
ing to 65536 x 128 slow clock cycles.

• RSTEN: Reset Enable

0 = No reset is generated when a watchdog overflow occurs.

1 = An internal reset is generated when a watchdog overflow occurs.

• EXTEN: External Signal Assertion Enable

0 = The watchdog_overflow is not tied low when a watchdog overflow occurs.

1 = The watchdog_overflow is tied low during 8 slow clock cycles when a watchdog overflow occurs.

– – – – – – – –

– – – – – – – –

PIV

PIV

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – EXTEN RSTEN

15 14 13 12 11 10 9 8
WDV

7 6 5 4 3 2 1 0
WDV

161

AT91RM3400

1790A–ATARM–11/03

ST Real-Time Mode Register
Register Name: ST_RTMR

Access Type: Read/Write

• RTPRES: Real-time Timer Prescaler Value

Defines the number of SLCK periods required to increment the real-time timer. The maximum period is obtained by pro-
gramming RTPRES to 0x0 corresponding to 65536 slow clock cycles.

ST Status Register
Register Name: ST_SR

Access Type: Read-only

• PITS: Period Interval Timer Status

0 = The period interval timer has not reached 0 since the last read of the Status Register.

1 = The period interval timer has reached 0 since the last read of the Status Register.

• WDOVF: Watchdog Overflow

0 = The watchdog timer has not reached 0 since the last read of the Status Register.

1 = The watchdog timer has reached 0 since the last read of the Status Register.

• RTTINC: Real-time Timer Increment

0 = The real-time timer has not been incremented since the last read of the Status Register.

1 = The real-time timer has been incremented since the last read of the Status Register.

• ALMS: Alarm Status

0 = No alarm compare has been detected since the last read of the Status Register.

1 = Alarm compare has been detected since the last read of the Status Register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RTPRES

7 6 5 4 3 2 1 0
RTPRES

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – ALMS RTTINC WDOVF PITS

162 AT91RM3400
1790A–ATARM–11/03

ST Interrupt Enable Register
Register Name: ST_IER

Access Type: Write-only

• PITS: Period Interval Timer Status Interrupt Enable

• WDOVF: Watchdog Overflow Interrupt Enable

• RTTINC: Real-time Timer Increment Interrupt Enable

• ALMS: Alarm Status Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

ST Interrupt Disable Register
Register Name: ST_IDR

Access Type: Write-only

• PITS: Period Interval Timer Status Interrupt Disable

• WDOVF: Watchdog Overflow Interrupt Disable

• RTTINC: Real-time Timer Increment Interrupt Disable

• ALMS: Alarm Status Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – ALMS RTTINC WDOVF PITS

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – ALMS RTTINC WDOVF PITS

163

AT91RM3400

1790A–ATARM–11/03

ST Interrupt Mask Register
Register Name: ST_IMR

Access Type: Read-only

• PITS: Period Interval Timer Status Interrupt Mask

• WDOVF: Watchdog Overflow Interrupt Mask

• RTTINC: Real-time Timer Increment Interrupt Mask

• ALMS: Alarm Status Interrupt Mask

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

ST Real-time Alarm Register
Register Name: ST_RTAR

Access Type: Read/Write

• ALMV: Alarm Value

Defines the alarm value compared with the real-time timer. The maximum delay before ALMS status bit activation is
obtained by programming ALMV to 0x0 corresponding to 1048576 seconds.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – ALMS RTTINC WDOVF PITS

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – ALMV

15 14 13 12 11 10 9 8
ALMV

7 6 5 4 3 2 1 0
ALMV

164 AT91RM3400
1790A–ATARM–11/03

ST Current Real-Time Register
Register Name: ST_CRTR

Access Type: Read-only

• CRTV: Current Real-time Value

Returns the current value of the real-time timer.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – CRTV

15 14 13 12 11 10 9 8
CRTV

7 6 5 4 3 2 1 0
CRTV

165

AT91RM3400

1790A–ATARM–11/03

Real Time Clock (RTC)

Overview The Real-time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian calen-
dar, complemented by a programmable periodic interrupt. The alarm and calendar registers
are accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time for-
mat can be 24-hour mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.

Important features of the RTC include:

• Low Power Consumption

• Full Asynchronous Design

• Two Hundred Year Calendar

• Programmable Periodic Interrupt

• Alarm and Update Parallel Load

• Control of Alarm and Update Time/Calendar Data In

Block Diagram

Figure 52. RTC Block Diagram

Product
Dependencies

Power
Management

The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.

Interrupt The RTC Interrupt is connected to interrupt source 1 (IRQ1) of the advanced interrupt control-
ler. This interrupt line is due to the OR-wiring of the system peripheral interrupt lines (System
Timer, Real Time Clock, Power Management Controller, Memory Controller, etc.). When a

Bus Interface

32768 Divider TimeCrystal Oscillator: SLCK

Bus Interface

Date

RTC InterruptEntry
Control

Interrupt
Control

166 AT91RM3400
1790A–ATARM–11/03

system interrupt occurs, the service routine must first determine the cause of the interrupt.
This is done by reading the status registers of the above system peripherals successively.

Functional
Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099, a two-hundred-year Gregorian calendar achieving full
Y2K compliance.

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years, including
year 2000). This is correct up to the year 2099.

After hardware reset, the calendar is initialized to Thursday, January 1, 1998.

Reference Clock The reference clock is Slow Clock (SLCK). It can be driven by the Atmel cell OSC55 or OSC56
(or an equivalent cell) and an external 32.768 kHz crystal.

During low power modes of the processor (idle mode), the oscillator runs and power consump-
tion is critical. The crystal selection has to take into account the current consumption for power
saving and the frequency drift due to temperature effect on the circuit for time accuracy.

Timing The RTC is updated in real time at one-second intervals in normal mode for the counters of
seconds, at one-minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be cer-
tain that the value read in the RTC registers (century, year, month, date, day, hours, minutes,
seconds) are valid and stable, it is necessary to read these registers twice. If the data is the
same both times, then it is valid. Therefore, a minimum of two and a maximum of three
accesses are required.

Alarm The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

• If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.

• If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available
to the user ranging from minutes to 365/366 days.

Error Checking Verification on user interface data is performed when accessing the century, year, month,
date, day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries
such as illegal date of the month with regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag
is set in the validity register. The user can not reset this flag. It is reset as soon as an accept-
able value is programmed. This avoids any further side effects in the hardware. The same
procedure is done for the alarm.

The following checks are performed:

1. Century (check if it is in range 19 - 20)

2. Year (BCD entry check)

3. Date (check range 01 - 31)

167

AT91RM3400

1790A–ATARM–11/03

4. Month (check if it is in BCD range 01 - 12, check validity regarding “date”)

5. Day (check range 1 - 7)

6. Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag
is not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)

8. Second (check BCD and range 00 - 59)
Note: If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be

programmed and the returned value on RTC_TIME will be the corresponding 24-hour value.
The entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIME register) to
determine the range to be checked.

Updating
Time/Calendar

To update any of the time/calendar fields, the user must first stop the RTC by setting the corre-
sponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Reg-
ister. Once the bit reads 1, the user can write to the appropriate register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control
Register.

When programming the calendar fields, the time fields remain enabled. This avoids a time slip
in case the user stays in the calendar update phase for several tens of seconds or more. In
successive update operations, the user must wait at least one second after resetting the
UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these bits again. This
is done by waiting for the SEC flag in the Status Register before setting UPDTIM/UPDCAL bit.
After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

168 AT91RM3400
1790A–ATARM–11/03

Real Time Clock (RTC) User Interface

Table 33. RTC Register Mapping

Offset Register Register Name Read/Write Reset

0x00 RTC Control Register RTC_CR Read/Write 0x0

0x04 RTC Mode Register RTC_MR Read/Write 0x0

0x08 RTC Time Register RTC_TIMR Read/Write 0x0

0x0C RTC Calendar Register RTC_CALR Read/Write 0x01819819

0x10 RTC Time Alarm Register RTC_TIMALR Read/Write 0x0

0x14 RTC Calendar Alarm Register RTC_CALALR Read/Write 0x01010000

0x18 RTC Status Register RTC_SR Read only 0x0

0x1C RTC Status Clear Command Register RTC_SCCR Write only ---

0x20 RTC Interrupt Enable Register RTC_IER Write only ---

0x24 RTC Interrupt Disable Register RTC_IDR Write only ---

0x28 RTC Interrupt Mask Register RTC_IMR Read only 0x0

0x2C RTC Valid Entry Register RTC_VER Read only 0x0

169

AT91RM3400

1790A–ATARM–11/03

RTC Control Register
Name: RTC_CR

Access Type: Read/Write

• UPDTIM: Update Request Time Register

0 = No effect.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

• UPDCAL: Update Request Calendar Register

0 = No effect.

1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.

• TIMEVSEL: Time Event Selection

The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

0 = Minute change.

1 = Hour change.

2 = Every day at midnight.

3 = Every day at noon.

• CALEVSEL: Calendar Event Selection

The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL.

0 = Week change (every Monday at time 00:00:00).

1 = Month change (every 01 of each month at time 00:00:00).

2, 3 = Year change (every January 1 at time 00:00:00).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – CALEVSEL

15 14 13 12 11 10 9 8

– – – – – – TIMEVSEL

7 6 5 4 3 2 1 0

– – – – – – UPDCAL UPDTIM

170 AT91RM3400
1790A–ATARM–11/03

RTC Mode Register
Name: RTC_MR

Access Type: Read/Write

• HRMOD: 12-/24-hour Mode

0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

All non-significant bits read zero.

RTC Time Register
Name: RTC_TIMR

Access Type: Read/Write

• SEC: Current Second

The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MIN: Current Minute

The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• HOUR: Current Hour

The range that can be set is 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

• AMPM: Ante Meridiem Post Meridiem Indicator

This bit is the AM/PM indicator in 12-hour mode.

0 = AM.

1 = PM.

All non-significant bits read zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – HRMOD

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– AMPM HOUR

15 14 13 12 11 10 9 8

– MIN

7 6 5 4 3 2 1 0

– SEC

171

AT91RM3400

1790A–ATARM–11/03

RTC Calendar Register
Name: RTC_CALR

Access Type: Read/Write

• CENT: Current Century

The range that can be set is 19 - 20 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• YEAR: Current Year

The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MONTH: Current Month

The range that can be set is 01 - 12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• DAY: Current Day

The range that can be set is 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

• DATE: Current Date

The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

31 30 29 28 27 26 25 24

– – DATE

23 22 21 20 19 18 17 16

DAY MONTH

15 14 13 12 11 10 9 8

YEAR

7 6 5 4 3 2 1 0

– CENT

172 AT91RM3400
1790A–ATARM–11/03

RTC Time Alarm Register
Name: RTC_TIMALR

Access Type: Read/Write

• SEC: Second Alarm

This field is the alarm field corresponding to the BCD-coded second counter.

• SECEN: Second Alarm Enable

0 = The second-matching alarm is disabled.

1 = The second-matching alarm is enabled.

• MIN: Minute Alarm

This field is the alarm field corresponding to the BCD-coded minute counter.

• MINEN: Minute Alarm Enable

0 = The minute-matching alarm is disabled.

1 = The minute-matching alarm is enabled.

• HOUR: Hour Alarm

This field is the alarm field corresponding to the BCD-coded hour counter.

• AMPM: AM/PM Indicator

This field is the alarm field corresponding to the BCD-coded hour counter.

• HOUREN: Hour Alarm Enable

0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

HOUREN AMPM HOUR

15 14 13 12 11 10 9 8

MINEN MIN

7 6 5 4 3 2 1 0

SECEN SEC

173

AT91RM3400

1790A–ATARM–11/03

RTC Calendar Alarm Register
Name: RTC_CALALR

Access Type: Read/Write

• MONTH: Month Alarm

This field is the alarm field corresponding to the BCD-coded month counter.

• MTHEN: Month Alarm Enable

0 = The month-matching alarm is disabled.

1 = The month-matching alarm is enabled.

• DATE: Date Alarm

This field is the alarm field corresponding to the BCD-coded date counter.

• DATEEN: Date Alarm Enable

0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

31 30 29 28 27 26 25 24

DATEEN – DATE

23 22 21 20 19 18 17 16

MTHEN – – MONTH

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

174 AT91RM3400
1790A–ATARM–11/03

RTC Status Register
Name: RTC_SR

Access Type: Read-only

• ACKUPD: Acknowledge for Update

0 = Time and calendar registers cannot be updated.

1 = Time and calendar registers can be updated.

• ALARM: Alarm Flag

0 = No alarm matching condition occurred.

1 = An alarm matching condition has occurred.

• SEC: Second Event

0 = No second event has occurred since the last clear.

1 = At least one second event has occurred since the last clear.

• TIMEV: Time Event

0 = No time event has occurred since the last clear.

1 = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CTRL (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).

• CALEV: Calendar Event

0 = No calendar event has occurred since the last clear.

1 = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALEV TIMEV SEC ALARM ACKUPD

175

AT91RM3400

1790A–ATARM–11/03

RTC Status Clear Command Register
Name: RTC_SCCR

Access Type: Write-only

• Status Flag Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALCLR TIMCLR SECCLR ALRCLR ACKCLR

176 AT91RM3400
1790A–ATARM–11/03

RTC Interrupt Enable Register
Name: RTC_IER

Access Type: Write-only

• ACKEN: Acknowledge Update Interrupt Enable

0 = No effect.

1 = The acknowledge for update interrupt is enabled.

• ALREN: Alarm Interrupt Enable

0 = No effect.

1 = The alarm interrupt is enabled.

• SECEN: Second Event Interrupt Enable

0 = No effect.

1 = The second periodic interrupt is enabled.

• TIMEN: Time Event Interrupt Enable

0 = No effect.

1 = The selected time event interrupt is enabled.

• CALEN: Calendar Event Interrupt Enable

0 = No effect.

• 1 = The selected calendar event interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALEN TIMEN SECEN ALREN ACKEN

177

AT91RM3400

1790A–ATARM–11/03

RTC Interrupt Disable Register
Name: RTC_IDR

Access Type: Write-only

• ACKDIS: Acknowledge Update Interrupt Disable

0 = No effect.

1 = The acknowledge for update interrupt is disabled.

• ALRDIS: Alarm Interrupt Disable

0 = No effect.

1 = The alarm interrupt is disabled.

• SECDIS: Second Event Interrupt Disable

0 = No effect.

1 = The second periodic interrupt is disabled.

• TIMDIS: Time Event Interrupt Disable

0 = No effect.

1 = The selected time event interrupt is disabled.

• CALDIS: Calendar Event Interrupt Disable

0 = No effect.

1 = The selected calendar event interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALDIS TIMDIS SECDIS ALRDIS ACKDIS

178 AT91RM3400
1790A–ATARM–11/03

RTC Interrupt Mask Register
Name: RTC_IMR

Access Type: Read-only

• ACK: Acknowledge Update Interrupt Mask

0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

• ALR: Alarm Interrupt Mask

0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

• SEC: Second Event Interrupt Mask

0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

• TIM: Time Event Interrupt Mask

0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

• CAL: Calendar Event Interrupt Mask

0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CAL TIM SEC ALR ACK

179

AT91RM3400

1790A–ATARM–11/03

RTC Valid Entry Register
Name: RTC_VER

Access Type: Read-only

• NVTIM: Non valid Time

0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 = RTC_TIMR has contained invalid data since it was last programmed.

• NVCAL: Non valid Calendar

0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

• NVTIMALR: Non valid Time Alarm

0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

• NVCALALR: Non valid Calendar Alarm

0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 = RTC_CALALR has contained invalid data since it was last programmed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – NVCALAR NVTIMALR NVCAL NVTIM

180 AT91RM3400
1790A–ATARM–11/03

181

AT91RM3400

1790A–ATARM–11/03

Debug Unit (DBGU)

Overview The Debug Unit provides a single entry point from the processor for access to all the debug
capabilities of Atmel’s ARM-based systems.

The Debug Unit features a two-pin UART that can be used for several debug and trace pur-
poses and offers an ideal medium for in-situ programming solutions and debug monitor
communications. Moreover, the association with two peripheral data controller channels per-
mits packet handling for these tasks with processor time reduced to a minimum.

The Debug Unit also makes the Debug Communication Channel (DCC) signals provided by
the In-circuit Emulator of the ARM processor visible to the software. These signals indicate the
status of the DCC read and write registers and generate an interrupt to the ARM processor,
making possible the handling of the DCC under interrupt control.

Chip Identifier registers permit recognition of the device and its revision. These registers
inform as to the sizes and types of the on-chip memories, as well as the set of embedded
peripherals.

Finally, the Debug Unit features a Force NTRST capability that enables the software to decide
whether to prevent access to the system via the In-circuit Emulator. This permits protection of
the code, stored in ROM.

Important features of the Debug Unit are:

• System Peripheral to Facilitate Debug of Atmel’s ARM-based Systems

• Composed of Four Functions

– Two-pin UART

– Debug Communication Channel (DCC) Support

– Chip ID Registers

– ICE Access Prevention

• Two-pin UART

– Implemented Features are 100% Compatible with the Standard Atmel USART

– Independent Receiver and Transmitter with a Common Programmable Baud Rate
Generator

– Even, Odd, Mark or Space Parity Generation

– Parity, Framing and Overrun Error Detection

– Automatic Echo, Local Loopback and Remote Loopback Channel Modes

– Interrupt Generation

– Support for Two PDC Channels with Connection to Receiver and Transmitter

• Debug Communication Channel Support

– Offers Visibility of COMMRX and COMMTX Signals from the ARM Processor

– Interrupt Generation

• Chip ID Registers

– Identification of the Device Revision, Sizes of the Embedded Memories, Set of
Peripherals

• ICE Access Prevention

– Enables Software to Prevent System Access Through the ARM Processor’s ICE

– Prevention is Made by Asserting the NTRST Line of the ARM Processor’s ICE

182 AT91RM3400
1790A–ATARM–11/03

Block Diagram

Figure 53. Debug Unit Functional Block Diagram

Note: 1. If NTRST pad is not bonded out, it is connected to NRST.

Figure 54. Debug Unit Application Example

Table 34. Debug Unit Pin Description

Pin Name Description Type

DRXD Debug Receive Data Input

DTXD Debug Transmit Data Output

Debug UnitAPB

Peripheral Data Controller

Baud Rate
Generator

DCC
Handler

ICE
Access
Handler

Transmit

Receive

Chip ID

Interrupt
Control

Peripheral
Bridge

Parallel
Input/
Output

DTXD

DRXD

Power
Management

Controller

ARM
Processor

Advanced
Interrupt

Controller

Force NTRST

NTRST(1)

Other
System
Interrupt
Sources

Source 1

DBGU Interupt

COMMRX

COMMTX

MCK

nTRST

Debug Unit

RS232 Drivers

Programming Tool Trace Console Debug Console

Boot Program Debug Monitor Trace Manager

183

AT91RM3400

1790A–ATARM–11/03

Product
Dependencies

I/O Lines Depending on product integration, the Debug Unit pins may be multiplexed with PIO lines. In
this case, the programmer must first configure the corresponding PIO Controller to enable I/O
lines operations of the Debug Unit.

Power
Management

Depending on product integration, the Debug Unit clock may be controllable through the
Power Management Controller. In this case, the programmer must first configure the PMC to
enable the Debug Unit clock. Usually, the peripheral identifier used for this purpose is 1.

Interrupt Source Depending on product integration, the Debug Unit interrupt line is connected to one of the
interrupt sources of the Advanced Interrupt Controller. Interrupt handling requires program-
ming of the AIC before configuring the Debug Unit. Usually, the Debug Unit interrupt line
connects to the interrupt source 1 of the AIC, which may be shared with the real-time clock,
the system timer interrupt lines and other system peripheral interrupts, as shown in Figure 53.
This sharing requires the programmer to determine the source of the interrupt when the
source 1 is triggered.

UART
Operations

The Debug Unit operates as a UART, (asynchronous mode only) and supports only 8-bit char-
acter handling (with parity). It has no clock pin.

The Debug Unit's UART is made up of a receiver and a transmitter that operate independently,
and a common baud rate generator. Receiver timeout and transmitter time guard are not
implemented. However, all the implemented features are compatible with those of a standard
USART.

Baud Rate
Generator

The baud rate generator provides the bit period clock named baud rate clock to both the
receiver and the transmitter.

The baud rate clock is the master clock divided by 16 times the value (CD) written in
DBGU_BRGR (Baud Rate Generator Register). If DBGU_BRGR is set to 0, the baud rate
clock is disabled and the Debug Unit's UART remains inactive. The maximum allowable baud
rate is Master Clock divided by 16. The minimum allowable baud rate is Master Clock divided
by (16 x 65536).

Baud Rate MCK
16 CD×
---------------------=

184 AT91RM3400
1790A–ATARM–11/03

Figure 55. Baud Rate Generator

Receiver

Receiver Reset,
Enable and Disable

After device reset, the Debug Unit receiver is disabled and must be enabled before being
used. The receiver can be enabled by writing the control register DBGU_CR with the bit RXEN
at 1. At this command, the receiver starts looking for a start bit.

The programmer can disable the receiver by writing DBGU_CR with the bit RXDIS at 1. If the
receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already
detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its
operation.

The programmer can also put the receiver in its reset state by writing DBGU_CR with the bit
RSTRX at 1. In doing so, the receiver immediately stops its current operations and is disabled,
whatever its current state. If RSTRX is applied when data is being processed, this data is lost.

Start Detection and
Data Sampling

The Debug Unit only supports asynchronous operations, and this affects only its receiver. The
Debug Unit receiver detects the start of a received character by sampling the DRXD signal
until it detects a valid start bit. A low level (space) on DRXD is interpreted as a valid start bit if
it is detected for more than 7 cycles of the sampling clock, which is 16 times the baud rate.
Hence, a space that is longer than 7/16 of the bit period is detected as a valid start bit. A space
which is 7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid
start bit.

When a valid start bit has been detected, the receiver samples the DRXD at the theoretical
midpoint of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit
period) so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first
sampling point is therefore 24 cycles (1.5-bit periods) after the falling edge of the start bit was
detected.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

Figure 56. Start Bit Detection

MCK 16-bit Counter

0

Baud Rate
Clock

CD

CD

OUT

Divide
by 16

0

1

>1

Receiver
Sampling Clock

Sampling Clock

DRXD

True Start
Detection

D0

Baud Rate
Clock

185

AT91RM3400

1790A–ATARM–11/03

Figure 57. Character Reception

Receiver Ready When a complete character is received, it is transferred to the DBGU_RHR and the RXRDY
status bit in DBGU_SR (Status Register) is set. The bit RXRDY is automatically cleared when
the receive holding register DBGU_RHR is read.

Figure 58. Receiver Ready

Receiver Overrun If DBGU_RHR has not been read by the software (or the Peripheral Data Controller) since the
last transfer, the RXRDY bit is still set and a new character is received, the OVRE status bit in
DBGU_SR is set. OVRE is cleared when the software writes the control register DBGU_CR
with the bit RSTSTA (Reset Status) at 1.

Figure 59. Receiver Overrun

Parity Error Each time a character is received, the receiver calculates the parity of the received data bits,
in accordance with the field PAR in DBGU_MR. It then compares the result with the received
parity bit. If different, the parity error bit PARE in DBGU_SR is set at the same time the
RXRDY is set. The parity bit is cleared when the control register DBGU_CR is written with the
bit RSTSTA (Reset Status) at 1. If a new character is received before the reset status com-
mand is written, the PARE bit remains at 1.

Figure 60. Parity Error

D0 D1 D2 D3 D4 D5 D6 D7

DRXD

True Start Detection
Sampling

Parity Bit
Stop Bit

Example: 8-bit, parity enabled 1 stop

1 bit
period

0.5 bit
period

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PDRXD

Read DBGU_RHR

RXRDY

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PDRXD

RSTSTA

RXRDY

OVRE

stop stop

stopD0 D1 D2 D3 D4 D5 D6 D7 PSDRXD

RSTSTA

RXRDY

PARE

Wrong Parity Bit

186 AT91RM3400
1790A–ATARM–11/03

Receiver Framing
Error

When a start bit is detected, it generates a character reception when all the data bits have
been sampled. The stop bit is also sampled and when it is detected at 0, the FRAME (Framing
Error) bit in DBGU_SR is set at the same time the RXRDY bit is set. The bit FRAME remains
high until the control register DBGU_CR is written with the bit RSTSTA at 1.

Figure 61. Receiver Framing Error

Transmitter

Transmitter Reset,
Enable and Disable

After device reset, the Debug Unit transmitter is disabled and it must be enabled before being
used. The transmitter is enabled by writing the control register DBGU_CR with the bit TXEN at
1. From this command, the transmitter waits for a character to be written in the Transmit Hold-
ing Register DBGU_THR before actually starting the transmission.

The programmer can disable the transmitter by writing DBGU_CR with the bit TXDIS at 1. If
the transmitter is not operating, it is immediately stopped. However, if a character is being pro-
cessed into the Shift Register and/or a character has been written in the Transmit Holding
Register, the characters are completed before the transmitter is actually stopped.

The programmer can also put the transmitter in its reset state by writing the DBGU_CR with
the bit RSTTX at 1. This immediately stops the transmitter, whether or not it is processing
characters.

Transmit Format The Debug Unit transmitter drives the pin DTXD at the baud rate clock speed. The line is
driven depending on the format defined in the Mode Register and the data stored in the Shift
Register. One start bit at level 0, then the 8 data bits, from the lowest to the highest bit, one
optional parity bit and one stop bit at 1 are consecutively shifted out as shown on the following
figure. The field PARE in the mode register DBGU_MR defines whether or not a parity bit is
shifted out. When a parity bit is enabled, it can be selected between an odd parity, an even
parity, or a fixed space or mark bit.

Figure 62. Character Transmission

Transmitter Control When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in the status regis-
ter DBGU_SR. The transmission starts when the programmer writes in the Transmit Holding
Register DBGU_THR, and after the written character is transferred from DBGU_THR to the
Shift Register. The bit TXRDY remains high until a second character is written in DBGU_THR.

D0 D1 D2 D3 D4 D5 D6 D7 PSDRXD

RSTSTA

RXRDY

FRAME

Stop Bit
Detected at 0

stop

D0 D1 D2 D3 D4 D5 D6 D7

DTXD

Start
Bit

Parity
Bit

Stop
Bit

Example: Parity enabled

Baud Rate
 Clock

187

AT91RM3400

1790A–ATARM–11/03

As soon as the first character is completed, the last character written in DBGU_THR is trans-
ferred into the shift register and TXRDY rises again, showing that the holding register is
empty.

When both the Shift Register and the DBGU_THR are empty, i.e., all the characters written in
DBGU_THR have been processed, the bit TXEMPTY rises after the last stop bit has been
completed.

Figure 63. Transmitter Control

Peripheral Data
Controller

Both the receiver and the transmitter of the Debug Unit's UART are generally connected to a
Peripheral Data Controller (PDC) channel.

The peripheral data controller channels are programmed via registers that are mapped within
the Debug Unit user interface from the offset 0x100. The status bits are reported in the Debug
Unit status register DBGU_SR and can generate an interrupt.

The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of
the data in DBGU_RHR. The TXRDY bit triggers the PDC channel data transfer of the trans-
mitter. This results in a write of a data in DBGU_THR.

Test Modes The Debug Unit supports three tests modes. These modes of operation are programmed by
using the field CHMODE (Channel Mode) in the mode register DBGU_MR.

The Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the
DRXD line, it is sent to the DTXD line. The transmitter operates normally, but has no effect on
the DTXD line.

The Local Loopback mode allows the transmitted characters to be received. DTXD and DRXD
pins are not used and the output of the transmitter is internally connected to the input of the
receiver. The DRXD pin level has no effect and the DTXD line is held high, as in idle state.

The Remote Loopback mode directly connects the DRXD pin to the DTXD line. The transmit-
ter and the receiver are disabled and have no effect. This mode allows a bit-by-bit
retransmission.

DBGU_THR

Shift Register

DTXD

TXRDY

TXEMPTY

Data 0 Data 1

Data 0

Data 0

Data 1

Data 1S S PP

Write Data 0
in DBGU_THR

Write Data 1
in DBGU_THR

stopstop

188 AT91RM3400
1790A–ATARM–11/03

Figure 64. Test Modes

Receiver

Transmitter
Disabled

RXD

TXD

Receiver

Transmitter
Disabled

RXD

TXD

VDD

Disabled

Receiver

Transmitter
Disabled

RXD

TXD

Disabled

Automatic Echo

Local Loopback

Remote Loopback VDD

189

AT91RM3400

1790A–ATARM–11/03

Debug
Communication
Channel Support

The Debug Unit handles the signals COMMRX and COMMTX that come from the Debug
Communication Channel of the ARM Processor and are driven by the In-circuit Emulator.

The Debug Communication Channel contains two registers that are accessible through the
ICE Breaker on the JTAG side and through the coprocessor 0 on the ARM Processor side.

As a reminder, the following instructions are used to read and write the Debug Communication
Channel:

MRC p14, 0, Rd, c1, c0, 0

Returns the debug communication data read register into Rd

MCR p14, 0, Rd, c1, c0, 0

Writes the value in Rd to the debug communication data write register.

The bits COMMRX and COMMTX, which indicate, respectively, that the read register has
been written by the debugger but not yet read by the processor, and that the write register has
been written by the processor and not yet read by the debugger, are wired on the two highest
bits of the status register DBGU_SR. These bits can generate an interrupt. This feature per-
mits handling under interrupt a debug link between a debug monitor running on the target
system and a debugger.

Chip Identifier The Debug Unit features two chip identifier registers, DBGU_CIDR (Chip ID Register) and
DBGU_EXID (Extension ID). Both registers contain a hard-wired value that is read-only. The
first register contains the following fields:

• EXT - shows the use of the extension identifier register

• NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size

• ARCH - identifies the set of embedded peripheral

• SRAMSIZ - indicates the size of the embedded SRAM

• EPROC - indicates the embedded ARM processor

• VERSION - gives the revision of the silicon

The second register is device-dependent and reads 0 if the bit EXT is 0.

ICE Access
Prevention

The Debug Unit allows blockage of access to the system through the ARM processor's ICE
interface. This feature is implemented via the register Force NTRST (DBGU_FNR), that allows
assertion of the NTRST signal of the ICE Interface. Writing the bit FNTRST (Force NTRST) to
1 in this register prevents any activity on the TAP controller.

On standard devices, the bit FNTRST resets to 0 and thus does not prevent ICE access.

This feature is especially useful on custom ROM devices for customers who do not want their
on-chip code to be visible.

190 AT91RM3400
1790A–ATARM–11/03

Debug Unit User Interface

Table 35. Debug Unit Memory Map

Offset Register Name Access Reset Value

0x0000 Control Register DBGU_CR Write-only –

0x0004 Mode Register DBGU_MR Read/Write 0x0

0x0008 Interrupt Enable Register DBGU_IER Write-only –

0x000C Interrupt Disable Register DBGU_IDR Write-only –

0x0010 Interrupt Mask Register DBGU_IMR Read-only 0x0

0x0014 Status Register DBGU_SR Read-only –

0x0018 Receive Holding Register DBGU_RHR Read-only 0x0

0x001C Transmit Holding Register DBGU_THR Write-only –

0x0020 Baud Rate Generator Register DBGU_BRGR Read/Write 0x0

0x0024 - 0x003C Reserved – – –

0X0040 Chip ID Register DBGU_CIDR Read-only –

0X0044 Chip ID Extension Register DBGU_EXID Read-only –

0X0048 Force NTRST Register DBGU_FNR Read/Write 0x0

0x004C - 0x00FC Reserved – – –

0x0100 - 0x0124 PDC Area – – –

191

AT91RM3400

1790A–ATARM–11/03

Debug Unit Control Register
Name: DBGU_CR

Access Type: Write-only

• RSTRX: Reset Receiver

0 = No effect.

1 = The receiver logic is reset and disabled. If a character is being received, the reception is aborted.

• RSTTX: Reset Transmitter

0 = No effect.

1 = The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.

• RXEN: Receiver Enable

0 = No effect.

1 = The receiver is enabled if RXDIS is 0.

• RXDIS: Receiver Disable

0 = No effect.

1 = The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the
receiver is stopped.

• TXEN: Transmitter Enable

0 = No effect.

1 = The transmitter is enabled if TXDIS is 0.

• TXDIS: Transmitter Disable

0 = No effect.

1 = The transmitter is disabled. If a character is being processed and a character has been written the DBGU_THR and
RSTTX is not set, both characters are completed before the transmitter is stopped.

• RSTSTA: Reset Status Bits

0 = No effect.

1 = Resets the status bits PARE, FRAME and OVRE in the DBGU_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

192 AT91RM3400
1790A–ATARM–11/03

Debug Unit Mode Register
Name: DBGU_MR

Access Type: Read/Write

• PAR: Parity Type

• CHMODE: Channel Mode

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CHMODE – – PAR –

7 6 5 4 3 2 1 0

– – – – – – – –

PAR Parity Type

0 0 0 Even parity

0 0 1 Odd parity

0 1 0 Space: parity forced to 0

0 1 1 Mark: parity forced to 1

1 x x No parity

CHMODE Mode Description

0 0 Normal Mode

0 1 Automatic Echo

1 0 Local Loopback

1 1 Remote Loopback

193

AT91RM3400

1790A–ATARM–11/03

Debug Unit Interrupt Enable Register
Name: DBGU_IER

Access Type: Write-only

• RXRDY: Enable RXRDY Interrupt

• TXRDY: Enable TXRDY Interrupt

• ENDRX: Enable End of Receive Transfer Interrupt

• ENDTX: Enable End of Transmit Interrupt

• OVRE: Enable Overrun Error Interrupt

• FRAME: Enable Framing Error Interrupt

• PARE: Enable Parity Error Interrupt

• TXEMPTY: Enable TXEMPTY Interrupt

• TXBUFE: Enable Buffer Empty Interrupt

• RXBUFF: Enable Buffer Full Interrupt

• COMMTX: Enable COMMTX (from ARM) Interrupt

• COMMRX: Enable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

194 AT91RM3400
1790A–ATARM–11/03

Debug Unit Interrupt Disable Register
Name: DBGU_IDR

Access Type: Write-only

• RXRDY: Disable RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Disable End of Receive Transfer Interrupt

• ENDTX: Disable End of Transmit Interrupt

• OVRE: Disable Overrun Error Interrupt

• FRAME: Disable Framing Error Interrupt

• PARE: Disable Parity Error Interrupt

• TXEMPTY: Disable TXEMPTY Interrupt

• TXBUFE: Disable Buffer Empty Interrupt

• RXBUFF: Disable Buffer Full Interrupt

• COMMTX: Disable COMMTX (from ARM) Interrupt

• COMMRX: Disable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

195

AT91RM3400

1790A–ATARM–11/03

Debug Unit Interrupt Mask Register
Name: DBGU_IMR

Access Type: Read-only

• RXRDY: Mask RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Mask End of Receive Transfer Interrupt

• ENDTX: Mask End of Transmit Interrupt

• OVRE: Mask Overrun Error Interrupt

• FRAME: Mask Framing Error Interrupt

• PARE: Mask Parity Error Interrupt

• TXEMPTY: Mask TXEMPTY Interrupt

• TXBUFE: Mask TXBUFE Interrupt

• RXBUFF: Mask RXBUFF Interrupt

• COMMTX: Mask COMMTX Interrupt

• COMMRX: Mask COMMRX Interrupt

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

196 AT91RM3400
1790A–ATARM–11/03

Debug Unit Status Register
Name: DBGU_SR

Access Type: Read-only

• RXRDY: Receiver Ready

0 = No character has been received since the last read of the DBGU_RHR or the receiver is disabled.

1 = At least one complete character has been received, transferred to DBGU_RHR and not yet read.

• TXRDY: Transmitter Ready

0 = A character has been written to DBGU_THR and not yet transferred to the Shift Register, or the transmitter is disabled.

1 = There is no character written to DBGU_THR not yet transferred to the Shift Register.

• ENDRX: End of Receiver Transfer

0 = The End of Transfer signal from the receiver Peripheral Data Controller channel is inactive.

1 = The End of Transfer signal from the receiver Peripheral Data Controller channel is active.

• ENDTX: End of Transmitter Transfer

0 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is inactive.

1 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is active.

• OVRE: Overrun Error

0 = No overrun error has occurred since the last RSTSTA.

1 = At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error

0 = No framing error has occurred since the last RSTSTA.

1 = At least one framing error has occurred since the last RSTSTA.

• PARE: Parity Error

0 = No parity error has occurred since the last RSTSTA.

1 = At least one parity error has occurred since the last RSTSTA.

• TXEMPTY: Transmitter Empty

0 = There are characters in DBGU_THR, or characters being processed by the transmitter, or the transmitter is disabled.

1 = There are no characters in DBGU_THR and there are no characters being processed by the transmitter.

• TXBUFE: Transmission Buffer Empty

0 = The buffer empty signal from the transmitter PDC channel is inactive.

1 = The buffer empty signal from the transmitter PDC channel is active.

• RXBUFF: Receive Buffer Full

0 = The buffer full signal from the receiver PDC channel is inactive.

1 = The buffer full signal from the receiver PDC channel is active.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

197

AT91RM3400

1790A–ATARM–11/03

• COMMTX: Debug Communication Channel Write Status

0 = COMMTX from the ARM processor is inactive.

1 = COMMTX from the ARM processor is active.

• COMMRX: Debug Communication Channel Read Status

0 = COMMRX from the ARM processor is inactive.

1 = COMMRX from the ARM processor is active.

198 AT91RM3400
1790A–ATARM–11/03

Debug Unit Receiver Holding Register
Name: DBGU_RHR

Access Type: Read-only

• RXCHR: Received Character

Last received character if RXRDY is set.

Debug Unit Transmit Holding Register
Name: DBGU_THR

Access Type: Write-only

• TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

RXCHR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXCHR

199

AT91RM3400

1790A–ATARM–11/03

Debug Unit Baud Rate Generator Register
Name: DBGU_BRGR

Access Type: Read/Write

• CD: Clock Divisor

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

CD Baud Rate Clock

0 Disabled

1 MCK

2 to 65535 MCK / (CD x 16)

200 AT91RM3400
1790A–ATARM–11/03

Debug Unit Chip ID Register
Name: DBGU_CIDR

Access Type: Read-only

• VERSION: Version of the device

• EPROC: Embedded Processor

• NVPSIZ: Nonvolatile Program Memory Size

31 30 29 28 27 26 25 24

EXT NVPTYP ARCH

23 22 21 20 19 18 17 16

ARCH SRAMSIZ

15 14 13 12 11 10 9 8

0 0 0 0 NVPSIZ

7 6 5 4 3 2 1 0

EPROC VERSION

EPROC Processor

0 0 1 ARM946ES

0 1 0 ARM7TDMI

1 0 0 ARM920T

NVPSIZ Size

0 0 0 0 None

0 0 0 1 8K bytes

0 0 1 0 16K bytes

0 0 1 1 32K bytes

0 1 0 0 Reserved

0 1 0 1 64K bytes

0 1 1 0 Reserved

0 1 1 1 128K bytes

1 0 0 0 Reserved

1 0 0 1 256K bytes

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

201

AT91RM3400

1790A–ATARM–11/03

• SRAMSIZ: Internal SRAM Size

• ARCH: Architecture Identifier

• NVPTYP: Nonvolatile Program Memory Type

• EXT: Extension Flag

0 = Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

SRAMSIZ Size

0 0 0 0 Reserved

0 0 0 1 1K bytes

0 0 1 0 2K bytes

0 0 1 1 Reserved

0 1 0 0 Reserved

0 1 0 1 4K bytes

0 1 1 0 Reserved

0 1 1 1 Reserved

1 0 0 0 8K bytes

1 0 0 1 16K bytes

1 0 1 0 32K bytes

1 0 1 1 64K bytes

1 1 0 0 128K bytes

1 1 0 1 256K bytes

1 1 1 0 96K bytes

1 1 1 1 512K bytes

ARCH

ArchitectureHex Dec

0x40 0100 0000 AT91x40 Series

0x63 0110 0011 AT91x63 Series

0x55 0101 0101 AT91x55 Series

0x42 0100 0010 AT91x42 Series

0x92 1001 0010 AT91x92 Series

0x34 0011 0100 AT91x34 Series

NVPTYP Memory

0 0 0 ROM

0 0 1 ROMless or on-chip Flash

1 0 0 SRAM emulating ROM

202 AT91RM3400
1790A–ATARM–11/03

Debug Unit Chip ID Extension Register
Name: DBGU_EXID

Access Type: Read-only

• EXID: Chip ID Extension

Reads 0 if the bit EXT in DBGU_CIDR is 0.

Debug Unit Force NTRST Register
Name: DBGU_FNR

Access Type: Read/Write

• FNTRST: Force NTRST

0 = NTRST of the ARM processor’s TAP controller is driven by the NTRST pin.

1 = NTRST of the ARM processor’s TAP controller is held low.

31 30 29 28 27 26 25 24

EXID

23 22 21 20 19 18 17 16

EXID

15 14 13 12 11 10 9 8

EXID

7 6 5 4 3 2 1 0

EXID

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – FNTRST

203

AT91RM3400

1790A–ATARM–11/03

Parallel Input/Output Controller (PIO)

Overview The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide
User Interface.

Each I/O line of the PIO Controller features:

• An input change interrupt enabling level change on any I/O line.

• A glitch filter providing rejection of pulses lower than one-half of clock cycle.

• Multi-drive capability similar to an open drain I/O line.

• Control of the the pull-up of the I/O line.

• Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in
a single write operation.

Important features of the PIO also include:

• Up to 32 Programmable I/O Lines

• Fully Programmable through Set/Clear Registers

• Multiplexing of Two Peripheral Functions per I/O Line

• For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose I/O)

– Input Change Interrupt

– Glitch Filter

– Multi-drive Option Enables Driving in Open Drain

– Programmable Pull Up on Each I/O Line

– Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

• Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write

204 AT91RM3400
1790A–ATARM–11/03

Block Diagram Figure 65. Block Diagram

Figure 66. Application Block Diagram

Up to 32 pins

PMC

Embedded
Peripheral

Embedded
Peripheral

Embedded
Peripheral

Up to 32
peripheral IOs

Up to 32
peripheral IOs

PIO Clock

APB

PIN

PIN

PIN

AIC PIO Interrupt

PIO Controller

Embedded
Peripheral

Embedded
Peripheral

Embedded
Peripheral

On-chip Peripherals

PIO Controller

On-chip Peripheral Drivers
Control & Command

Driver
Keyboard Driver

Keyboard Driver General Purpose I/Os External Devices

205

AT91RM3400

1790A–ATARM–11/03

Product Dependencies

Pin Multiplexing Each pin is configurable, according to product definition as either a general-purpose I/O line
only, or as an I/O line multiplexed with one or two peripheral I/Os. As the multiplexing is hard-
ware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral I/O, programming
of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO
Controller can control how the pin is driven by the product.

External Interrupt
Lines

The interrupt signals FIQ and IRQ0 to IRQn are most generally multiplexed through the PIO
Controllers. However, it is not necessary to assign the I/O line to the interrupt function as the
PIO Controller has no effect on inputs and the interrupt lines (FIQ or IRQs) are used only as
inputs.

Power
Management

The Power Management Controller controls the PIO Controller clock in order to save power.
Writing any of the registers of the user interface does not require the PIO Controller clock to be
enabled. This means that the configuration of the I/O lines does not require the PIO Controller
clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available.
Note that the Input Change Interrupt and the read of the pin level require the clock to be
validated.

After a hardware reset, the PIO clock is disabled by default (see Power Management
Controller).

The user must configure the Power Management Controller before any access to the input line
information.

Interrupt
Generation

For interrupt handling, the PIO Controllers are considered as user peripherals. This means
that the PIO Controller interrupt lines are connected among the interrupt sources 2 to 31.
Refer to the PIO Controller peripheral identifier in the product description to identify the inter-
rupt sources dedicated to the PIO Controllers.

The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.

206 AT91RM3400
1790A–ATARM–11/03

Functional
Description

The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic
associated to each I/O is represented in Figure 67.

Figure 67. I/O Line Control Logic

Pad

1

0

Glitch
Filter

PIO_PUDR

PIO_PUSR

PIO_PUER

1

0

PIO_MDDR

PIO_MDSR

PIO_MDER

1

0

PIO_CODR

PIO_ODSR

PIO_SODR

1

0

PIO_PDR

PIO_PSR

PIO_PER

1

0

1

0

PIO_BSR

PIO_ABSR

PIO_ASR

Peripheral B
Output Enable

Peripheral A
Output Enable

Peripheral B
Output

Peripheral A
Output

PIO_ODR

PIO_OSR

PIO_OER

Peripheral B
Input

Peripheral A
Input

1

0

PIO_IFDR

PIO_IFSR

PIO_IFER

Edge
Detector

PIO_PDSR PIO_ISR

1

0

PIO_IDR

PIO_IMR

PIO_IER

PIO Interrupt

207

AT91RM3400

1790A–ATARM–11/03

Pull-up Resistor
Control

Each I/O line is designed with an embedded pull-up resistor. The value of this resistor is about
100 kΩ (see the product electrical characteristics for more details about this value). The pull-
up resistor can be enabled or disabled by writing respectively PIO_PUER (Pull-up Enable
Register) and PIO_PUDR (Pull-up Disable Resistor). Writing in these registers results in set-
ting or clearing the corresponding bit in PIO_PUSR (Pull-up Status Register). Reading a 1 in
PIO_PUSR means the pull-up is disabled and reading a 0 means the pull-up is enabled.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0.

I/O Line or
Peripheral
Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The reg-
ister PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value
of 0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
PIO_ABSR (AB Select Status Register). A value of 1 indicates the pin is controlled by the PIO
controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the
peripheral (as in the case of memory chip select lines that must be driven inactive after reset
or for address lines that must be driven low for booting out of an external memory). Thus, the
reset value of PIO_PSR is defined at the product level, depending on the multiplexing of the
device.

Peripheral A or B
Selection

The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing PIO_ASR (A Select Register) and PIO_BSR (Select B Regis-
ter). PIO_ABSR (AB Select Status Register) indicates which peripheral line is currently
selected. For each pin, the corresponding bit at level 0 means peripheral A is selected
whereas the corresponding bit at level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.

After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral
A. However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O
line mode.

Writing in PIO_ASR and PIO_BSR manages PIO_ABSR regardless of the configuration of the
pin. However, assignment of a pin to a peripheral function requires a write in the correspond-
ing peripheral selection register (PIO_ASR or PIO_BSR) in addition to a write in PIO_PDR.

Output Control When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is
at 0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B, depending on
the value in PIO_ABSR, determines whether the pin is driven or not.

When the I/O line is controlled by the PIO controller, the pin can be configured to be driven.
This is done by writing PIO_OER (Output Enable Register) and PIO_PDR (Output Disable
Register). The results of these write operations are detected in PIO_OSR (Output Status Reg-
ister). When a bit in this register is at 0, the corresponding I/O line is used as an input only.
When the bit is at 1, the corresponding I/O line is driven by the PIO controller.

208 AT91RM3400
1790A–ATARM–11/03

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively
set and clear PIO_ODSR (Output Data Status Register), which represents the data driven on
the I/O lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is con-
figured to be controlled by the PIO controller or assigned to a peripheral function. This enables
configuration of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the I/O line.

Synchronous Data
Output

Using the write operations in PIO_SODR and PIO_CODR can require that several instructions
be executed in order to define values on several bits. Both clearing and setting I/O lines on an
8-bit port, for example, cannot be done at the same time, and thus might limit the application
covered by the PIO Controller.

To avoid these inconveniences, the PIO Controller features a Synchronous Data Output to
clear and set a number of I/O lines in a single write. This is performed by authorizing the writ-
ing of PIO_ODSR (Output Data Status Register) from the register set PIO_OWER (Output
Write Enable Register), PIO_OWDR (Output Write Disable Register) and PIO_OWSR (Output
Write Status Register). The value of PIO_OWSR register is user-definable by writing in
PIO_OWER and PIO_OWDR. It is used by the PIO Controller as a PIO_ODSR write authori-
zation mask. Authorizing the write of PIO_ODSR on a user-definable number of bits is
especially useful, as it guarantees that the unauthorized bit will not be changed when writing it
and thus avoids the need of a time consuming read-modify-write operation.

After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets
at 0x0.

Multi Drive Control
(Open Drain)

Each I/O can be independently programmed in Open Drain by using the Multi Drive feature.
This feature permits several drivers to be connected on the I/O line which is driven low only by
each device. An external pull-up resistor (or enabling of the internal one) is generally required
to guarantee a high level on the line.

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O
line is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-
driver Status Register) indicates the pins that are configured to support external drivers.

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

Output Line
Timings

Figure 68 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR
is set. Figure 68 also shows when the feedback in PIO_PDSR is available.

209

AT91RM3400

1790A–ATARM–11/03

Figure 68. Output Line Timings

Inputs The level on each I/O line can be read through PIO_PDSR (Peripheral Data Status Register).
This register indicates the level of the I/O lines regardless of their configuration, whether
uniquely as an input or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

Input Glitch
Filtering

Optional input glitch filters are independently programmable on each I/O line. When the glitch
filter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automat-
ically rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For
pulse durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or
may not be taken into account, depending on the precise timing of its occurrence. Thus for a
pulse to be visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably fil-
tered out, its duration must not exceed 1/2 Master Clock cycle. The filter introduces one
Master Clock cycle latency if the pin level change occurs before a rising edge. However, this
latency does not appear if the pin level change occurs before a falling edge. This is illustrated
in Figure 69.

The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.

When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripher-
als. It acts only on the value read in PIO_PDSR and on the input change interrupt detection.
The glitch filters require that the PIO Controller clock is enabled.

Figure 69. Input Glitch Filter Timing

MCK

Write PIO_SODR
Write PIO_ODSR at 1

PIO_ODSR

PIO_PDSR

APB Access

APB Access
Write PIO_CODR

Write PIO_ODSR at 0

2 Cycles 2 Cycles

MCK

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

2 cycles

1 cycle1 cycle 1 cycle 1 cycle

1 cycle

210 AT91RM3400
1790A–ATARM–11/03

Input Change
Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an input
change on an I/O line. The Input Change Interrupt is controlled by writing PIO_IER (Interrupt
Enable Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and
disable the input change interrupt by setting and clearing the corresponding bit in PIO_IMR
(Interrupt Mask Register). As Input change detection is possible only by comparing two suc-
cessive samplings of the input of the I/O line, the PIO Controller clock must be enabled. The
Input Change Interrupt is available, regardless of the configuration of the I/O line, i.e. config-
ured as an input only, controlled by the PIO Controller or assigned to a peripheral function.

When an input change is detected on an I/O line, the corresponding bit in PIO_ISR (Interrupt
Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt
line is asserted. The interrupt signals of the thirty-two channels are ORed-wired together to
generate a single interrupt signal to the Advanced Interrupt Controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies
that all the interrupts that are pending when PIO_ISR is read must be handled.

Figure 70. Input Change Interrupt Timings

MCK

PIO_PDSR

Read PIO_ISR APB Access

PIO_ISR

APB Access

211

AT91RM3400

1790A–ATARM–11/03

I/O Lines
Programming
Example

The programing example shown in Table 36 below is used to define the following
configuration.

• 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-
drain, with pull-up resistor

• Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no
pull-up resistor

• Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-
up resistors, glitch filters and input change interrupts

• Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no
input change interrupt), no pull-up resistor, no glitch filter

• I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor

• I/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor

• I/O lines 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor

Table 36. Programming Example

Register Value to be Written

PIO_PER 0x0000 FFFF

PIO_PDR 0x0FFF 0000

PIO_OER 0x0000 00FF

PIO_ODR 0x0FFF FF00

PIO_IFER 0x0000 0F00

PIO_IFDR 0x0FFF F0FF

PIO_SODR 0x0000 0000

PIO_CODR 0x0FFF FFFF

PIO_IER 0x0F00 0F00

PIO_IDR 0x00FF F0FF

PIO_MDER 0x0000 000F

PIO_MDDR 0x0FFF FFF0

PIO_PUDR 0x00F0 00F0

PIO_PUER 0x0F0F FF0F

PIO_ASR 0x0F0F 0000

PIO_BSR 0x00F0 0000

PIO_OWER 0x0000 000F

PIO_OWDR 0x0FFF FFF0

212 AT91RM3400
1790A–ATARM–11/03

Parallel Input/Output Controller (PIO) User Interface
Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface registers.
Each register is 32 bits wide. If a parallel I/O line is not defined, writing to the corresponding bits has no effect. Undefined
bits read zero. If the I/O line is not multiplexed with any peripheral, the I/O line is controlled by the PIO Controller and
PIO_PSR returns 1 systematically.

Table 37. PIO Register Mapping

Offset Register Name Access Reset Value

0x0000 PIO Enable Register PIO_PER Write-only –

0x0004 PIO Disable Register PIO_PDR Write-only –

0x0008 PIO Status Register (1) PIO_PSR Read-only 0x0000 0000

0x000C Reserved

0x0010 PIO Output Enable Register PIO_OER Write-only –

0x0014 PIO Output Disable Register PIO_ODR Write-only –

0x0018 PIO Output Status Register PIO_OSR Read-only 0x0000 0000

0x001C Reserved

0x0020 PIO Glitch Input Filter Enable Register PIO_IFER Write-only –

0x0024 PIO Glitch Input Filter Disable Register PIO_IFDR Write-only –

0x0028 PIO Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000

0x002C Reserved

0x0030 PIO Set Output Data Register PIO_SODR Write-only –

0x0034 PIO Clear Output Data Register PIO_CODR Write-only –

0x0038 PIO Output Data Status Register(2) PIO_ODSR Read-only 0x0000 0000

0x003C PIO Pin Data Status Register(3) PIO_PDSR Read-only

0x0040 PIO Interrupt Enable Register PIO_IER Write-only –

0x0044 PIO Interrupt Disable Register PIO_IDR Write-only –

0x0048 PIO Interrupt Mask Register PIO_IMR Read-only 0x0000 0000

0x004C PIO Interrupt Status Register(4) PIO_ISR Read-only 0x0000 0000

0x0050 PIO Multi-driver Enable Register PIO_MDER Write-only –

0x0054 PIO Multi-driver Disable Register PIO_MDDR Write-only –

0x0058 PIO Multi-driver Status Register PIO_MDSR Read-only 0x0000 0000

0x005C Reserved

0x0060 PIO Pull-up Disable Register PIO_PUDR Write-only –

0x0064 PIO Pull-up Enable Register PIO_PUER Write-only –

0x0068 PIO Pad Pull-up Status Register PIO_PUSR Read-only 0x0000 0000

0x006C Reserved

213

AT91RM3400

1790A–ATARM–11/03

Notes: 1. Reset value of PIO_PSR depends on the product implementation.
2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.
3. Reset value of PIO_PDSR depends on the level of the I/O lines.
4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have

occurred.
5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second

register.

0x0070 PIO Peripheral A Select Register(5) PIO_ASR Write-only –

0x0074 PIO Peripheral B Select Register(5) PIO_BSR Write-only –

0x0078 PIO AB Status Register(5) PIO_ABSR Read-only 0x0000 0000

0x007C
to
0x009C

Reserved

0x00A0 PIO Output Write Enable PIO_OWER Write-only –

0x00A4 PIO Output Write Disable PIO_OWDR Write-only –

0x00A8 PIO Output Write Status Register PIO_OWSR Read-only 0x0000 0000

0x00AC Reserved

Table 37. PIO Register Mapping (Continued)

Offset Register Name Access Reset Value

214 AT91RM3400
1790A–ATARM–11/03

PIO Enable Register
Name: PIO_PER

Access Type: Write-only

• P0-P31: PIO Enable

0 = No effect.

1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

PIO Disable Register
Name: PIO_PDR

Access Type: Write-only

• P0-P31: PIO Disable

0 = No effect.

1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

215

AT91RM3400

1790A–ATARM–11/03

PIO Status Register
Name: PIO_PSR

Access Type: Read-only

• P0-P31: PIO Status

0 = PIO is inactive on the corresponding I/O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

PIO Output Enable Register
Name: PIO_OER

Access Type: Write-only

• P0-P31: Output Enable

0 = No effect.

1 = Enables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

216 AT91RM3400
1790A–ATARM–11/03

PIO Output Disable Register
Name: PIO_ODR

Access Type: Write-only

• P0-P31: Output Disable

0 = No effect.

1 = Disables the output on the I/O line.

PIO Output Status Register
Name: PIO_OSR

Access Type: Read-only

• P0-P31: Output Status

0 = The I/O line is a pure input.

1 = The I/O line is enabled in output.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

217

AT91RM3400

1790A–ATARM–11/03

PIO Input Filter Enable Register
Name: PIO_IFER

Access Type: Write-only

• P0-P31: Input Filter Enable

0 = No effect.

1 = Enables the input glitch filter on the I/O line.

PIO Input Filter Disable Register
Name: PIO_IFDR

Access Type: Write-only

• P0-P31: Input Filter Disable

0 = No effect.

1 = Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

218 AT91RM3400
1790A–ATARM–11/03

PIO Input Filter Status Register
Name: PIO_IFSR

Access Type: Read-only

• P0-P31: Input Filer Status

0 = The input glitch filter is disabled on the I/O line.

1 = The input glitch filter is enabled on the I/O line.

PIO Set Output Data Register
Name: PIO_SODR

Access Type: Write-only

• P0-P31: Set Output Data

0 = No effect.

1 = Sets the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

219

AT91RM3400

1790A–ATARM–11/03

PIO Clear Output Data Register
Name: PIO_CODR

Access Type: Write-only

• P0-P31: Set Output Data

0 = No effect.

1 = Clears the data to be driven on the I/O line.

PIO Output Data Status Register
Name: PIO_ODSR

Access Type: Read-only or Read/Write

• P0-P31: Output Data Status

0 = The data to be driven on the I/O line is 0.

1 = The data to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

220 AT91RM3400
1790A–ATARM–11/03

PIO Pin Data Status Register
Name: PIO_PDSR

Access Type: Read-only

• P0-P31: Output Data Status

0 = The I/O line is at level 0.

1 = The I/O line is at level 1.

PIO Interrupt Enable Register
Name: PIO_IER

Access Type: Write-only

• P0-P31: Input Change Interrupt Enable

0 = No effect.

1 = Enables the Input Change Interrupt on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

221

AT91RM3400

1790A–ATARM–11/03

PIO Interrupt Disable Register
Name: PIO_IDR

Access Type: Write-only

• P0-P31: Input Change Interrupt Disable

0 = No effect.

1 = Disables the Input Change Interrupt on the I/O line.

PIO Interrupt Mask Register
Name: PIO_IMR

Access Type: Read-only

• P0-P31: Input Change Interrupt Mask

0 = Input Change Interrupt is disabled on the I/O line.

1 = Input Change Interrupt is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

222 AT91RM3400
1790A–ATARM–11/03

PIO Interrupt Status Register
Name: PIO_IMR

Access Type: Read-only

• P0-P31: Input Change Interrupt Mask

0 = No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

1 = At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

PIO Multi-driver Enable Register
Name: PIO_MDER

Access Type: Write-only

• P0-P31: Multi Drive Enable

0 = No effect.

1 = Enables Multi Drive on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

223

AT91RM3400

1790A–ATARM–11/03

PIO Multi-driver Disable Register
Name: PIO_MDDR

Access Type: Write-only

• P0-P31: Multi Drive Disable

0 = No effect.

1 = Disables Multi Drive on the I/O line.

PIO Multi-driver Status Register
Name: PIO_MDSR

Access Type: Read-only

• P0-P31: Multi Drive Status

0 = The Multi Drive is disabled on the I/O line. The pin is driven at high and low level.

1 = The Multi Drive is enabled on the I/O line. The pin is driven at low level only.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

224 AT91RM3400
1790A–ATARM–11/03

PIO Pull Up Disable Register
Name: PIO_PUDR

Access Type: Write-only

• P0-P31: Pull Up Disable

0 = No effect.

1 = Disables the pull up resistor on the I/O line.

PIO Pull Up Enable Register
Name: PIO_PUER

Access Type: Write-only

• P0-P31: Pull Up Enable

0 = No effect.

1 = Enables the pull up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

225

AT91RM3400

1790A–ATARM–11/03

PIO Pad Pull Up Status Register
Name: PIO_PUSR

Access Type: Read-only

• P0-P31: Pull Up Status

0 = Pull Up resistor is enabled on the I/O line.

1 = Pull Up resistor is disabled on the I/O line.

PIO Peripheral A Select Register
Name: PIO_ASR

Access Type: Write-only

• P0-P31: Peripheral A Select

0 = No effect.

1 = Assigns the I/O line to the Peripheral A function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

226 AT91RM3400
1790A–ATARM–11/03

PIO Peripheral B Select Register
Name: PIO_BSR

Access Type: Write-only

• P0-P31: Peripheral B Select

0 = No effect.

1 = Assigns the I/O line to the peripheral B function.

PIO Peripheral AB Status Register
Name: PIO_ABSR

Access Type: Read-only

• P0-P31: Peripheral A B Status

0 = The I/O line is assigned to the Peripheral A.

1 = The I/O line is assigned to the Peripheral B.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

227

AT91RM3400

1790A–ATARM–11/03

PIO Output Write Enable Register
Name: PIO_OWER

Access Type: Write-only

• P0-P31: Output Write Enable

0 = No effect.

1 = Enables writing PIO_ODSR for the I/O line.

PIO Output Write Disable Register
Name: PIO_OWDR

Access Type: Write-only

• P0-P31: Output Write Disable

0 = No effect.

1 = Disables writing PIO_ODSR for the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

228 AT91RM3400
1790A–ATARM–11/03

PIO Output Write Status Register
Name: PIO_OWSR

Access Type: Read-only

• P0-P31: Output Write Status

0 = Writing PIO_ODSR does not affect the I/O line.

1 = Writing PIO_ODSR affects the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

229

AT91RM3400

1790A–ATARM–11/03

Serial Peripheral Interface (SPI)

Overview The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides
communication with external devices in Master or Slave Mode. It also allows communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is a shift register that serially transmits data bits to other SPIs.
During a data transfer, one SPI system acts as the master that controls the data flow, while the
other system acts as the slave, having data shifted into and out of it by the master. Different
CPUs can take turn being masters (Multiple Master Protocol versus Single Master Protocol
where one CPU is always the master while all of the others are always slaves), and one mas-
ter may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from the master
shifted into the input(s) of the slave(s).

• Master In Slave Out (MISO): This data line supplies the output data from a slave to the
input of the master. There may be no more than one slave transmitting data during any
particular transfer.

• Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the
data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles
once for each bit that is transmitted.

• Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

The main features of the SPI are:

• Supports Communication with Serial External Devices

– 4 Chip Selects with External Decoder Support Allow Communication with Up to 15
Peripherals

– Serial Memories, such as DataFlash and 3-wire EEPROMs

– Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

– External Co-processors

• Master or Slave Serial Peripheral Bus Interface

– 8- to 16-bit Programmable Data Length Per Chip Select

– Programmable Phase and Polarity Per Chip Select

– Programmable Transfer Delays Between Consecutive Transfers and Between
Clock and Data Per Chip Select

– Programmable Delay Between Consecutive Transfers

– Selectable Mode Fault Detection

• Connection to PDC Channel Capabilities Optimizes Data Transfers

– One Channel for the Receiver, One Channel for the Transmitter

– Next Buffer Support

230 AT91RM3400
1790A–ATARM–11/03

Block Diagram

Figure 71. Block Diagram

SPI Interface

Interrupt Control

PIO

PDC

APB Bridge

PMC MCK

SPI Interrupt

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

NPCS3

ASB

APB

231

AT91RM3400

1790A–ATARM–11/03

Application Block Diagram

Figure 72. Application Block Diagram: Single Master/Multiple Slave Implementation

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK

MISO

MOSI

NSS

Slave 0

SPCK

MISO

MOSI

NSS

Slave 1

SPCK

MISO

MOSI

NSS

Slave 2

NC

NPCS3

Table 38. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1-NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

232 AT91RM3400
1790A–ATARM–11/03

Product Dependencies

I/O Lines The pins used for interfacing the compliant external devices may be multiplexed with PIO
lines. The programmer must first program the PIO controllers to assign the SPI pins to their
peripheral functions.

Power
Management

The SPI may be clocked through the Power Management Controller (PMC), thus the program-
mer must first have to configure the PMC to enable the SPI clock.

Interrupt The SPI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the SPI interrupt requires programming the AIC before configuring the SPI.

Functional Description

Master Mode
Operations

When configured in Master Mode, the Serial Peripheral Interface controls data transfers to and
from the slave(s) connected to the SPI bus. The SPI drives the chip select(s) to the slave(s)
and the serial clock (SPCK). After enabling the SPI, a data transfer begins when the core
writes to the SPI_TDR (Transmit Data Register).

Transmit and Receive buffers maintain the data flow at a constant rate with a reduced require-
ment for high-priority interrupt servicing. When new data is available in the SPI_TDR, the SPI
continues to transfer data. If the SPI_RDR (Receive Data Register) has not been read before
new data is received, the Overrun Error (OVRES) flag is set.
Note: As long as this flag is set, no data is loaded in the SPI_RDR. The user has to read the status

register to clear it.

The programmable delay between the activation of the chip select and the start of the data
transfer (DLYBS), as well as the delay between each data transfer (DLYBCT), can be pro-
grammed for each of the four external chip selects. All data transfer characteristics, including
the two timing values, are programmed in registers SPI_CSR0 to SPI_CSR3 (Chip Select
Registers).

In Master Mode, the peripheral selection can be defined in two different ways:

• Fixed Peripheral Select: SPI exchanges data with only one peripheral

• Variable Peripheral Select: Data can be exchanged with more than one peripheral

Figure 77 and Figure 78 show the operation of the SPI in Master Mode. For details concerning
the flag and control bits in these diagrams, see the tables in the Programmer’s Model, starting
in Section .

Fixed Peripheral
Select

This mode is used for transferring memory blocks without the extra overhead in the transmit
data register to determine the peripheral.

Fixed Peripheral Select is activated by setting bit PS to zero in SPI_MR (Mode Register). The
peripheral is defined by the PCS field in SPI_MR.

This option is only available when the SPI is programmed in Master Mode.

Variable Peripheral
Select

Variable Peripheral Select is activated by setting bit PS to one. The PCS field in SPI_TDR is
used to select the destination peripheral. The data transfer characteristics are changed when
the selected peripheral changes, according to the associated chip select register.

The PCS field in the SPI_MR has no effect.

This option is only available when the SPI is programmed in Master Mode.

233

AT91RM3400

1790A–ATARM–11/03

Chip Selects The Chip Select lines are driven by the SPI only if it is programmed in Master Mode. These
lines are used to select the destination peripheral. The PCSDEC field in SPI_MR (Mode Reg-
ister) selects one to four peripherals (PCSDEC = 0) or up to 15 peripherals (PCSDEC = 1).

If Variable Peripheral Select is active, the chip select signals are defined for each transfer in
the PCS field in SPI_TDR. Chip select signals can thus be defined independently for each
transfer.

If Fixed Peripheral Select is active, Chip Select signals are defined for all transfers by the field
PCS in SPI_MR. If a transfer with a new peripheral is necessary, the software must wait until
the current transfer is completed, then change the value of PCS in SPI_MR before writing new
data in SPI_TDR.

The value on the NPCS pins at the end of each transfer can be read in the SPI_RDR (Receive
Data Register).

By default, all NPCS signals are high (equal to one) before and after each transfer.

Clock Generation and
Transfer Delays

The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32 (if DIV32 is set in the Mode Register) by a value between 4 and 510. The divisor
is defined in the SCBR field in each Chip Select Register. The transfer speed can thus be
defined independently for each chip select signal.

Figure 73 shows a chip select transfer change and consecutive transfers on the same chip
selects. Three delays can be programmed to modify the transfer waveforms:

• Delay between chip selects, programmable only once for all the chip selects by writing the
field DLYBCS in the Mode Register. Allows insertion of a delay between release of one
chip select and before assertion of a new one.

• Delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed until after the chip select has been
asserted.

• Delay between consecutive transfers, independently programmable for each chip select by
writing the field DLYBCT. Allows insertion of a delay between two transfers occurring on
the same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and
bus release time.

Figure 73. Programmable Delays

Chip Select 1

Chip Select 2

SPCK

DLYBCS DLYBS DLYBCT DLYBCT

234 AT91RM3400
1790A–ATARM–11/03

Mode Fault Detection A mode fault is detected when the SPI is programmed in Master Mode and a low level is
driven by an external master on the NPCS0/NSS signal.

When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read
and the SPI is disabled until re-enabled by bit SPIEN in the SPI_CR (Control Register).

By default, Mode Fault Detection is enabled. It is disabled by setting the MODFDIS bit in the
SPI Mode Register.

235

AT91RM3400

1790A–ATARM–11/03

Master Mode Flow Diagram

Figure 74. Master Mode Flow Diagram

SPI Enable

TDRE

PS

1

0

0

1

1

1

0

Same peripheral

New peripheral

NPCS = SPI_TDR(PCS) NPCS = SPI_MR(PCS)

Delay DLYBS

Serializer = SPI_TDR(TD)
TDRE = 1

Data Transfer

SPI_RDR(RD) = Serializer
RDRF = 1

TDRE

PS

NPCS = 0xF

Delay DLYBCS

SPI_TDR(PCS)

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_TDR(PCS)

Fixed peripheral

Variable peripheral

Fixed peripheral

Variable peripheral

Delay DLYBCT

0

236 AT91RM3400
1790A–ATARM–11/03

Master Mode Block Diagram

Figure 75. Master Mode Block Diagram

0

1

SPI_MR(DIV32)

MCK

MCK/32

SPCK Clock Generator

SPI_CSRx[15:0]

S

R

Q

M
O
D
F

T
D
R
E

R
D
R
F

O
V
R
E

S
P
I
E
N
S

0

1

SPI_MR(PS)

PCS
SPI_RDR

SerializerMISO

SPI_MR(PCS)

SPIDIS SPIEN

SPI_MR(MSTR)

SPI_IER
SPI_IDR
SPI_IMR

SPI_SR

MOSI

NPCS3

NPCS2

NPCS1

NPCS0

LSB MSB

SPCK

SPI Interrupt

RD

PCS
SPI_TDR

TD

237

AT91RM3400

1790A–ATARM–11/03

SPI Slave Mode

In Slave Mode, the SPI waits for NSS to go active low before receiving the serial clock from an
external master.

In Slave Mode, CPOL, NCPHA and BITS fields of SPI_CSR0 are used to define the transfer
characteristics. The other Chip Select Registers are not used in Slave Mode.

In Slave Mode, the low and high pulse durations of the input clock on SPCK must be longer
than two Master Clock periods.

Figure 76. Slave Mode Block Diagram

S

R

Q

T
D
R
E

R
D
R
F

O
V
R
E

S
P
I
E
N
S

Serializer

SPCK

SPIDIS SPIEN

SPI_IER
SPI_IDR
SPI_IMR

SPI_SR

MISO

LSB MSB

NSS

MOSI

SPI_RDR
RD

SPI_TDR
TD

SPI Interrupt

238 AT91RM3400
1790A–ATARM–11/03

Data Transfer Four modes are used for data transfers. These modes correspond to combinations of a pair of
parameters called clock polarity (CPOL) and clock phase (NCPHA) that determine the edges
of the clock signal on which the data are driven and sampled. Each of the two parameters has
two possible states, resulting in four possible combinations that are incompatible with one
another. Thus a master/slave pair must use the same parameter pair values to communicate.
If multiple slaves are used and fixed in different configurations, the master must reconfigure
itself each time it needs to communicate with a different slave.

Table 39 shows the four modes and corresponding parameter settings.

Figure 77 and Figure 78 show examples of data transfers.

Figure 77. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

Table 39. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA

0 0 0

1 0 1

2 1 0

3 1 1

SPCK
(CPOL=0)

Mode 1

SPCK
(CPOL=1)

Mode 3

1 2 3 4 5 6 7

MOSI
(from master)

MISO
(from slave)

NSS (to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

6

5

5

4

4

3

3

2

2

1

1 *

* Not defined, but normally MSB of previous character received.

239

AT91RM3400

1790A–ATARM–11/03

Figure 78. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

SPCK
(CPOL=0)

Mode 0

SPCK
(CPOL=1)

Mode 2

1 2 3 4 5 6 7

MOSI
(from master)

MISO
(from slave)

NSS (to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

6

5

5

4

4

3

3

2

2

1

1

* Not defined but normally LSB of previous character transmitted.

*

240 AT91RM3400
1790A–ATARM–11/03

Serial Peripheral Interface (SPI) User Interface

Table 40. SPI Register Mapping

Offset Register Register Name Access Reset

0x00 Control Register SPI_CR Write-only ---

0x04 Mode Register SPI_MR Read/write 0x0

0x08 Receive Data Register SPI_RDR Read-only 0x0

0x0C Transmit Data Register SPI_TDR Write-only ---

0x10 Status Register SPI_SR Read-only 0x000000F0

0x14 Interrupt Enable Register SPI_IER Write-only ---

0x18 Interrupt Disable Register SPI_IDR Write-only ---

0x1C Interrupt Mask Register SPI_IMR Read-only 0x0

0x20 - 0x2C Reserved

0x30 Chip Select Register 0 SPI_CSR0 Read/write 0x0

0x34 Chip Select Register 1 SPI_CSR1 Read/write 0x0

0x38 Chip Select Register 2 SPI_CSR2 Read/write 0x0

0x3C Chip Select Register 3 SPI_CSR3 Read/write 0x0

0x40 - 0xFF Reserved

0x100 - 0x124 Reserved for the PDC

241

AT91RM3400

1790A–ATARM–11/03

SPI Control Register
Name: SPI_CR

Access Type: Write-only

• SPIEN: SPI Enable

0 = No effect.

1 = Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable

0 = No effect.

1 = Disables the SPI.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled

• SWRST: SPI Software Reset

0 = No effect.

1 = Reset the SPI.

A software-triggered hardware reset of the SPI interface is performed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – – – SPIDIS SPIEN

242 AT91RM3400
1790A–ATARM–11/03

SPI Mode Register
Name: SPI_MR

Access Type: Read/write

• MSTR: Master/Slave Mode

0 = SPI is in Slave mode.

1 = SPI is in Master mode.

• PS: Peripheral Select

0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

• PCSDEC: Chip Select Decode

0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 16 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder.

The Chip Select Registers define the characteristics of the 16 chip selects according to the following rules:

SPI_CSR0 defines peripheral chip select signals 0 to 3.

SPI_CSR1 defines peripheral chip select signals 4 to 7.

SPI_CSR2 defines peripheral chip select signals 8 to 11.

SPI_CSR3 defines peripheral chip select signals 12 to 15*.
*Note: The 16th state corresponds to a state in which all chip selects are inactive. This allows a different clock configuration
to be defined by each chip select register.

• DIV32: Clock Selection

0 = The SPI operates at MCK.

1 = The SPI operates at MCK/32.

• MODFDIS: Mode Fault Detection

0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

• LLB: Local Loopback Enable

0 = Local loopback path disabled

1 = Local loopback path enabled

LLB controls the local loopback on the data serializer for testing in Master Mode only.

31 30 29 28 27 26 25 24

DLYBCS

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

LLB – – MODFDIS DIV32 PCSDEC PS MSTR

243

AT91RM3400

1790A–ATARM–11/03

• PCS: Peripheral Chip Select

This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

• DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 192 MCK periods if DIV32 is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If DIV32 is 0:

If DIV32 is 1:

Delay Between Chip Selects DLYBCS MCK⁄=

Delay Between Chip Selects DLYBCS 32× MCK⁄=

244 AT91RM3400
1790A–ATARM–11/03

SPI Receive Data Register
Name: SPI_RDR

Access Type: Read-only

• RD: Receive Data

Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

• PCS: Peripheral Chip Select

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

SPI Transmit Data Register
Name: SPI_TDR

Access Type: Write-only

• TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

RD

7 6 5 4 3 2 1 0

RD

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

TD

7 6 5 4 3 2 1 0

TD

245

AT91RM3400

1790A–ATARM–11/03

SPI Status Register
Name: SPI_SR

Access Type: Read-only

• RDRF: Receive Data Register Full

0 = No data has been received since the last read of SPI_RDR

1 = Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read
of SPI_RDR.

• TDRE: Transmit Data Register Empty

0 = Data has been written to SPI_TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

• MODF: Mode Fault Error

0 = No Mode Fault has been detected since the last read of SPI_SR.

1 = A Mode Fault occurred since the last read of the SPI_SR.

• OVRES: Overrun Error Status

0 = No overrun has been detected since the last read of SPI_SR.

1 = An overrun has occurred since the last read of SPI_SR.

An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR.

• ENDRX: End of RX buffer

0 = The Receive Counter Register has not reached 0 since the last write in SPI_RCR or SPI_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in SPI_RCR or SPI_RNCR.

• ENDTX: End of TX buffer

0 = The Transmit Counter Register has not reached 0 since the last write in SPI_TCR or SPI_TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in SPI_TCR or SPI_TNCR.

• RXBUFF: RX Buffer Full

0 = SPI_RCR or SPI_RNCR have a value other than 0.

1 = Both SPI_RCR and SPI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty

0 = SPI_TCR or SPI_TNCR have a value other than 0.

1 = Both SPI_TCR and SPI_TNCR have a value of 0.

• SPIENS: SPI Enable Status

0 = SPI is disabled.

1 = SPI is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – SPIENS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

246 AT91RM3400
1790A–ATARM–11/03

SPI Interrupt Enable Register
Name: SPI_IER

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

247

AT91RM3400

1790A–ATARM–11/03

SPI Interrupt Disable Register
Name: SPI_IDR

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Disable

• TDRE: SPI Transmit Data Register Empty Interrupt Disable

• MODF: Mode Fault Error Interrupt Disable

• OVRES: Overrun Error Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

248 AT91RM3400
1790A–ATARM–11/03

SPI Interrupt Mask Register
Name: SPI_IMR

Access Type: Read-only

• RDRF: Receive Data Register Full Interrupt Mask

• TDRE: SPI Transmit Data Register Empty Interrupt Mask

• MODF: Mode Fault Error Interrupt Mask

• OVRES: Overrun Error Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

249

AT91RM3400

1790A–ATARM–11/03

SPI Chip Select Register
Name: SPI_CSR0... SPI_CSR3

Access Type: Read/write

• CPOL: Clock Polarity

0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

• NCPHA: Clock Phase

0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

• BITS: Bits Per Transfer

The BITS field determines the number of data bits transferred. Reserved values should not be used.

31 30 29 28 27 26 25 24

DLYBCT

23 22 21 20 19 18 17 16

DLYBS

15 14 13 12 11 10 9 8

SCBR

7 6 5 4 3 2 1 0

BITS – – NCPHA CPOL

BITS[3:0] Bits Per Transfer

0000 8

0001 9

0010 10

0011 11

0100 12

0101 13

0110 14

0111 15

1000 16

1001 Reserved

1010 Reserved

1011 Reserved

1100 Reserved

1101 Reserved

1110 Reserved

1111 Reserved

250 AT91RM3400
1790A–ATARM–11/03

• SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 2 to 255 in the field SCBR. The following equation determines the SPCK baud
rate:

If DIV32 is 0:

If DIV32 is 1:

Giving SCBR a value of zero or one disables the baud rate generator. SPCK is disabled and assumes its inactive state
value. No serial transfers may occur. At reset, baud rate is disabled.

• DLYBS: Delay Before SPCK

This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Otherwise, the following equations determine the delay:

If DIV32 is 0:

If DIV32 is 1:

• DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, a minimum delay of four MCK cycles are inserted (or 128 MCK cycles when DIV32 is set)
between two consecutive characters.

Otherwise, the following equation determines the delay:

If DIV32 is 0:

If DIV32 is 1:

SPCK Baudrate MCK 2 SCBR×()⁄=

SPCK Baudrate MCK 64 SCBR×()⁄=

Delay Before SPCK DLYBS MCK⁄=

Delay Before SPCK 32 DLYBS× MCK⁄=

Delay Between Consecutive Transfers 32 DLYBCT× MCK⁄=

Delay Between Consecutive Transfers 1024 DLYBCT× MCK⁄=

251

AT91RM3400

1790A–ATARM–11/03

Two-wire Interface (TWI)

Overview The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up
of one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-
oriented transfer format. It can be used with any Atmel two-wire bus serial EEPROM. The TWI
is programmable as a master with sequential or single-byte access.

A configurable baud rate generator permits the output data rate to be adapted to a wide range
of core clock frequencies.

The main features of the TWI are:

• Compatibility with standard two-wire serial memory

• One, two or three bytes for slave address

• Sequential read/write operations

Block Diagram

Figure 79. Block Diagram

Application Block Diagram

Figure 80. Application Block Diagram

APB Bridge

PMC MCK

Two-wire
Interface

PIO

AIC
TWI

Interrupt

TWCK

TWD

Host with
TWI

Interface

TWD

TWCK

AT24LC16
U1

AT24LC16
U2

LCD Controller
U3

Slave 1 Slave 2 Slave 3

R R

VDD

252 AT91RM3400
1790A–ATARM–11/03

Product Dependencies

I/O Lines Both TWD and TWCK are bi-directional lines, connected to a positive supply voltage via a cur-
rent source or pull-up resistor (see Figure 80 on page 251). When the bus is free, both lines
are high. The output stages of devices connected to the bus must have an open-drain or open-
collector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must perform the following steps:

• Program the PIO controller to:

– Dedicate TWD and TWCK as peripheral lines.

– Define TWD and TWCK as open-drain.

Power
Management

• Enable the peripheral clock.

The TWI interface may be clocked through the Power Management Controller (PMC), thus the
programmer must first configure the PMC to enable the TWI clock.

Interrupt The TWI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
In order to handle interrupts, the AIC must be programmed before configuring the TWI.

Functional Description

Transfer Format The data put on the TWD line must be eight bits long. Data is transferred MSB first; each byte
must be followed by an acknowledgement. The number of bytes per transfer is unlimited (see
Figure 82 on page 253).

Each transfer begins with a START condition and terminates with a STOP condition (see Fig-
ure 81 on page 252).

• A high-to-low transition on the TWD line while TWCK is high defines the START condition.

• A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 81. START and STOP Conditions

Table 41. I/O Lines Description

Pin Name Pin Description Type

TWD Two-wire Serial Data Input/Output

TWCK Two-wire Serial Clock Input/Output

TWD

TWCK

Start Stop

253

AT91RM3400

1790A–ATARM–11/03

Figure 82. Transfer Format

Modes of
Operation

The TWI has two modes of operations:

• Master transmitter mode

• Master receiver mode

The TWI Control Register (TWI_CR) allows configuration of the interface in Master Mode. In
this mode, it generates the clock according to the value programmed in the Clock Waveform
Generator Register (TWI_CWGR). This register defines the TWCK signal completely,
enabling the interface to be adapted to a wide range of clocks.

Transmitting Data After the master initiates a Start condition, it sends a 7-bit slave address, configured in the
Master Mode register (DADR in TWI_MMR), to notify the slave device. The bit following the
slave address indicates the transfer direction (write or read). If this bit is 0, it indicates a write
operation (transmit operation). If the bit is 1, it indicates a request for data read (receive
operation).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse, the master releases the data line (HIGH), enabling the slave to pull it down
in order to generate the acknowledge. The master polls the data line during this clock pulse
and sets the NAK bit in the status register if the slave does not acknowledge the byte. As with
the other status bits, an interrupt can be generated if enabled in the interrupt enable register
(TWI_IER). After writing in the transmit-holding register (TWI_THR), setting the START bit in
the control register starts the transmission. The data is shifted in the internal shifter and when
an acknowledge is detected, the TXRDY bit is set until a new write in the TWI_THR (see Fig-
ure 84 on page 254). The master generates a stop condition to end the transfer.

The read sequence begins by setting the START bit. When the RXRDY bit is set in the status
register, a character has been received in the receive-holding register (TWI_RHR). The
RXRDY bit is reset when reading the TWI_RHR.

The TWI interface performs various transfer formats (7-bit slave address, 10-bit slave
address). The three internal address bytes are configurable through the Master Mode register
(TWI_MMR). If the slave device supports only a 7-bit address, the IADRSZ must be set to 0.
For slave address higher than seven bits, the user must configure the address size (IADRSZ)
and set the other slave address bits in the internal address register (TWI_IADR).

Figure 83. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

TWD

TWCK

Start Address R/W Ack Data Ack Data Ack Stop

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A DATA A P

S DADR W A IADR(15:8) A IADR(7:0) A PDATA A

A IADR(7:0) A PDATA AS DADR W

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

TWD

TWD

254 AT91RM3400
1790A–ATARM–11/03

Figure 84. Master Write with One Byte Internal Address and Multiple Data Bytes

Figure 85. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

Figure 86. Master Read with One Byte Internal Address and Multiple Data Bytes

• S = Start

• P = Stop

• W = Write/read

• A = Acknowledge

• DADR= Device Address

• IADR = Internal Address

Figure 87 shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the use of
internal addresses to access the device.

A IADR(7:0) A DATA AS DADR W DATA A PDATA A

TXCOMP

TXRDY

Write THR

Write THR Write THR Write THR

TWD

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A

S DADR W A IADR(15:8) A IADR(7:0) A

A IADR(7:0) AS DADR W

DATA N P

S DADR R A

S DADR R A DATA N P

S DADR R A DATA N P

TWD

TWD

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

A IADR(7:0) AS DADR W S DADR R A DATA A DATA N P

TXCOMP

Write START Bit

RXRDY

Write STOP Bit

Read RHR Read RHR

TWD

255

AT91RM3400

1790A–ATARM–11/03

Figure 87. Internal Address Usage

Read/Write
Flowcharts

The following flowcharts shown in Figure 88 on page 256 and in Figure 89 on page 257 give
examples for read and write operations in Master Mode. A polling or interrupt method can be
used to check the status bits. The interrupt method requires that the interrupt enable register
(TWI_IER) be configured first.

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

256 AT91RM3400
1790A–ATARM–11/03

Figure 88. TWI Write in Master Mode

Set TWI clock:
TWI_CWGR = clock

Set the control register:
- Master enable
- Slave disable

TWI_CR = TWI_SVDIS + TWI_MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit

Write ==> bit MREAD = 0

Internal address size = 0?

Load transmit register
TWI_THR = Data to send

Start the transfer
TWI_CR = TWI_START

Stop the transfer
TWI_CR = TWI_STOP

Read status register

TXRDY = 0?

Data to send?

Read status register

TXCOMP = 0?

END

START

Set theinternal address
TWI_IADR = address

Yes

TWI_THR = data to send

Yes

Yes

257

AT91RM3400

1790A–ATARM–11/03

Figure 89. TWI Read in Master Mode

Set TWI clock:
TWI_CWGR = clock

Set the control register:
- Master enable
- Slave disable

TWI_CR = TWI_SVDIS + TWI_MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit

Read ==> bit MREAD = 0

Internal address size = 0?

Start the transfer
TWI_CR = TWI_START

Stop the transfer
TWI_CR = TWI_STOP

Read status register

RXRDY = 0?

Data to read?

Read status register

TXCOMP = 0?

END

START

Set theinternal address
TWI_IADR = address

Yes

Yes

Yes

Yes

258 AT91RM3400
1790A–ATARM–11/03

Two-wire Interface (TWI) User Interface

Table 42. TWI Register Mapping

Offset Register Name Access Reset Value

0x0000 Control Register TWI_CR Write-only N/A

0x0004 Master Mode Register TWI_MMR Read/write 0x0000

0x0008 Reserved

0x000C Internal Address Register TWI_IADR Read/write 0x0000

0x0010 Clock Waveform Generator Register TWI_CWGR Read/write 0x0000

0x0020 Status Register TWI_SR Read-only 0x0008

0x0024 Interrupt Enable Register TWI_IER Write-only N/A

0x0028 Interrupt Disable Register TWI_IDR Write-only N/A

0x002C Interrupt Mask Register TWI_IMR Read-only 0x0000

0x0030 Receive Holding Register TWI_RHR Read-only 0x0000

0x0034 Transmit Holding Register TWI_THR Read/write 0x0000

259

AT91RM3400

1790A–ATARM–11/03

TWI Control Register
Register Name: TWI_CR

Access Type: Write-only

• START: Send a START Condition

0 = No effect.

1 = A frame beginning with a START bit is transmitted according to the features defined in the mode register.

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent with the mode register as soon as the user writes a character in the holding register.

• STOP: Send a STOP Condition

0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read or write mode.

In single data byte master read or write, the START and STOP must both be set.

In multiple data bytes master read or write, the STOP must be set before ACK/NACK bit transmission.

In master read mode, if a NACK bit is received, the STOP is automatically performed.

In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically sent.

• MSEN: TWI Master Transfer Enabled

0 = No effect.

1 = If MSDIS = 0, the master data transfer is enabled.

• MSDIS: TWI Master Transfer Disabled

0 = No effect.

1 = The master data transfer is disabled, all pending data is transmitted. The shifter and holding characters (if it contains
data) are transmitted in case of write operation. In read operation, the character being transferred must be completely
received before disabling.

• SWRST: Software Reset

0 = No effect.

1 = Equivalent to a system reset.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
SWRST – – – MSDIS MSEN STOP START

260 AT91RM3400
1790A–ATARM–11/03

TWI Master Mode Register
Register Name: TWI_MMR

Address Type: Read/write

• IADRSZ: Internal Device Address Size

• MREAD: Master Read Direction

0 = Master write direction.

1 = Master read direction.

• DADR: Device Address

The device address is used in Master Mode to access slave devices in read or write mode.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– DADR

15 14 13 12 11 10 9 8
– – – MREAD – – IADRSZ

7 6 5 4 3 2 1 0
– – – – – – – –

IADRSZ[9:8]

0 0 No internal device address

0 1 One-byte internal device address

1 0 Two-byte internal device address

1 1 Three-byte internal device address

261

AT91RM3400

1790A–ATARM–11/03

TWI Internal Address Register
Register Name: TWI_IADR

Access Type: Read/write

• IADR: Internal Address

0, 1, 2 or 3 bytes depending on IADRSZ.

TWI Clock Waveform Generator Register
Register Name: TWI_CWGR

Access Type: Read/write

• CLDIV: Clock Low Divider

The TWCK low period is defined as follows:

• CHDIV: Clock High Divider

The TWCK high period is defined as follows:

• CKDIV: Clock Divider

The CKDIV is used to increase both TWCK high and low periods.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

IADR

15 14 13 12 11 10 9 8
IADR

7 6 5 4 3 2 1 0
IADR

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – CKDIV

15 14 13 12 11 10 9 8
CHDIV

7 6 5 4 3 2 1 0
CLDIV

Tlow CLDIV(2CKDIV×() 3)+ TMCK×=

Thigh CHDIV(2CKDIV×() 3)+ TMCK×=

262 AT91RM3400
1790A–ATARM–11/03

TWI Status Register
Register Name: TWI_SR

Access Type: Read-only

• TXCOMP: Transmission Completed

0 = In master, during the length of the current frame. In slave, from START received to STOP received.

1 = When both holding and shifter registers are empty and STOP condition has been sent (in Master) or received (in Slave),
or when MSEN is set (enable TWI).

• RXRDY: Receive Holding Register Ready

0 = No character has been received since the last TWI_RHR read operation.

1 = A byte has been received in theTWI_RHR since the last read.

• TXRDY: Transmit Holding Register Ready

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR register.

1 = As soon as data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

• OVRE: Overrun Error

0 = TWI_RHR has not been loaded while RXRDY was set

1 = TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.

• UNRE: Underrun Error

0 = No underrun error

1 = No valid data in TWI_THR (TXRDY set) while trying to load the data shifter. This action automatically generated a STOP
bit in Master Mode. Reset by read in TWI_SR when TXCOMP is set.

• NACK: Not Acknowledged

0 = Each data byte has been correctly received by the far-end side TWI slave component.

1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. Reset after read.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0
UNRE OVRE – – – TXRDY RXRDY TXCOMP

263

AT91RM3400

1790A–ATARM–11/03

TWI Interrupt Enable Register
Register Name: TWI_IER

Access Type: Write-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• OVRE: Overrun Error

• UNRE: Underrun Error

• NACK: Not Acknowledge

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0
UNRE OVRE – – – TXRDY RXRDY TXCOMP

264 AT91RM3400
1790A–ATARM–11/03

TWI Interrupt Disable Register
Register Name: TWI_IDR

Access Type: Write-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• OVRE: Overrun Error

• UNRE: Underrun Error

• NACK: Not Acknowledge

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0
UNRE OVRE – – – TXRDY RXRDY TXCOMP

265

AT91RM3400

1790A–ATARM–11/03

TWI Interrupt Mask Register
Register Name: TWI_IMR

Access Type: Read-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• OVRE: Overrun Error

• UNRE: Underrun Error

• NACK: Not Acknowledge

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0
UNRE OVRE – – – TXRDY RXRDY TXCOMP

266 AT91RM3400
1790A–ATARM–11/03

TWI Receive Holding Register
Register Name: TWI_RHR

Access Type: Read-only

• RXDATA: Master or Slave Receive Holding Data

TWI Transmit Holding Register
Register Name: TWI_THR

Access Type: Read/write

• TXDATA: Master or Slave Transmit Holding Data

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
RXDATA

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TXDATA

267

AT91RM3400

1790A–ATARM–11/03

Universal Synchronous Asynchronous Receiver Transceiver (USART)

Overview The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely program-
mable (data length, parity, number of stop bits) to support a maximum of standards. The
receiver implements parity error, framing error and overrun error detection. The receiver time-
out enables handling variable-length frames and the transmitter timeguard facilitates commu-
nications with slow remote devices. Multi-drop communications are also supported through
address bit handling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 busses, with
ISO7816 T = 0 or T = 1 smart card slots, infrared transceivers and connection to modem ports.
The hardware handshaking feature enables an out-of-band flow control by automatic manage-
ment of the pins RTS and CTS.

The USART supports the connection to the Peripheral Data Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

Important features of the USART are:

• Programmable Baud Rate Generator

• 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

– 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous
Mode

– Parity Generation and Error Detection

– Framing Error Detection, Overrun Error Detection

– MSB- or LSB-first

– Optional Break Generation and Detection

– By 8 or by-16 Over-sampling Receiver Frequency

– Optional Hardware Handshaking RTS-CTS

– Optional Modem Signal Management DTR-DSR-DCD-RI

– Receiver Time-out and Transmitter Timeguard

– Optional Multi-Drop Mode with Address Generation and Detection

• RS485 with driver control signal

• ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

– NACK Handling, Error Counter with Repetition and Iteration Limit

• IrDA Modulation and Demodulation

– Communication at up to 115.2 Kbps

• Test Modes

– Remote Loopback, Local Loopback, Automatic Echo

• Supports Connection of Two Peripheral Data Controller Channels (PDC)

– Offer Buffer Transfer without Processor Intervention

268 AT91RM3400
1790A–ATARM–11/03

Block Diagram Figure 90. USART Block Diagram

Peripheral Data
Controller

Channel Channel

AIC

Receiver

APB

USART
Interrupt

RXD

TXD

SCK

USART PIO
Controller

CTS

RTS

DTR

DSR

DCD

RI

Transmitter

Modem
Signals
Control

Baud Rate
Generator

User Interface

PMC
MCK

SLCK

DIV
MCK/DIV

269

AT91RM3400

1790A–ATARM–11/03

Application
Block Diagram

Figure 91. Application Block Diagram

I/O Lines Description

Smart
Card
Slot

USART

RS232
Drivers

Modem

RS485
Drivers

Differential
Bus

IrDA
Transceivers

Modem
Driver

Field Bus
Driver

EMV
Driver IrDA

Driver

IrLAP

RS232
Drivers

Serial
Port

Serial
Driver

PPP

PSTN

Table 43. I/O Line Description

Name Description Type Active Level

SCK Serial Clock I/O

TXD Transmit Serial Data I/O

RXD Receive Serial Data Input

RI Ring Indicator Input Low

DSR Data Set Ready Input Low

DCD Data Carrier Detect Input Low

DTR Data Terminal Ready Output Low

CTS Clear to Send Input Low

RTS Request to Send Output Low

270 AT91RM3400
1790A–ATARM–11/03

Product Dependencies

I/O Lines The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If I/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

All the pins of the modems may or may not not be implemented on the USART within a prod-
uct. Frequently, only the USART1 is fully equipped with all the modem signals. For the other
USARTs of the product not equipped with the corresponding pin, the associated control bits
and statuses have no effect on the behavior of the USART.

Power
Management

The USART is not continuously clocked. The programmer must first enable the USART Clock
in the Power Management Controller (PMC) before using the USART. However, if the applica-
tion does not require USART operations, the USART clock can be stopped when not needed
and be restarted later. In this case, the USART will resume its operations where it left off.

Configuring the USART does not require the USART clock to be enabled.

Interrupt The USART interrupt line is connected on one of the internal sources of the Advanced Inter-
rupt Controller. Using the USART interrupt requires the AIC to be programmed first. Note that
it is not recommended to use the USART interrupt line in edge sensitive mode.

271

AT91RM3400

1790A–ATARM–11/03

Functional Description
The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes.

• 5- to 9-bit full-duplex asynchronous serial communication:

– MSB- or LSB-first

– 1, 1.5 or 2 stop bits

– Parity even, odd, marked, space or none

– By-8 or by-16 over-sampling receiver frequency

– Optional hardware handshaking

– Optional modem signals management

– Optional break management

– Optional multi-drop serial communication

• High-speed 5- to 9-bit full-duplex synchronous serial communication:

– MSB- or LSB-first

– 1 or 2 stop bits

– Parity even, odd, marked, space or none

– By-8 or by-16 over-sampling frequency

– Optional Hardware handshaking

– Optional Modem signals management

– Optional Break management

– Optional Multi-Drop serial communication

• RS485 with driver control signal

• ISO7816, T0 or T1 protocols for interfacing with smart cards

– NACK handling, error counter with repetition and iteration limit

• InfraRed IrDA Modulation and Demodulation

• Test modes

– Remote loopback, local loopback, automatic echo

Baud Rate
Generator

The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both
the receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the
Mode Register (US_MR) between:

• the Master Clock MCK

• a division of the Master Clock, the divider being product dependent, but generally set to 8

• the external clock, available on the SCK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD
field of the Baud Rate Generator Register (US_BRGR). If CD is programmed at 0, the Baud
Rate Generator does not generate any clock. If CD is programmed at 1, the divider is
bypassed and becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal pro-
vided on the SCK pin must be longer than a Master Clock (MCK) period. The frequency of the
signal provided on SCK must be at least 4.5 times lower than MCK.

272 AT91RM3400
1790A–ATARM–11/03

Figure 92. Baud Rate Generator

Baud Rate in
Asynchronous Mode

If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (US_BRGR).
The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in US_MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER
is cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest pos-
sible clock and that OVER is programmed at 1.

Baud Rate Calculation
Example

Table 44 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDI

Baudrate SelectedClock
8 2 Over–()CD()

--=

Table 44. Baud Rate Example (OVER = 0)

Source Clock
Expected
Baud Rate

Calculation
Result CD

Actual
Baud Rate Error

MHz Bit/s Bit/s

3 686 400 38 400 6.00 6 38 400.00 0.00%

4 915 200 38 400 8.00 8 38 400.00 0.00%

5 000 000 38 400 8.14 8 39 062.50 1.70%

7 372 800 38 400 12.00 12 38 400.00 0.00%

8 000 000 38 400 13.02 13 38 461.54 0.16%

12 000 000 38 400 19.53 20 37 500.00 2.40%

12 288 000 38 400 20.00 20 38 400.00 0.00%

14 318 180 38 400 23.30 23 38 908.10 1.31%

14 745 600 38 400 24.00 24 38 400.00 0.00%

273

AT91RM3400

1790A–ATARM–11/03

The baud rate is calculated with the following formula:

The baud rate error is calculated with the following formula. It is not recommended to work
with an error higher than 5%.

Baud Rate in
Synchronous Mode

If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in US_BRGR.

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART SCK pin. No division is active. The value written in
US_BRGR has no effect. The external clock frequency must be at least 4.5 times lower than
the system clock.

When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the
value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on
the SCK pin. If the internal clock MCK is selected, the Baud Rate Generator ensures a 50:50
duty cycle on the SCK pin, even if the value programmed in CD is odd.

Baud Rate in ISO 7816
Mode

The ISO7816 specification defines the bit rate with the following formula:

where:

• B is the bit rate

• Di is the bit-rate adjustment factor

• Fi is the clock frequency division factor

• f is the ISO7816 clock frequency (Hz)

18 432 000 38 400 30.00 30 38 400.00 0.00%

24 000 000 38 400 39.06 39 38 461.54 0.16%

24 576 000 38 400 40.00 40 38 400.00 0.00%

25 000 000 38 400 40.69 40 38 109.76 0.76%

32 000 000 38 400 52.08 52 38 461.54 0.16%

32 768 000 38 400 53.33 53 38 641.51 0.63%

33 000 000 38 400 53.71 54 38 194.44 0.54%

40 000 000 38 400 65.10 65 38 461.54 0.16%

50 000 000 38 400 81.38 81 38 580.25 0.47%

60 000 000 38 400 97.66 98 38 265.31 0.35%

70 000 000 38 400 113.93 114 38 377.19 0.06%

Table 44. Baud Rate Example (OVER = 0) (Continued)

Source Clock
Expected
Baud Rate

Calculation
Result CD

Actual
Baud Rate Error

BaudRate MCK CD 16×⁄=

Error 1 ExpectedBaudRate
ActualBaudRate

 –=

BaudRate SelectedClock
CD

--------------------------------------=

B Di
Fi
------ f×=

274 AT91RM3400
1790A–ATARM–11/03

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 45.

Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 46.

Table 47 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the
baud rate clock..

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (US_MR) is first divided by the value programmed in the field CD in the Baud
Rate Generator Register (US_BRGR). The resulting clock can be provided to the SCK pin to
feed the smart card clock inputs. This means that the CLKO bit can be set in US_MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the
FI_DI_Ratio register (US_FIDI). This is performed by the Sampling Divider, which performs a
division by up to 2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not sup-
ported and the user must program the FI_DI_RATIO field to a value as close as possible to the
expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 93 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the ISO 7816 clock.

Table 45. Binary and Decimal Values for D

DI field 0001 0010 0011 0100 0101 0110 1000 1001

Di (decimal) 1 2 4 8 16 32 12 20

Table 46. Binary and Decimal Values for F

FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101

Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048

Table 47. Possible Values for the Fi/Di Ratio

Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048

1 372 558 744 1116 1488 1860 512 768 1024 1536 2048

2 186 279 372 558 744 930 256 384 512 768 1024

4 93 139.5 186 279 372 465 128 192 256 384 512

8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256

16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128

32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64

12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6

20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

275

AT91RM3400

1790A–ATARM–11/03

Figure 93. Elementary Time Unit (ETU)

Receiver and
Transmitter
Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (US_CR). However, the receiver registers can be programmed before
the receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (US_CR). However, the transmitter registers can be programmed before
being enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART
by setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register
(US_CR). The reset commands have the same effect as a hardware reset on the correspond-
ing logic. Regardless of what the receiver or the transmitter is performing, the communication
is immediately stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in US_CR. If the receiver is disabled during a character reception, the
USART waits until the end of reception of the current character, then the reception is stopped.
If the transmitter is disabled while it is operating, the USART waits the end of transmission of
both the current character and character being stored in the Transmit Holding Register
(US_THR). If a time guard is programmed, it is handled normally.

Synchronous and
Asynchronous
Modes

Transmitter
Operations

The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE9 bit in the Mode Regis-
ter (US_MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field.
The parity bit is set according to the PAR field in US_MR. The even, odd, space, marked or
none parity bit can be configured. The MSBF field in US_MR configures which data bit is sent
first. If written at 1, the most significant bit is sent first. At 0, the less significant bit is sent first.
The number of stop bits is selected by the NBSTOP field in US_MR. The 1.5 stop bit is sup-
ported in asynchronous mode only.

1 ETU

ISO7816 Clock
on SCK

ISO7816 I/O Line
on TXD

FI_DI_RATIO
ISO7816 Clock Cycles

276 AT91RM3400
1790A–ATARM–11/03

Figure 94. Character Transmit

The characters are sent by writing in the Transmit Holding Register (US_THR). The transmit-
ter reports two status bits in the Channel Status Register (US_CSR): TXRDY (Transmitter
Ready), which indicates that US_THR is empty and TXEMPTY, which indicates that all the
characters written in US_THR have been processed. When the current character processing
is completed, the last character written in US_THR is transferred into the Shift Register of the
transmitter and US_THR becomes empty, thus TXRDY raises.

Both TXRDY and TXEMPTY bits are low since the transmitter is disabled. Writing a character
in US_THR while TXRDY is active has no effect and the written character is lost.

Figure 95. Transmitter Status

Asynchronous
Receiver

If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (US_MR).

The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a
start bit is detected and data, parity and stop bits are successively sampled on the bit rate
clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is
8 (OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and
stop bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. The number of stop bits
has no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP,
so that resynchronization between the receiver and the transmitter can occur. Moreover, as
soon as the stop bit is sampled, the receiver starts looking for a new start bit so that resynchro-
nization can also be accomplished when the transmitter is operating with one stop bit.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled One Stop

Baud Rate
 Clock

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

277

AT91RM3400

1790A–ATARM–11/03

Figure 96 and Figure 97 illustrate start detection and character reception when USART oper-
ates in asynchronous mode.

Figure 96. Asynchronous Start Detection

Figure 97. Asynchronous Character Reception

Synchronous Receiver In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the par-
ity bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous
mode operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 98 illustrates a character reception in synchronous mode.

Sampling
Clock (x16)

RXD

Start
Detection

Sampling

Baud Rate
Clock

RXD

Start
Rejection

Sampling

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D0

Sampling

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled

Baud Rate
Clock

Start
Detection

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

278 AT91RM3400
1790A–ATARM–11/03

Figure 98. Synchronous Mode Character Reception

Receiver Operations When a character reception is completed, it is transferred to the Receive Holding Register
(US_RHR) and the RXRDY bit in the Status Register (US_CSR) rises. If a character is com-
pleted while the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is
transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing
the Control Register (US_CR) with the RSTSTA (Reset Status) bit at 1.

Figure 99. Receiver Status

Parity The USART supports five parity modes selected by programming the PAR field in the Mode
Register (US_MR). The PAR field also enables the Multidrop mode, which is discussed in a
separate paragraph. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at 1 if a
number of 1s in the character data bit is even, and at 0 if the number of 1s is odd. Accordingly,
the receiver parity checker counts the number of received 1s and reports a parity error if the
sampled parity bit does not correspond. If the odd parity is selected, the parity generator of the
transmitter drives the parity bit at 0 if a number of 1s in the character data bit is even, and at 1
if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of
received 1s and reports a parity error if the sampled parity bit does not correspond. If the mark
parity is used, the parity generator of the transmitter drives the parity bit at 1 for all characters.
The receiver parity checker reports an error if the parity bit is sampled at 0.If the space parity is
used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Sampling

Parity Bit
Stop Bit

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate
Clock

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

RXRDY

OVRE

D0 D1 D2 D3 D4 D5 D6 D7
Start

Bit
Parity

Bit
Stop
Bit

RSTSTA = 1

Read
US_RHR

279

AT91RM3400

1790A–ATARM–11/03

Table 48 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even. I

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Sta-
tus Register (US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR)
with the RSTSTA bit at 1. Figure 100 illustrates the parity bit status setting and clearing.

Figure 100. Parity Error

Multi-drop Mode If the PAR field in the Mode Register (US_MR) is programmed to the value 0x3, the USART
runs in Multi-drop mode. This mode differentiates the data characters and the address charac-
ters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the parity bit
at 1.

If the USART is configured in multi-drop mode, the receiver sets the PARE parity error bit
when the parity bit is high and the transmitter is able to send a character with the parity bit high
when the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to US_CR. In
this case, the next byte written to US_THR is transmitted as an address. Any character written
in US_THR without having written the command SENDA is transmitted normally with the parity
at 0.

Table 48. Parity Bit Examples

Character Hexa Binary Parity Bit ParityMode

A 0x41 0100 0001 1 Odd

A 0x41 0100 0001 0 Even

A 0x41 0100 0001 1 Mark

A 0x41 0100 0001 0 Space

A 0x41 0100 0001 None None

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Bad
Parity

Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

PARE

RXRDY

RSTSTA = 1

280 AT91RM3400
1790A–ATARM–11/03

Transmitter Timeguard The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Reg-
ister (US_TTGR). When this field is programmed at zero no timeguard is generated.
Otherwise, the transmitter holds a high level on TXD after each transmitted byte during the
number of bit periods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 101, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains at 0 during the timeguard transmission if a character has been written
in US_THR. TXEMPTY remains low until the timeguard transmission is completed as the time-
guard is part of the current character being transmitted.

Figure 101. Timeguard Operations

Table 49 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

TG = 4

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

TG = 4

Table 49. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard

bit/sec µs ms

1 200 833 212.50

9 600 104 26.56

14400 69.4 17.71

19200 52.1 13.28

28800 34.7 8.85

33400 29.9 7.63

56000 17.9 4.55

57600 17.4 4.43

115200 8.7 2.21

281

AT91RM3400

1790A–ATARM–11/03

Receiver Time-out The Receiver Time-out provides support in handling variable-length frames. This feature
detects an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the
Channel Status Register (US_CSR) rises and can generate an interrupt, thus indicating to the
driver an end of frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (US_RTOR). If the TO field is programmed at
0, the Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in
US_CSR remains at 0. Otherwise, the receiver loads a 16-bit counter with the value pro-
grammed in TO. This counter is decremented at each bit period and reloaded each time a new
character is received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises.

The user can either:

• Obtain an interrupt when a time-out is detected after having received at least one
character. This is performed by writing the Control Register (US_CR) with the STTTO
(Start Time-out) bit at 1.

• Obtain a periodic interrupt while no character is received. This is performed by writing
US_CR with the RETTO (Reload and Start Time-out) bit at 1.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time out. This prevents having to
obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD
is detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 102 shows the block diagram of the Receiver Time out feature.

Figure 102. Receiver Time-out Block Diagram

Table 50 gives the maximum time-out period for some standard baud rates.

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear

282 AT91RM3400
1790A–ATARM–11/03

Framing Error The receiver is capable of detecting framing errors. A framing error happens when the stop bit
of a received character is detected at level 0. This can occur if the receiver and the transmitter
are fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (US_CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It
is cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1.

Figure 103. Framing Error Status

Table 50. Maximum Time-out Period

Baud Rate Bit Time Time -out

bit/sec µs ms

600 1 667 109 225

1 200 833 54 613

2 400 417 27 306

4 800 208 13 653

9 600 104 6 827

14400 69 4 551

19200 52 3 413

28800 35 2 276

33400 30 1 962

56000 18 1 170

57600 17 1 138

200000 5 328

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

FRAME

RXRDY

RSTSTA = 1

283

AT91RM3400

1790A–ATARM–11/03

Transmit Break The user can request the transmitter to generate a break condition on the TXD line. A break
condition drives the TXD line low during at least one complete character. It appears the same
as a 0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds
the TXD line at least during one character until the user requests the break condition to be
removed.

A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit at 1. This
can be performed at any time, either while the transmitter is empty (no character in either the
Shift Register or in US_THR) or when a character is being transmitted. If a break is requested
while a character is being shifted out, the character is first completed before the TXD line is
held low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing US_CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in US_CSR is at 1 and the start of the
break condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing US_CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable
result. All STPBRK commands requested without a previous STTBRK command are ignored.
A byte written into the Transmit Holding Register while a break is pending, but not started, is
ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit
times. Thus, the transmitter ensures that the remote receiver detects correctly the end of
break and the start of the next character. If the timeguard is programmed with a value higher
than 12, the TXD line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 104 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STP BRK)
commands on the TXD line.

Figure 104. Break Transmission

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmùission End of Break

284 AT91RM3400
1790A–ATARM–11/03

Receive Break The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit
may be cleared by writing the Control Register (US_CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

Hardware
Handshaking

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS
pins are used to connect with the remote device, as shown in Figure 105.

Figure 105. Connection with a Remote Device for Hardware Handshaking

Setting the USART to operate with hardware handshaking is performed by writing the
USART_MODE field in the Mode Register (US_MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmit-
ter can handle hardware handshaking in any case.

Figure 106 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full)
coming from the PDC channel is high. Normally, the remote device does not start transmitting
while its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls,
indicating to the remote device that it can start transmitting. Defining a new buffer to the PDC
clears the status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 106. Receiver Behavior when Operating with Hardware Handshaking

Figure 107 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens
as soon as the pin CTS falls.

USART

TXD

CTS

Remote
Device

RXD

TXDRXD

RTS

RTS

CTS

RTS

RXBUFF

Write
US_CR

RXEN = 1

RXD

RXDIS = 1

285

AT91RM3400

1790A–ATARM–11/03

Figure 107. Transmitter Behavior when Operating with Hardware Handshaking

ISO7816 Mode The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816
link. Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T
= 1.

ISO7816 Mode
overview

The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see “Baud Rate Genera-
tor” on page 271).

The USART connects to a smart card. as shown in Figure 108. The TXD line becomes bidirec-
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is
considered as the master of the communication as it generates the clock.

Figure 108. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit
LSB or MSB first.

The USART cannot operate concurrently in both receiver and transmitter modes as the com-
munication is unidirectional at a time. It has to be configured according to the required mode
by enabling or disabling either the receiver or the transmitter as desired. Enabling both the
receiver and the transmitter at the same time in ISO7816 mode may lead to unpredictable
results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the I/O line at their negative value. The USART does not support this
format and the user has to perform an exclusive OR on the data before writing it in the Trans-
mit Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR).

CTS

TXD

Smart
Card

SCK
CLK

TXD
I/O

USART

286 AT91RM3400
1790A–ATARM–11/03

Protocol T = 0 In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 109.

If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 110. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous charac-
ter in the Receive Holding Register (US_RHR). It appropriately sets the PARE bit in the Status
Register (US_SR) so that the software can handle the error.

Figure 109. T = 0 Protocol without Parity Error

Figure 110. T = 0 Protocol with Parity Error

Receive Error Counter The USART receiver also records the total number of errors. This can be read in the Number
of Error (US_NER) register. The NB_ERRORS field can record up to 255 errors. Reading
US_NER automatically clears the NB_ERRORS field.

Receive NACK Inhibit The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (US_MR). If INACK is at 1, no error signal is driven on the I/O
line even if a parity bit is detected, but the INACK bit is set in the Status Register (US_SR).
The INACK bit can be cleared by writing the Control Register (US_CR) with the RSTNACK bit
at 1.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

Transmit Character
Repetition

When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetit ion is enabled by writing the
MAX_ITERATION field in the Mode Register (US_MR) at a value higher than 0. Each charac-
ter can be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Next
Start

Bit

Guard
Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Start
Bit

Guard
Time 2

D0 D1

Error

Repetition

287

AT91RM3400

1790A–ATARM–11/03

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in
the Channel Status Register (US_CSR). If the repetition of the character is acknowledged by
the receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in US_CSR can be cleared by writing the Control Register with the RSIT
bit at 1.

Disable Successive
Receive NACK

The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (US_MR). The maximum
number of NACK transmitted is programmed in the MAX_ITERATION field. As soon as
MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent
on the line and the ITERATION bit in the Channel Status Register is set.

Protocol T = 1 When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (US_CSR).

IrDA Mode The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 111. The modulator and demodulator are compliant
with the IrDA specification version 1.1 and support data transfer speeds ranging from 2,4 Kbps
to 115,2 Kbps.

The USART IrDA mode is enabled by setting the USART_MODE field in the Mode Register
(US_MR) to the value 0x8. The IrDA Filter Register (US_IF) allows configuring the demodula-
tor filter. The USART transmitter and receiver operate in a normal asynchronous mode and all
parameters are accessible. Note that the modulator and the demodulator are activated.

Figure 111. Connection to IrDA Transceivers

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

IrDA
Transceivers

RXD RX

TXD

TX

USART

Demodulator

Modulator

Receiver

Transmitter

288 AT91RM3400
1790A–ATARM–11/03

IrDA Modulation For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. "0" is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration
are shown in Table 51..

Figure 112 shows an example of character transmission.

Figure 112. IrDA Modulation

IrDA Baud Rate Table 52 gives some examples of CD values, baud rate error and pulse duration. Note that the
requirement on the maximum acceptable error of +/- 1.87% must be met.

Table 51. IrDA Pulse Duration

Baud Rate
Pulse Duration
(3/16)

2.4 Kb/s 78.13 µs

9.6 Kb/s 19.53 µs

19.2 Kb/s 9.77 µs

38.4 Kb/s 4.88 µs

57.6 Kb/s 3.26 µs

115.2 Kb/s 1.63 µs

Bit Period Bit Period3
16

Start
Bit

Data Bits Start
Bit

0 00 0 01 11 11
Transmitter

Output

TXD

Table 52. IrDA Baud Rate Error

Peripheral Clock Baud rate CD Baud rate Error Pulse time

3 686 400 115 200 2 0.00% 1.63

20 000 000 115 200 11 1.38% 1.63

32 768 000 115 200 18 1.25% 1.63

40 000 000 115 200 22 1.38% 1.63

3 686 400 57 600 4 0.00% 3.26

20 000 000 57 600 22 1.38% 3.26

32 768 000 57 600 36 1.25% 3.26

40 000 000 57 600 43 0.93% 3.26

3 686 400 38 400 6 0.00% 4.88

20 000 000 38 400 33 1.38% 4.88

32 768 000 38 400 53 0.63% 4.88

289

AT91RM3400

1790A–ATARM–11/03

IrDA Demodulator The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which
is loaded with the value programmed in US_IF. When a falling edge is detected on the RXD
pin, the Filter Counter starts counting down at the Master Clock (MCK) speed. If a rising edge
is detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is
detected when the counter reaches 0, the input of the receiver is driven low during one bit
time.

Figure 113 illustrates the operations of the IrDA demodulator.

Figure 113. IrDA Demodulator Operations

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in
US_FIDI must be set to a value higher than 0 in order to assure IrDA communications operate
correctly.

40 000 000 38 400 65 0.16% 4.88

3 686 400 19 200 12 0.00% 9.77

20 000 000 19 200 65 0.16% 9.77

32 768 000 19 200 107 0.31% 9.77

40 000 000 19 200 130 0.16% 9.77

3 686 400 9 600 24 0.00% 19.53

20 000 000 9 600 130 0.16% 19.53

32 768 000 9 600 213 0.16% 19.53

40 000 000 9 600 260 0.16% 19.53

3 686 400 2 400 96 0.00% 78.13

20 000 000 2 400 521 0.03% 78.13

32 768 000 2 400 853 0.04% 78.13

Table 52. IrDA Baud Rate Error

Peripheral Clock Baud rate CD Baud rate Error Pulse time

MCK

RXD

Receiver
Input

Pulse
Rejected

6 5 4 3 2 6 1

Driven Low During 16 Baud Rate Clock Cycles

6 5 4 3 2 0
Pulse

Accepted
Counter

Value

290 AT91RM3400
1790A–ATARM–11/03

RS485 Mode The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configura-
tion of all the parameters are possible. The difference is that the RTS pin is driven high when
the transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A
typical connection of the USART to a RS485 bus is shown in Figure 114.

Figure 114. Typical Connection to a RS485 bus.

The USART is set in RS485 mode by programming the USART_MODE field in the Mode Reg-
ister (US_MR) to the value 0x1.

The RTS pin is at a level inverse of the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character
completion. Figure 115 gives an example of the RTS waveform during a character transmis-
sion when the timeguard is enabled.

Figure 115. Example of RTS Drive with Timeguard

USART

RTS

TXD

RXD

Differential
Bus

D0 D1 D2 D3 D4 D5 D6 D7

TXD
Start

Bit
Parity

Bit
Stop
Bit

Baud Rate
 Clock

TG = 4

Write
US_THR

TXRDY

TXEMPTY

RTS

291

AT91RM3400

1790A–ATARM–11/03

Modem Mode The USART features modem mode, which enables control of the signals: DTR (Data Terminal
Ready), DSR (Data Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data
Carrier Detect) and RI (Ring Indicator). While operating in modem mode, the USART behaves
as a DTE (Data Terminal Equipment) as it drives DTR and RTS and can detect level change
on DSR, DCD, CTS and RI.

Setting the USART in modem mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x3. While operating in modem mode the USART
behaves as though in asynchronous mode and all the parameter configurations are available.

Table 53 gives the correspondence of the USART signals with modem connection standards.

The control of the RTS and DTR output pins is performed by witting the Control Register
(US_CR) with the RTSDIS, RTSEN, DTRDIS and DTREN bits respectively at 1. The disable
command forces the corresponding pin to its inactive level, i.e. high. The enable commands
force the corresponding pin to its active level, i.e. low.

The level changes are detected on the RI, DSR, DCD and CTS pins. If an input change is
detected, the RIIC, DSRIC, DCDIC and CTSIC bits in the Channel Status Register (US_CSR)
are set respectively and can trigger an interrupt. The status is automatically cleared when
US_CSR is read. Furthermore, the CTS automatically disables the transmitter when it is
detected at its inactive state. If a character is being transmitted when the CTS rises, the char-
acter transmission is completed before the transmitter is actually disabled.

Test Modes The USART can be programmed to operate in three different test modes. The internal loop-
back capability allows on-board diagnostics. In the loopback mode the USART interface pins
are disconnected or not and reconfigured for loopback internally or externally.

Normal Mode As a reminder, the normal mode simply connects the RXD pin on the receiver input and the
transmitter output on the TXD pin.

Figure 116. Normal Mode Configuration

Table 53. Circuit References

USART pin V24 CCITT Direction

TXD 2 103 From terminal to modem

RTS 4 105 From terminal to modem

DTR 20 108.2 From terminal to modem

RXD 3 104 From modem to terminal

CTS 5 106 From terminal to modem

DSR 6 107 From terminal to modem

DCD 8 109 From terminal to modem

RI 22 125 From terminal to modem

Receiver

Transmitter

RXD

TXD

292 AT91RM3400
1790A–ATARM–11/03

Automatic Echo Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin,
it is sent to the TXD pin, as shown in Figure 117. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.

Figure 117. Automatic Echo

Local Loopback The local loopback mode connects the output of the transmitter directly to the input of the
receiver, as shown in Figure 118. The TXD and RXD pins are not used. The RXD pin has no
effect on the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 118. Local Loopback

Remote Loopback Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 119.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.

Figure 119. Remote Loopback

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
1

Receiver

Transmitter

RXD

TXD

1

293

AT91RM3400

1790A–ATARM–11/03

USART User Interface

Table 54. USART Memory Map

Offset Register Name Access Reset State

0x0000 Control Register US_CR Write-only –

0x0004 Mode Register US_MR Read/Write –

0x0008 Interrupt Enable Register US_IER Write-only –

0x000C Interrupt Disable Register US_IDR Write-only –

0x0010 Interrupt Mask Register US_IMR Read-only 0

0x0014 Channel Status Register US_CSR Read-only –

0x0018 Receiver Holding Register US_RHR Read-only 0

0x001C Transmitter Holding Register US_THR Write-only –

0x0020 Baud Rate Generator Register US_BRGR Read/Write 0

0x0024 Receiver Time-out Register US_RTOR Read/Write 0

0x0028 Transmitter Timeguard Register US_TTGR Read/Write 0

0x2C
to

0x3C
Reserved – – –

0x0040 FI DI Ratio Register US_FIDI Read/Write 0x174

0x0044 Number of Errors Register US_NER Read-only –

0x0048 Reserved – – –

0x004C IrDA Filter Register US_IF Read/Write 0

0x5C
to

0xFC
Reserved – – –

0x100
to

0x128

Reserved for PDC Registers – – –

294 AT91RM3400
1790A–ATARM–11/03

USART Control Register
Name: US_CR

Access Type: Write-only

• RSTRX: Reset Receiver

0 = No effect.

1 = Resets the receiver.

• RSTTX: Reset Transmitter

0 = No effect.

1 = Resets the transmitter.

• RXEN: Receiver Enable

0 = No effect.

1 = Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable

0 = No effect.

1 = Disables the receiver.

• TXEN: Transmitter Enable

0 = No effect.

1 = Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable

0 = No effect.

1 = Disables the transmitter.

• RSTSTA: Reset Status Bits

0 = No effect.

1 = Resets the status bits PARE, FRAME, OVRE and RXBRK in the US_CSR.

• STTBRK: Start Break

0 = No effect.

1 = Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been trans-
mitted. No effect if a break is already being transmitted.

• STPBRK: Stop Break

0 = No effect.

1 = Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit peri-
ods. No effect if no break is being transmitted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RTSDIS RTSEN DTRDIS DTREN

15 14 13 12 11 10 9 8
RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0
TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

295

AT91RM3400

1790A–ATARM–11/03

• STTTO: Start Time-out

0 = No effect

1 = Starts waiting for a character before clocking the time-out counter.

• SENDA: Send Address

0 = No effect.

1 = In Multi-drop Mode only, the next character written to the US_THR is sent with the address bit set.

• RSTIT: Reset Iterations

0 = No effect.

1 = Resets ITERATION in US_CSR. No effect if the ISO7816 is not enabled.

• RSTNACK: Reset Non Acknowledge

0 = No effect

1 = Resets NACK in US_CSR.

• RETTO: Rearm Time-out

0 = No effect

1 = Restart Time-out

• DTREN: Data Terminal Ready Enable

0 = No effect.

1 = Drives the pin DTR at 0.

• DTRDIS: Data Terminal Ready Disable

0 = No effect.

1 = Drives the pin DTR to 1.

• RTSEN: Request to Send Enable

0 = No effect.

1 = Drives the pin RTS to 0.

• RTSDIS: Request to Send Disable

0 = No effect.

1 = Drives the pin RTS to 1.

296 AT91RM3400
1790A–ATARM–11/03

USART Mode Register
Name: US_MR

Access Type: Read/Write

• USART_MODE

• USCLKS: Clock Selection

• CHRL: Character Length.

31 30 29 28 27 26 25 24
– – – FILTER – MAX_ITERATION

23 22 21 20 19 18 17 16
– – DSNACK INACK OVER CLKO MODE9 MSBF

15 14 13 12 11 10 9 8
CHMODE NBSTOP PAR SYNC

7 6 5 4 3 2 1 0
CHRL USCLKS USART_MODE

USART_MODE Mode of the USART

0 0 0 0 Normal

0 0 0 1 RS485

0 0 1 0 Hardware Handshaking

0 0 1 1 Modem

0 1 0 0 IS07816 Protocol: T = 0

0 1 0 1 Reserved

0 1 1 0 IS07816 Protocol: T = 1

0 1 1 1 Reserved

1 0 0 0 IrDA

1 1 x x Reserved

USCLKS Selected Clock

0 0 MCK

0 1 MCK / DIV

1 0 Reserved

1 1 SCK

CHRL Character Length

0 0 5 bits

0 1 6 bits

1 0 7 bits

1 1 8 bits

297

AT91RM3400

1790A–ATARM–11/03

• SYNC: Synchronous Mode Select

0 = USART operates in Asynchronous Mode.

1 = USART operates in Synchronous Mode

• PAR: Parity Type

• NBSTOP: Number of Stop Bits

• CHMODE: Channel Mode

• MSBF: Bit Order

0 = Least Significant Bit is sent/received first.

1 = Most Significant Bit is sent/received first.

• MODE9: 9-bit Character Length

0 = CHRL defines character length.

1 = 9-bit character length.

• CKLO: Clock Output Select

0 = The USART does not drive the SCK pin.

1 = The USART drives the SCK pin if USCLKS does not select the external clock SCK.

• OVER: Oversampling Mode

0 = 16x Oversampling.

1 = 8x Oversampling.

PAR Parity Type

0 0 0 Even parity

0 0 1 Odd parity

0 1 0 Parity forced to 0 (Space)

0 1 1 Parity forced to 1 (Mark)

1 0 x No parity

1 1 x Multi-drop mode

NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1)

0 0 1 stop bit 1 stop bit

0 1 1.5 stop bits Reserved

1 0 2 stop bits 2 stop bits

1 1 Reserved Reserved

CHMODE Mode Description

0 0 Normal Mode

0 1 Automatic Echo. Receiver input is connected to the TXD pin.

1 0 Local Loopback. Transmitter output is connected to the Receiver Input..

1 1 Remote Loopback. RXD pin is internally connected to the TXD pin.

298 AT91RM3400
1790A–ATARM–11/03

• INACK: Inhibit Non Acknowledge

0 = The NACK is generated.

1 = The NACK is not generated.

• DSNACK: Disable Successive NACK

0 = NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

1 = Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-
ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

• MAX_ITERATION

Defines the maximum number of iterations in mode ISO7816, protocol T = 0.

• FILTER: Infrared Receive Line Filter

0 = The USART does not filter the receive line.

1 = The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

299

AT91RM3400

1790A–ATARM–11/03

USART Interrupt Enable Register
Name: US_IER

Access Type: Write-only

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• ENDRX: End of Receive Transfer Interrupt Enable

• ENDTX: End of Transmit Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• PARE: Parity Error Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• ITERATION: Iteration Interrupt Enable

• TXBUFE: Buffer Empty Interrupt Enable

• RXBUFF: Buffer Full Interrupt Enable

• NACK: Non Acknowledge Interrupt Enable

• RIIC: Ring Indicator Input Change Enable

• DSRIC: Data Set Ready Input Change Enable

• DCDIC: Data Carrier Detect Input Change Interrupt Enable

• CTSIC: Clear to Send Input Change Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

300 AT91RM3400
1790A–ATARM–11/03

USART Interrupt Disable Register
Name: US_IDR

Access Type: Write-only

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• ENDRX: End of Receive Transfer Interrupt Disable

• ENDTX: End of Transmit Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• FRAME: Framing Error Interrupt Disable

• PARE: Parity Error Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• ITERATION: Iteration Interrupt Disable

• TXBUFE: Buffer Empty Interrupt Disable

• RXBUFF: Buffer Full Interrupt Disable

• NACK: Non Acknowledge Interrupt Disable

• RIIC: Ring Indicator Input Change Disable

• DSRIC: Data Set Ready Input Change Disable

• DCDIC: Data Carrier Detect Input Change Interrupt Disable

• CTSIC: Clear to Send Input Change Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

301

AT91RM3400

1790A–ATARM–11/03

USART Interrupt Mask Register
Name: US_IMR

Access Type: Read-only

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• ENDRX: End of Receive Transfer Interrupt Mask

• ENDTX: End of Transmit Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• PARE: Parity Error Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• ITERATION: Iteration Interrupt Mask

• TXBUFE: Buffer Empty Interrupt Mask

• RXBUFF: Buffer Full Interrupt Mask

• NACK: Non Acknowledge Interrupt Mask

• RIIC: Ring Indicator Input Change Mask

• DSRIC: Data Set Ready Input Change Mask

• DCDIC: Data Carrier Detect Input Change Interrupt Mask

• CTSIC: Clear to Send Input Change Interrupt Mask

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

302 AT91RM3400
1790A–ATARM–11/03

USART Channel Status Register
Name: US_CSR

Access Type: Read-only

• RXRDY: Receiver Ready

0 = No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1 = At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready

0 = A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has
been requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1 = There is no character in the US_THR.

• RXBRK: Break Received/End of Break

0 = No Break received or End of Break detected since the last RSTSTA.

1 = Break Received or End of Break detected since the last RSTSTA.

• ENDRX: End of Receiver Transfer

0 = The End of Transfer signal from the Receive PDC channel is inactive.

1 = The End of Transfer signal from the Receive PDC channel is active.

• ENDTX: End of Transmitter Transfer

0 = The End of Transfer signal from the Transmit PDC channel is inactive.

1 = The End of Transfer signal from the Transmit PDC channel is active.

• OVRE: Overrun Error

0 = No overrun error has occurred since since the last RSTSTA.

1 = At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error

0 = No stop bit has been detected low since the last RSTSTA.

1 = At least one stop bit has been detected low since the last RSTSTA.

• PARE: Parity Error

0 = No parity error has been detected since the last RSTSTA.

1 = At least one parity error has been detected since the last RSTSTA.

• TIMEOUT: Receiver Time-out

0 = There has not been a time-out since the last Start Time-out command or the Time-out Register is 0.

1 = There has been a time-out since the last Start Time-out command.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
CTS DCD DSR RI CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

303

AT91RM3400

1790A–ATARM–11/03

• TXEMPTY: Transmitter Empty

0 = There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1 = There is at least one character in either US_THR or the Transmit Shift Register.

• ITERATION: Max number of Repetitions Reached

0 = Maximum number of repetitions has not been reached since the last RSIT.

1 = Maximum number of repetitions has been reached since the last RSIT.

• TXBUFE: Transmission Buffer Empty

0 = The signal Buffer Empty from the Transmit PDC channel is inactive.

1 = The signal Buffer Empty from the Transmit PDC channel is active.

• RXBUFF: Reception Buffer Full

0 = The signal Buffer Full from the Receive PDC channel is inactive.

1 = The signal Buffer Full from the Receive PDC channel is active.

• NACK: Non Acknowledge

0 = No Non Acknowledge has not been detected since the last RSTNACK.

1 = At least one Non Acknowledge has been detected since the last RSTNACK.

• RIIC: Ring Indicator Input Change Flag

0 = No input change has been detected on the RI pin since the last read of US_CSR.

1 = At least one input change has been detected on the RI pin since the last read of US_CSR.

• DSRIC: Data Set Ready Input Change Flag

0 = No input change has been detected on the DSR pin since the last read of US_CSR.

1 = At least one input change has been detected on the DSR pin since the last read of US_CSR.

• DCDIC: Data Carrier Detect Input Change Flag

0 = No input change has been detected on the DCD pin since the last read of US_CSR.

1 = At least one input change has been detected on the DCD pin since the last read of US_CSR.

• CTSIC: Clear to Send Input Change Flag

0 = No input change has been detected on the CTS pin since the last read of US_CSR.

1 = At least one input change has been detected on the CTS pin since the last read of US_CSR.

• RI: Image of RI Input

0 = RI is at 0.

1 = RI is at 1.

• DSR: Image of DSR Input

0 = DSR is at 0

1 = DSR is at 1.

• DCD: Image of DCD Input

0 = DCD is at 0.

1 = DCD is at 1.

• CTS: Image of CTS Input

0 = CTS is at 0.

1 = CTS is at 1.

304 AT91RM3400
1790A–ATARM–11/03

USART Receive Holding Register
Name: US_RHR

Access Type: Read-only

• RXCHR: Received Character

Last character received if RXRDY is set.

USART Transmit Holding Register
Name: US_THR

Access Type: Write-only

• TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – RXCHR

7 6 5 4 3 2 1 0
RXCHR

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – TXCHR

7 6 5 4 3 2 1 0
TXCHR

305

AT91RM3400

1790A–ATARM–11/03

USART Baud Rate Generator Register
Name: US_BRGR

Access Type: Read/Write

• CD: Clock Divider

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
CD

7 6 5 4 3 2 1 0
CD

CD

USART_MODE ≠ ISO7816
USART_MODE =

ISO7816
SYNC = 0 SYNC = 1

OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535 Baud Rate =

Selected Clock/16/CD

Baud Rate =

Selected Clock/8/CD

Baud Rate = Selected
Clock /CD

Baud Rate = Selected
Clock/CD/FI_DI_RATIO

306 AT91RM3400
1790A–ATARM–11/03

USART Receiver Time-out Register
Name: US_RTOR

Access Type: Read/Write

• TO: Time-out Value

0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TO

7 6 5 4 3 2 1 0

TO

307

AT91RM3400

1790A–ATARM–11/03

USART Transmitter Timeguard Register
Name: US_TTGR

Access Type: Read/Write

• TG: Timeguard Value

0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TG

308 AT91RM3400
1790A–ATARM–11/03

USART FI DI RATIO Register
Name: US_FIDI

Access Type: Read/Write

Reset Value: 0x174

• FI_DI_RATIO: FI Over DI Ratio Value

0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1-2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – FI_DI_RATIO

7 6 5 4 3 2 1 0
FI_DI_RATIO

309

AT91RM3400

1790A–ATARM–11/03

USART Number of Errors Register
Name: US_NER

Access Type: Read-only

• NB_ERRORS: Number of Errors

Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
NB_ERRORS

310 AT91RM3400
1790A–ATARM–11/03

USART IrDA FILTER Register
Name: US_IF

Access Type: Read/Write

• IRDA_FILTER: IrDA Filter

Sets the filter of the IrDA demodulator.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
IRDA_FILTER

311

AT91RM3400

1790A–ATARM–11/03

Serial Synchronous Controller (SSC)

Overview The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as I2S, Short Frame Sync, Long Frame Sync,
etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TD/RD signal for data, the
TK/RK signal for the clock and the TF/RF signal for the Frame Sync. Transfers contain up to
16 data of up to 32 bits. they can be programmed to start automatically or on different events
detected on the Frame Sync signal.

The SSC’s high-level of programmability and its two dedicated PDC channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDC channels, the SSC permits interfacing with low processor
overhead to the following:

• CODECs in master or slave mode

• DAC through dedicated serial interface, particularly I2S

• Magnetic card reader

Features of the SSC are:

• Provides Serial Synchronous Communication Links Used in Audio and Telecom
Applications

• Contains an Independent Receiver and Transmitter and a Common Clock Divider

• Interfaced with Two PDC Channels (DMA Access) to Reduce Processor Overhead

• Offers a Configurable Frame Sync and Data Length

• Receiver and Transmitter can be Programmed to Start Automatically or on Detection of
Different Event on the Frame Sync Signal

• Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame
Synchronization Signal

312 AT91RM3400
1790A–ATARM–11/03

Block Diagram Figure 120. Block Diagram

Application
Block Diagram

Figure 121. Application Block Diagram

SSC Interface

PDC

APB Bridge

MCK

ASB

APB

PIO

TF

TK

TD

RF

RK

RD
Interrupt Control

SSC Interrupt

PMC

Interrupt
Management

Power
 Management

Test
Management

SSC

Serial AUDIO

OS or RTOS Driver

Codec
Frame

Management
Line Interface

Time Slot
Management

313

AT91RM3400

1790A–ATARM–11/03

Pin Name List

Product Dependencies

I/O Lines The pins used for interfacing the compliant external devices may be multiplexed with PIO
lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.

Power
Management

The SSC is not continuously clocked. The SSC interface may be clocked through the Power
Management Controller (PMC), therefore the programmer must first configure the PMC to
enable the SSC clock.

Interrupt The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling interrupts requires programming the AIC before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

Table 55. I/O Lines Description

Pin Name Pin Description Type

RF Receiver Frame Synchro Input/Output

RK Receiver Clock Input/Output

RD Receiver Data Input

TF Transmitter Frame Synchro Input/Output

TK Transmitter Clock Input/Output

TD Transmitter Data Output

314 AT91RM3400
1790A–ATARM–11/03

Functional
Description

This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by
programming the receiver to use the transmit clock and/or to start a data transfer when trans-
mission starts. Alternatively, this can be done by programming the transmitter to use the
receive clock and/or to start a data transfer when reception starts. The transmitter and the
receiver can be programmed to operate with the clock signals provided on either the TK or RK
pins. This allows the SSC to support many slave-mode data transfers. The maximum clock
speed allowed on the TK and RK pins is the master clock divided by 2. Each level of the clock
must be stable for at least two master clock periods.

Figure 122. SSC Functional Block Diagram

Interrupt Control

AIC

User
Interface

APB

Transmitter

TD

TF

TK
Clock Output

Controller

Frame Sync
Controller

Transmit Clock
Controller

Transmit Shift Register
Start

Selector

Transmit Sync
Holding Register

Transmit Holding
Register

Load Shift

RX clock

TX clock
TK Input

TF

TX PDC

RF

RD

RF

RK
Clock Output

Controller

Frame Sync
Controller

Receive Clock
Controller

Receive Shift RegisterStart
Selector

Receive Sync
Holding Register

Receive Holding
Register

Load Shift

TX Clock

RX ClockRK Input

RF

RX PDC

Receiver

TF

MCK Clock
Divider

PDC

315

AT91RM3400

1790A–ATARM–11/03

Clock
Management

The transmitter clock can be generated by:

• an external clock received on the TK I/O pad

• the receiver clock

• the internal clock divider

The receiver clock can be generated by:

• an external clock received on the RK I/O pad

• the transmitter clock

• the internal clock divider

Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the
receiver block can generate an external clock on the RK I/O pad.

This allows the SSC to support many Master and Slave-mode data transfers.

Clock Divider Figure 123. Divided Clock Block Diagram

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register SSC_CMR, allowing a Master Clock divi-
sion by up to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When
this field is programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal or greater to 1, the Divided Clock has a frequency of Master
Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless if the
DIV value is even or odd.

Figure 124. Divided Clock Generation

Table 56. Bit Rate

Maximum Minimum

MCK / 2 MCK / 8190

MCK Divided Clock

Clock Divider

/ 2 12-bit Counter

SSC_CMR

Master Clock

Divided Clock
DIV = 1

Master Clock

Divided Clock
DIV = 3

Divided Clock Frequency = MCK/2

Divided Clock Frequency = MCK/6

316 AT91RM3400
1790A–ATARM–11/03

Transmitter Clock
Management

The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS field in
SSC_TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently
by the CKI bits in SSC_TCMR.

The transmitter can also drive the TK I/O pad continuously or be limited to the actual data
transfer. The clock output is configured by the SSC_TCMR register. The Transmit Clock Inver-
sion (CKI) bits have no effect on the clock outputs. Programming the TCMR register to select
TK pin (CKS field) and at the same time Continuous Transmit Clock (CKO field) might lead to
unpredictable results.

Figure 125. Transmitter Clock Management

Receiver Clock
Management

The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS field in
SSC_RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently
by the CKI bits in SSC_RCMR.

The receiver can also drive the RK I/O pad continuously or be limited to the actual data trans-
fer. The clock output is configured by the SSC_RCMR register. The Receive Clock Inversion
(CKI) bits have no effect on the clock outputs. Programming the RCMR register to select RK
pin (CKS field) and at the same time Continuous Receive Clock (CKO field) might lead to
unpredictable results.

Figure 126. Receiver Clock Management

Receiver Clock

Divider Clock
Transmitter Clock

SSC_TCMR.CKI

SSC_TCMR.CKS

TK

SSC_TCMR.CKO

1

0

TK

Transmitter Clock

Divider Clock
Receiver Clock

SSC_RCMR.CKI

SSC_RCMR.CKS

RK

SSC_RCMR.CKO

RK

1

0

317

AT91RM3400

1790A–ATARM–11/03

Transmitter
Operations

A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (SSC_TCMR). See
“Start” on page 318.

The frame synchronization is configured setting the Transmit Frame Mode Register
(SSC_TFMR). See “Frame Sync” on page 320.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal
and the start mode selected in the SSC_TCMR. Data is written by the application to the
SSC_THR register then transferred to the shift register according to the data format selected.

When both the SSC_THR and the transmit shift register are empty, the status flag TXEMPTY
is set in SSC_SR. When the Transmit Holding register is transferred in the Transmit shift reg-
ister, the status flag TXRDY is set in SSC_SR and additional data can be loaded in the holding
register.

Figure 127. Transmitter Block Diagram

Transmit Shift RegisterStart
Selector

SSC_TSHRSSC_THR

Transmitter Clock

TD

SSC_TFMR.FSLENSSC_TFMR.DATLEN

SSC_CR.TXEN

SSC_CR.TXDIS

SSC_TCMR.STTDLY
SSC_TFMR.FSDEN
SSC_TFMR.DATNB

SSC_SR.TXEN

0

1

10

SSC_TFMR.DATDEF

SSC_TFMR.MSBF

SSC_TCMR.STTDLY
SSC_TFMR.FSDEN

RF TF

318 AT91RM3400
1790A–ATARM–11/03

Receiver
Operations

A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured setting the Receive Clock Mode Register (SSC_RCMR). See
“Start” on page 318.

The frame synchronization is configured setting the Receive Frame Mode Register
(SSC_RFMR). See “Frame Sync” on page 320.

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the SSC_RCMR. The data is transferred from the shift register in function of data
format selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the
status flag RXRDY is set in SSC_SR and the data can be read in the receiver holding register,
if another transfer occurs before read the RHR register, the status flag OVERUN is set in
SSC_SR and the receiver shift register is transferred in the RHR register.

Figure 128. Receiver Block Diagram

Start The transmitter and receiver can both be programmed to start their operations when an event
occurs, respectively in the Transmit Start Selection (START) field of SSC_TCMR and in the
Receive Start Selection (START) field of SSC_RCMR.

Under the following conditions the start event is independently programmable:

• Continuous. In this case, the transmission starts as soon as a word is written in SSC_THR
and the reception starts as soon as the Receiver is enabled.

• Synchronously with the transmitter/receiver

• On detection of a falling/rising edge on TK/RK

• On detection of a low level/high level on TK/RK

• On detection of a level change or an edge on TK/RK

A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Register (RCMR/TCMR). Thus, the start could be on TF (Transmit) or RF (Receive).

Detection on TF/RF input/output is done through the field FSOS of the Transmit / Receive
Frame Mode Register (TFMR/RFMR).

Receive Shift RegisterStart
Selector

SSC_RHRSSC_RSHR

Receiver Clock
RD

SSC_RFMR.FSLEN SSC_RFMR.DATLEN

RF

SSC_CR.RXEN

SSC_CR.RXDIS

SSC_SR.RXEN

SSC_RFMR.MSBF

SSC_RCMR.STTDLY

SSC_RFMR.DATNB
TF

319

AT91RM3400

1790A–ATARM–11/03

Generating a Frame Sync signal is not possible without generating it on its related output.

Figure 129. Transmit Start Mode

Figure 130. Receive Pulse/Edge Start Modes

X

TK

TF
(Input)

TD
(Output)

TD
(Output)

TD
(Output)

TD
(Output)

TD
(Output)

TD
(Output)

X BO B1

X BO B1

BO B1

BO B1

BO B1BO B1

BO B1B1BO

X

X

X

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY
Start = Falling Edge on TF

Start = Rising Edge on TF

Start = Low Level on TF

Start = High Level on TF

Start = Any Edge on TF

Start = Level Change on TF

RK

RF
(Input)

RD
(Input)

RD
(Input)

RD
(Input)

RD
(Input)

RD
(Input)

RD
(Input)

X BO B1

X BO B1

BO B1

BO B1

BO B1BO B1

BO B1B1BO

X

X

X

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY
Start = Falling Edge on RF

Start = Rising Edge on RF

Start = Low Level on RF

Start = High Level on RF

Start = Any Edge on RF

Start = Level Change on RF

X

320 AT91RM3400
1790A–ATARM–11/03

Frame Sync The Transmitter and Receiver Frame Sync pins, TF and RF, can be programmed to generate
different kinds of frame synchronization signals. The Frame Sync Output Selection (FSOS)
field in the Receive Frame Mode Register (SSC_RFMR) and in the Transmit Frame Mode
Register (SSC_TFMR) are used to select the required waveform.

• Programmable low or high levels during data transfer are supported.

• Programmable high levels before the start of data transfers or toggling are also supported.

If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in SSC_RFMR and
SSC_TFMR programs the length of the pulse, from 1-bit time up to 16-bit time.

The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in SSC_RCMR and SSC_TCMR.

Frame Sync Data Frame Sync Data transmits or receives a specific tag during the Frame Synchro signal.

During the Frame Sync signal, the Receiver can sample the RD line and store the data in the
Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Regis-
ter in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync
signal is programmed by the FSLEN field in SSC_RFMR/SSC_TFMR.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift
Register.

The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in SSC_TFMR is set. If the Frame Sync length is equal to or lower than
the delay between the start event and the actual data transmission, the normal transmission
has priority and the data contained in the Transmit Sync Holding Register is transferred in the
Transmit Register then shifted out.

Frame Sync Edge
Detection

The Frame Sync Edge de tec t i on i s p rog rammed by the FSEDGE f i e ld i n
SSC_RFMR/SSC_TFMR. This sets the corresponding flags RXSYN/TXSYN in the SSC Sta-
tus Register (SSC_SR) on frame synchro edge detection (signals RF/TF).

Data Format The data framing format of both the transmitter and the receiver are largely programmable
through the Transmitter Frame Mode Register (SSC_TFMR) and the Receiver Frame Mode
Register (SSC_RFMR). In either case, the user can independently select:

• The event that starts the data transfer (START).

• The delay in number of bit periods between the start event and the first data bit (STTDLY).

• The length of the data (DATLEN)

• The number of data to be transferred for each start event (DATNB).

• The length of Synchronization transferred for each start event (FSLEN).

• The bit sense: most or lowest significant bit first (MSBF).

Additionally, the transmitter can be used to transfer Synchronization and select the level
driven on the TD pin while not in data transfer operation. This is done respectively by the
Frame Sync Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in
SSC_TFMR.

321

AT91RM3400

1790A–ATARM–11/03

Figure 131. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Note: 1. Input on falling edge on TF/RF example.

Table 57. Data Frame Registers

Transmitter Receiver Field Length Comment

SSC_TFMR SSC_RFMR DATLEN Up to 32 Size of word

SSC_TFMR SSC_RFMR DATNB Up to 16 Number Word transmitter in frame

SSC_TFMR SSC_RFMR MSBF 1 most significant bit in first

SSC_TFMR SSC_RFMR FSLEN Up to 16 Size of Synchro data register

SSC_TFMR DATDEF 0 or 1 Data default value ended

SSC_TFMR FSDEN Enable send SSC_TSHR

SSC_TCMR SSC_RCMR PERIOD up to 512 Frame size

SSC_TCMR SSC_RCMR STTDLY up to 255 Size of transmit start delay

Sync Data Default

STTDLY

Sync Data IgnoredRD

Default

Data

DATLEN

Data

Data

Data

DATLEN

Data

Data Default

Default

Ignored

Sync Data

Sync Data

FSLEN

TF/RF(1)

StartStart

From SSC_TSHR From SSC_THR

From SSC_THR

From SSC_THR

From SSC_THR

To SSC_RHR To SSC_RHRTo SSC_RSHR

TD
(If FSDEN = 0)

TD
(If FSDEN = 1)

DATNB

PERIOD

FromDATDEF FromDATDEF

From DATDEF From DATDEF

322 AT91RM3400
1790A–ATARM–11/03

Figure 132. Transmit Frame Format in Continuous Mode

Note: 1. STTDLY is set to 0. In this example, SSC_THR is loaded twice. The value of FSDEN has no
effect on transmission. SyncData cannot be output in continuous mode.

Figure 133. Receive Frame Format in Continuous Mode

Note: 1. STTDLY is set to 0.

Loop Mode The receiver can be programmed to receive transmissions from the transmitter. This is done
by setting the Loop Mode (LOOP) bit in SSC_RFMR. In this case, RD is connected to TD, RF
is connected to TF and RK is connected to TK.

Interrupt Most bits in SSC_SR have a corresponding bit in interrupt management registers.

The SSC Controller can be programmed to generate an interrupt when it detects an event.
The Interrupt is controlled by writing SSC_IER (Interrupt Enable Register) and SSC_IDR
(Interrupt Disable Register), which respectively enable and disable the corresponding interrupt
by setting and clearing the corresponding bit in SSC_IMR (Interrupt Mask Register), which
controls the generation of interrupts by asserting the SSC interrupt line connected to the AIC.

Figure 134. Interrupt Block Diagram

DATLEN

Data

DATLEN

Data Default

Start

From SSC_THR From SSC_THR

TD

Start: 1. TXEMPTY set to 1
 2. Write to the SSC_THR

Data

DATLEN

Data

DATLEN

Start = Enable Receiver

To SSC_RHR To SSC_RHR

RD

PDC

Interrupt
Control

SSC Interrupt

TXBUFE

ENDTX

RXBUFF
ENDRX

RXRDY
OVRUN

RXSYNC

Receiver

Transmitter

TXRDY
TXEMPTY
TXSYNC

SSC_IER SSC_IDR

SSC_IMR

Set Clear

323

AT91RM3400

1790A–ATARM–11/03

SSC
Application
Examples

The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

Figure 135. Audio Application Block Diagram

Figure 136. Codec Application Block Diagram

SSC

RK

RF

RD

TD

TF

TK
Clock SCK

Word Select WS

Data SD

I2S
RECEIVER

Clock SCK

Word Select WS

Data SD

Right ChannelLeft Channel

MSB MSBLSB

SSC

RK

RF

RD

TD

TF

TK
Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

CODEC

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

First Time Slot

Dstart Dend

324 AT91RM3400
1790A–ATARM–11/03

Figure 137. Time Slot Application Block Diagram

Serial Synchronous Controller (SSC) User Interface

Table 58. SSC Register Mapping

Offset Register Register Name Access Reset

0x0 Control Register SSC_CR Write –

0x4 Clock Mode Register SSC_CMR Read/Write 0x0

0x8 Reserved – – –

0xC Reserved – – –

0x10 Receive Clock Mode Register SSC_RCMR Read/Write 0x0

0x14 Receive Frame Mode Register SSC_RFMR Read/Write 0x0

0x18 Transmit Clock Mode Register SSC_TCMR Read/Write 0x0

0x1C Transmit Frame Mode Register SSC_TFMR Read/Write 0x0

0x20 Receive Holding Register SSC_RHR Read 0x0

0x24 Transmit Holding Register SSC_THR Write –

0x28 Reserved – – –

SSC

RK

RF

RD

TD

TF

TK
SCLK

FSYNC

Data Out

 Data in

CODEC
First

Time Slot

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data in

CODEC
Second

Time Slot

First Time Slot Second Time Slot

Dstart Dend

325

AT91RM3400

1790A–ATARM–11/03

0x2C Reserved – – –

0x30 Receive Sync. Holding Register SSC_RSHR Read 0x0

0x34 Transmit Sync. Holding Register SSC_TSHR Read/Write 0x0

0x38 Reserved – – –

0x3C Reserved – – –

0x40 Status Register SSC_SR Read 0x000000CC

0x44 Interrupt Enable Register SSC_IER Write –

0x48 Interrupt Disable Register SSC_IDR Write –

0x4C Interrupt Mask Register SSC_IMR Read 0x0

0x50-0xFF Reserved – – –

0x100- 0x124 Reserved for Peripheral Data Controller (PDC) – – –

Table 58. SSC Register Mapping

Offset Register Register Name Access Reset

326 AT91RM3400
1790A–ATARM–11/03

SSC Control Register
Name: SSC_CR

Access Type: Write-only

• RXEN: Receive Enable

0: No effect.

1: Enables Data Receive if RXDIS is not set(1).

• RXDIS: Receive Disable

0: No effect.

1: Disables Data Receive(1).

• TXEN: Transmit Enable

0: No effect.

1: Enables Data Transmit if TXDIS is not set(1).

• TXDIS: Transmit Disable

0: No effect.

1: Disables Data Transmit(1).

• SWRST: Software Reset

0: No effect.

1: Performs a software reset. Has priority on any other bit in SSC_CR.
Note: 1. Only the data management is affected

31 30 29 28 27 26 25 24
– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

SWRST – – – – – TXDIS TXEN

7 6 5 4 3 2 1 0
– – – – – – RXDIS RXEN

327

AT91RM3400

1790A–ATARM–11/03

SSC Clock Mode Register
Name: SSC_CMR

Access Type: Read/Write

• DIV: Clock Divider

0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is MCK/2. The
minimum bit rate is MCK/2 x 4095 = MCK/8190.

31 30 29 28 27 26 25 24
– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8
– – – – DIV

7 6 5 4 3 2 1 0
DIV

328 AT91RM3400
1790A–ATARM–11/03

SSC Receive Clock Mode Register
Name: SSC_RCMR

Access Type: Read/Write

• CKS: Receive Clock Selection

• CKO: Receive Clock Output Mode Selection

• CKI: Receive Clock Inversion

0: The data and the Frame Sync signal are sampled on Receive Clock falling edge.

1: The data and the Frame Sync signal are shifted out on Receive Clock rising edge.

CKI does not affects the RK output clock signal.

• START: Receive Start Selection

31 30 29 28 27 26 25 24
PERIOD

23 22 21 20 19 18 17 16

STTDLY
15 14 13 12 11 10 9 8
– – – – START

7 6 5 4 3 2 1 0
– – CKI CKO CKS

CKS Selected Receive Clock

0x0 Divided Clock

0x1 TK Clock Signal

0x2 RK Pin

0x3 Reserved

CKO Receive Clock Output Mode RK pin

0x0 None Input-only

0x1 Continuous Receive Clock Output

0x2-0x7 Reserved

START Receive Start

0x0 Continuous, as soon as the receiver is enabled, and immediately after the end of
transfer of the previous data.

0x1 Transmit Start

0x2 Detection of a low level on RF input

0x3 Detection of a high level on RF input

0x4 Detection of a falling edge on RF input

0x5 Detection of a rising edge on RF input

0x6 Detection of any level change on RF input

0x7 Detection of any edge on RF input

0x8-0xF Reserved

329

AT91RM3400

1790A–ATARM–11/03

• STTDLY: Receive Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Please Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.

• PERIOD: Receive Period Divider Selection

This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.

330 AT91RM3400
1790A–ATARM–11/03

SSC Receive Frame Mode Register
Name: SSC_RFMR

Access Type: Read/Write

• DATLEN: Data Length

0x0 is not supported. The value of DATLEN can be set between 0x1 and 0x1F.

The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the PDC assigned to the
Receiver.

If DATLEN is less than or equal to 7, data transfers are in bytes. If DATLEN is between 8 and 15 (included), half-words are
transferred. For any other value, 32-bit words are transferred.

• LOOP: Loop Mode

0: Normal operating mode.

1: RD is driven by TD, RF is driven by TF and TK drives RK.

• MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is sampled first in the bit stream.

1: The most significant bit of the data register is sampled first in the bit stream.

• DATNB: Data Number per Frame

This field defines the number of data words to be received after each transfer start. If 0, only 1 data word is transferred. Up
to 16 data words can be transferred.

• FSLEN: Receive Frame Sync Length

This field defines the length of the Receive Frame Sync Signal and the number of bits sampled and stored in the Receive
Sync Data Register. Only when FSOS is set on negative or positive pulse.

• FSOS: Receive Frame Sync Output Selection

31 30 29 28 27 26 25 24
– – – – – – – FSEDGE
23 22 21 20 19 18 17 16

– FSOS FSLEN
15 14 13 12 11 10 9 8
– – – – DATNB

7 6 5 4 3 2 1 0
MSBF – LOOP DATLEN

FSOS Selected Receive Frame Sync Signal RF pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

331

AT91RM3400

1790A–ATARM–11/03

• FSEDGE: Frame Sync Edge Detection

Determines which edge on Frame Sync sets RXSYN in the SSC Status Register.

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

332 AT91RM3400
1790A–ATARM–11/03

SSC Transmit Clock Mode Register
Name: SSC_TCMR

Access Type: Read/Write

• CKS: Transmit Clock Selection

• CKO: Transmit Clock Output Mode Selection

• CKI: Transmit Clock Inversion

0: The data and the Frame Sync signal are shifted out on Transmit Clock falling edge.

1: The data and the Frame Sync signal are shifted out on Transmit Clock rising edge.

CKI affects only the Transmit Clock and not the output clock signal.

• START: Transmit Start Selection

31 30 29 28 27 26 25 24
PERIOD

23 22 21 20 19 18 17 16

STTDLY
15 14 13 12 11 10 9 8
– – – – START

7 6 5 4 3 2 1 0
– – CKI CKO CKS

CKS Selected Transmit Clock

0x0 Divided Clock

0x1 RK Clock signal

0x2 TK Pin

0x3 Reserved

CKO Transmit Clock Output Mode TK pin

0x0 None Input-only

0x1 Continuous Transmit Clock Output

0x2-0x7 Reserved

START Transmit Start

0x0 Continuous, as soon as a word is written in the SSC_THR Register (if Transmit is enabled) and
immediately after the end of transfer of the previous data.

0x1 Receive Start

0x2 Detection of a low level on TF signal

0x3 Detection of a high level on TF signal

0x4 Detection of a falling edge on TF signal

0x5 Detection of a rising edge on TF signal

0x6 Detection of any level change on TF signal

0x7 Detection of any edge on TF signal

0x8-0xF Reserved

333

AT91RM3400

1790A–ATARM–11/03

• STTDLY: Transmit Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.

Please Note: STTDLY must be set carefully. If STTDLY is too short with respect to TAG (Transmit Sync Data) emission, data
is emitted instead of the end of TAG.

• PERIOD: Transmit Period Divider Selection

This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.

334 AT91RM3400
1790A–ATARM–11/03

SSC Transmit Frame Mode Register
Name: SSC_TFMR

Access Type: Read/Write

• DATLEN: Data Length

0x0 is not supported. The value of DATLEN can be set between 0x1 and 0x1F.

The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the PDC assigned to the
Receiver.

If DATLEN is less than or equal to 7, data transfers are in bytes. If DATLEN is between 8 and 15 (included), half-words are
transferred. For any other value, 32-bit words are transferred.

• DATDEF: Data Default Value

This bit defines the level driven on the TD pin while out of transmission. Note that if the pin is defined as multi-drive by the
PIO Controller, the pin is enabled only if the SCC TD output is 1.

• MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is shifted out first in the bit stream.

1: The most significant bit of the data register is shifted out first in the bit stream.

• DATNB: Data Number per frame

This field defines the number of data words to be transferred after each transfer start. If 0, only 1 data word is transferred
and up to 16 data words can be transferred.

• FSLEN: Transmit Frame Sync Length

This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1. If 0, the Transmit Frame Sync signal is generated during one Transmit Clock period and up to
16 clock period pulse length is possible.

• FSOS: Transmit Frame Sync Output Selection

• FSDEN: Frame Sync Data Enable

0: The TD line is driven with the default value during the Transmit Frame Sync signal.

1: SSC_TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.

31 30 29 28 27 26 25 24
– – – – – – – FSEDGE
23 22 21 20 19 18 17 16

FSDEN FSOS FSLEN
15 14 13 12 11 10 9 8
– – – – DATNB

7 6 5 4 3 2 1 0
MSBF – DATDEF DATLEN

FSOS Selected Transmit Frame Sync Signal TF pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

335

AT91RM3400

1790A–ATARM–11/03

• FSEDGE: Frame Sync Edge Detection

Determines which edge on frame sync sets TXSYN (Status Register).

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

336 AT91RM3400
1790A–ATARM–11/03

SSC Receive Holding Register
Name: SSC_RHR

Access Type: Read-only

• RDAT: Receive Data

Right aligned regardless of the number of data bits defined by DATLEN in SSC_RFMR.

SSC Transmit Holding Register
Name: SSC_THR

Access Type: Write only

TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by DATLEN in SSC_TFMR.

31 30 29 28 27 26 25 24
RDAT

23 22 21 20 19 18 17 16

RDAT
15 14 13 12 11 10 9 8

RDAT

7 6 5 4 3 2 1 0
RDAT

31 30 29 28 27 26 25 24
TDAT

23 22 21 20 19 18 17 16

TDAT
15 14 13 12 11 10 9 8

TDAT

7 6 5 4 3 2 1 0
TDAT

337

AT91RM3400

1790A–ATARM–11/03

SSC Receive Synchronization Holding Register
Name: SSC_RSHR

Access Type: Read/Write

• RSDAT: Receive Synchronization Data

Right aligned regardless of the number of data bits defined by FSLEN in SSC_RFMR.

SSC Transmit Synchronization Holding Register
Name: SSC_TSHR

Access Type: Read/Write

• TSDAT: Transmit Synchronization Data

Right aligned regardless of the number of data bits defined by FSLEN in SSC_TFMR.

31 30 29 28 27 26 25 24
– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

RSDAT

7 6 5 4 3 2 1 0
RSDAT

31 30 29 28 27 26 25 24
– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

TSDAT

7 6 5 4 3 2 1 0
TSDAT

338 AT91RM3400
1790A–ATARM–11/03

SSC Status Register
Register Name: SSC_SR

Access Type: Read-only

• TXRDY: Transmit Ready

0: Data has been loaded in SSC_THR and is waiting to be loaded in the Transmit Shift Register.

1: SSC_THR is empty.

• TXEMPTY: Transmit Empty

0: Data remains in SSC_THR or is currently transmitted from Transmit Shift Register.

1: Last data written in SSC_THR has been loaded in Transmit Shift Register and transmitted by it.

• ENDTX: End of Transmission

0: The register SSC_TCR has not reached 0 since the last write in SSC_TCR or SSC_TNCR.

1: The register SSC_TCR has reached 0 since the last write in SSC_TCR or SSC_TNCR.

• TXBUFE: Transmit Buffer Empty

0: SSC_TCR or SSC_TNCR have a value other than 0.

1: Both SSC_TCR and SSC_TNCR have a value of 0.

• RXRDY: Receive Ready

0: SSC_RHR is empty.

1: Data has been received and loaded in SSC_RHR.

• OVRUN: Receive Overrun

0: No data has been loaded in SSC_RHR while previous data has not been read since the last read of the Status Register.

1: Data has been loaded in SSC_RHR while previous data has not yet been read since the last read of the Status Register.

• ENDRX: End of Reception

0: Data is written on the Receive Counter Register or Receive Next Counter Register.

1: End of PDC transfer when Receive Counter Register has arrived at zero.

• RXBUFF: Receive Buffer Full

0: SSC_RCR or SSC_RNCR have a value other than 0.

1: Both SSC_RCR and SSC_RNCR have a value of 0.

• TXSYN: Transmit Sync

0: A Tx Sync has not occurred since the last read of the Status Register.

1: A Tx Sync has occurred since the last read of the Status Register.

• RXSYN: Receive Sync

0: A Rx Sync has not occurred since the last read of the Status Register.

1: A Rx Sync has occurred since the last read of the Status Register.

31 30 29 28 27 26 25 24
– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – RXEN TXEN
15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN – –

7 6 5 4 3 2 1 0
RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

339

AT91RM3400

1790A–ATARM–11/03

• TXEN: Transmit Enable

0: Transmit data is disabled.

1: Transmit data is enabled.

• RXEN: Receive Enable

0: Receive data is disabled.

1: Receive data is enabled.

340 AT91RM3400
1790A–ATARM–11/03

SSC Interrupt Enable Register
Register Name: SSC_IER

Access Type: Write-only

• TXRDY: Transmit Ready

• TXEMPTY: Transmit Empty

• ENDTX: End of Transmission

• TXBUFE: Transmit Buffer Empty

• RXRDY: Receive Ready

• OVRUN: Receive Overrun

• ENDRX: End of Reception

• RXBUFF: Receive Buffer Full

• TXSYN: Tx Sync

• RXSYN: Rx Sync

0: No effect.

1: Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN – –

7 6 5 4 3 2 1 0
RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

341

AT91RM3400

1790A–ATARM–11/03

SSC Interrupt Disable Register
Register Name: SSC_IDR

Access Type: Write-only

• TXRDY: Transmit Ready

• TXEMPTY: Transmit Empty

• ENDTX: End of Transmission

• TXBUFE: Transmit Buffer Empty

• RXRDY: Receive Ready

• OVRUN: Receive Overrun

• ENDRX: End of Reception

• RXBUFF: Receive Buffer Full

• TXSYN: Tx Sync

• RXSYN: Rx Sync

0: No effect.

1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN – –

7 6 5 4 3 2 1 0
RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

342 AT91RM3400
1790A–ATARM–11/03

SSC Interrupt Mask Register
Register Name: SSC_IMR

Access Type: Read-only

• TXRDY: Transmit Ready

• TXEMPTY: Transmit Empty

• ENDTX: End of Transmission

• TXBUFE: Transmit Buffer Empty

• RXRDY: Receive Ready

• OVRUN: Receive Overrun

• ENDRX: End of Reception

• RXBUFF: Receive Buffer Full

• TXSYN: Tx Sync

• RXSYN: Rx Sync

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN – –

7 6 5 4 3 2 1 0
RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

343

AT91RM3400

1790A–ATARM–11/03

Timer Counter (TC)

Overview The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.

Each channel can be independently programmed to perform a wide range of functions includ-
ing frequency measurement, event counting, interval measurement, pulse generation, delay
timing and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multi-purpose
input/output signals which can be configured by the user. Each channel drives an internal
interrupt signal which can be programmed to generate processor interrupts.

The Timer Counter block has two global registers which act upon all three TC channels.

The Block Control Register allows the three channels to be started simultaneously with the
same instruction.

The Block Mode Register defines the external clock inputs for each channel, allowing them to
be chained.

Key Features of the Timer Counter are:

• Three 16-bit Timer Counter Channels

• A Wide Range of Functions Including:

– Frequency Measurement

– Event Counting

– Interval Measurement

– Pulse Generation

– Delay Timing

– Pulse Width Modulation

– Up/down Capabilities

• Each Channel is User-configurable and Contains:

– Three External Clock Inputs

– Five Internal Clock Inputs

– Two Multi-purpose Input/Output Signals

• Internal Interrupt Signal

Two Global Registers that Act on All Three TC Channels

344 AT91RM3400
1790A–ATARM–11/03

Block Diagram Figure 138. Timer Counter Block Diagram

Table 59. Signal Name Description

Block/Channel Signal Name Description

Channel Signal

XC0, XC1, XC2 External Clock Inputs

TIOA Capture Mode: General-purpose Input
Waveform Mode: General-purpose Output

TIOB Capture Mode: General-purpose Input
Waveform Mode: General-purpose Input/output

INT[2:0] TC Internal Interrupt Signal Output

SYNC Synchronization Input Signal

Block Signal

TCLK0, TCLK1,
TCLK2

External Clock Inputs

TIOA0 TIOA Signal for Channel 0

TIOB0 TIOB Signal for Channel 0

TIOA1 TIOA Signal for Channel 1

TIOB1 TIOB Signal for Channel 1

TIOA2 TIOA Signal for Channel 2

TIOB2 TIOB Signal for Channel 2

Timer/Counter
Channel 0

Timer/Counter
Channel 1

Timer/Counter
Channel 2

SYNC

Parallel I/O
Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1

TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Advanced
Interrupt

Controller

TCLK0
TCLK1
TCLK2

TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Timer Counter

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

TIMER_CLOCK1

345

AT91RM3400

1790A–ATARM–11/03

Pin Name List

Product
Dependencies

For further details on the Timer Counter hardware implementation, see the specific Product
Properties document.

I/O Lines The pins used for interfacing the compliant external devices may be multiplexed with PIO
lines. The programmer must first program the PIO controllers to assign the TC pins to their
peripheral functions.

Power
Management

The TC must be clocked through the Power Management Controller (PMC), thus the program-
mer must first configure the PMC to enable the Timer Counter.

Interrupt The TC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the TC interrupt requires programming the AIC before configuring the TC.

Functional
Description

TC Description The three channels of the Timer Counter are independent and identical in operation. The reg-
isters for channel programming are listed in Table 60 on page 345.

16-bit Counter Each channel is organized around a 16-bit counter. The value of the counter is incremented at
each positive edge of the selected clock. When the counter has reached the value 0xFFFF
and passes to 0x0000, an overflow occurs and the COVFS bit in TC_SR (Status Register) is
set.

The current value of the counter is accessible in real time by reading the Counter Value Regis-
ter, TC_CV. The counter can be reset by a trigger. In this case, the counter value passes to
0x0000 on the next valid edge of the selected clock.

Clock Selection At block level, input clock signals of each channel can either be connected to the external
inputs TCLK0, TCLK1 or TCLK2, or be connected to the configurable I/O signals TIOA0,
TIOA1 or TIOA2 for chaining by programming the TC_BMR (Block Mode). See Figure 139.

Each channel can independently select an internal or external clock source for its counter:

• Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3,
TIMER_CLOCK4, TIMER_CLOCK5

• External clock signals: XC0, XC1 or XC2

This selection is made by the TCCLKS bits in the TC Channel Mode Register (Capture Mode).

The selected clock can be inverted with the CLKI bit in TC_CMR (Capture Mode). This allows
counting on the opposite edges of the clock.

Table 60. Timer Counter pin list

Pin Name Description Type

TCLK0-TCLK2 External Clock Input Input

TIOA0-TIOA2 I/O Line A I/O

TIOB0-TIOB2 I/O Line B I/O

346 AT91RM3400
1790A–ATARM–11/03

The burst function allows the clock to be validated when an external signal is high. The
BURST parameter in the Mode Register defines this signal (none, XC0, XC1, XC2).
Note: In all cases, if an external clock is used, the duration of each of its levels must be longer than the

master clock period. The external clock frequency must be at least 2.5 times lower than the
master clock

Figure 139. Clock Selection

Clock Control The clock of each counter can be controlled in two different ways: it can be enabled/disabled
and started/stopped. See Figure 140.

• The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS
commands in the Control Register. In Capture Mode it can be disabled by an RB load
event if LDBDIS is set to 1 in TC_CMR. In Waveform Mode, it can be disabled by an RC
Compare event if CPCDIS is set to 1 in TC_CMR. When disabled, the start or the stop
actions have no effect: only a CLKEN command in the Control Register can re-enable the
clock. When the clock is enabled, the CLKSTA bit is set in the Status Register.

• The clock can also be started or stopped: a trigger (software, synchro, external or
compare) always starts the clock. The clock can be stopped by an RB load event in
Capture Mode (LDBSTOP = 1 in TC_CMR) or a RC compare event in Waveform Mode
(CPCSTOP = 1 in TC_CMR). The start and the stop commands have effect only if the
clock is enabled.

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI

BURST

1

Selected
Clock

347

AT91RM3400

1790A–ATARM–11/03

Figure 140. Clock Control

TC Operating Modes Each channel can independently operate in two different modes:

• Capture Mode provides measurement on signals.

• Waveform Mode provides wave generation.

The TC Operating Mode is programmed with the WAVE bit in the TC Channel Mode Register.

In Capture Mode, TIOA and TIOB are configured as inputs.

In Waveform Mode, TIOA is always configured to be an output and TIOB is an output if it is not
selected to be the external trigger.

Trigger A trigger resets the counter and starts the counter clock. Three types of triggers are common
to both modes, and a fourth external trigger is available to each mode.

The following triggers are common to both modes:

• Software Trigger: Each channel has a software trigger, available by setting SWTRG in
TC_CCR.

• SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has
the same effect as a software trigger. The SYNC signals of all channels are asserted
simultaneously by writing TC_BCR (Block Control) with SYNC set.

• Compare RC Trigger: RC is implemented in each channel and can provide a trigger when
the counter value matches the RC value if CPCTRG is set in TC_CMR.

The channel can also be configured to have an external trigger. In Capture Mode, the external
trigger signal can be selected between TIOA and TIOB. In Waveform Mode, an external event
can be programmed on one of the following signals: TIOB, XC0, XC1 or XC2. This external
event can then be programmed to perform a trigger by setting ENETRG in TC_CMR.

If an external trigger is used, the duration of the pulses must be longer than the master clock
period in order to be detected.

Regardless of the trigger used, it will be taken into account at the following active edge of the
selected clock. This means that the counter value can be read differently from zero just after a
trigger, especially when a low frequency signal is selected as the clock.

Q S

R

S

R

Q

CLKSTA CLKEN CLKDIS

Stop
Event

Disable
EventCounter

Clock

Selected
Clock Trigger

348 AT91RM3400
1790A–ATARM–11/03

Capture Operating
Mode

This mode is entered by clearing the WAVE parameter in TC_CMR (Channel Mode Register).

Capture Mode allows the TC channel to perform measurements such as pulse timing, fre-
quency, period, duty cycle and phase on TIOA and TIOB signals which are considered as
inputs.

Figure 141 shows the configuration of the TC channel when programmed in Capture Mode.

Capture Registers A
and B

Registers A and B (RA and RB) are used as capture registers. This means that they can be
loaded with the counter value when a programmable event occurs on the signal TIOA.

The LDRA parameter in TC_CMR defines the TIOA edge for the loading of register A, and the
LDRB parameter defines the TIOA edge for the loading of Register B.

RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since
the last loading of RA.

RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.

Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag
(LOVRS) in TC_SR (Status Register). In this case, the old value is overwritten.

Trigger Conditions In addition to the SYNC signal, the software trigger and the RC compare trigger, an external
trigger can be defined.

The ABETRG bit in TC_CMR selects TIOA or TIOB input signal as an external trigger. The
ETRGEDG parameter defines the edge (rising, falling or both) detected to generate an exter-
nal trigger. If ETRGEDG = 0 (none), the external trigger is disabled.

349

AT91RM3400

1790A–ATARM–11/03

Figure 141. Capture Mode

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
T

A
C

LK
E

N
C

LK
D

IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
C

C
ap

tu
re

R

eg
is

te
r

A

C
ap

tu
re

R

eg
is

te
r

B
C

om
pa

re
 R

C
 =

16
-b

it
C

ou
nt

er

A
B

E
T

R
G

S
W

T
R

G

E
T

R
G

E
D

G
C

P
C

T
R

G

TC1_IMR

T
rig

LDRBS

LDRAS

ETRGS

TC1_SR

LOVRS

COVFS

S
Y

N
C

1

M
T

IO
B

T
IO

A

M
T

IO
A

LD
R

A

LD
B

S
T

O
P

If
R

A
 is

 n
ot

 lo
ad

ed
or

 R
B

 is
 L

oa
de

d
If

R
A

 is
 L

oa
de

d

LD
B

D
IS

CPCS

IN
T

E
dg

e
D

et
ec

to
r

E
dg

e
D

et
ec

to
r

LD
R

B

E
dg

e
D

et
ec

to
r

C
LK

O
V

F

R
E

S
E

T

T
im

er
/C

ou
nt

er
 C

ha
nn

el

350 AT91RM3400
1790A–ATARM–11/03

Waveform
Operating Mode

Waveform operating mode is entered by setting the WAVE parameter in TC_CMR (Channel
Mode Register).

In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same
frequency and independently programmable duty cycles, or generates different types of one-
shot or repetitive pulses.

In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used
as an external event (EEVT parameter in TC_CMR).

Figure 142 shows the configuration of the TC channel when programmed in Waveform Oper-
ating Mode.

Waveform Selection Depending on the WAVSEL parameter in TC_CMR (Channel Mode Register), the behavior of
TC_CV varies.

With any selection, RA, RB and RC can all be used as compare registers.

RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB out-
put (if correctly configured) and RC Compare is used to control TIOA and/or TIOB outputs.

351

AT91RM3400

1790A–ATARM–11/03

Figure 142. Waveform Mode

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
T

A
C

LK
E

N
C

LK
D

IS

C
P

C
D

IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
A

R
eg

is
te

r
B

R
eg

is
te

r
C

C
om

pa
re

 R
A

 =

C
om

pa
re

 R
B

 =

C
om

pa
re

 R
C

 =

C
P

C
S

T
O

P

16
-b

it
C

ou
nt

er

E
E

V
T

E
E

V
T

E
D

G

S
Y

N
C

S
W

T
R

G

E
N

E
T

R
G

W
A

V
S

E
L

TC1_IMR
T

rig

A
C

P
C

A
C

P
A

A
E

E
V

T

A
S

W
T

R
G

B
C

P
C

B
C

P
B

B
E

E
V

T

B
S

W
T

R
G

T
IO

A

M
T

IO
A

T
IO

B

M
T

IO
B

CPAS

COVFS

ETRGS

TC1_SR

CPCS

CPBS
C

LK
O

V
F

R
E

S
E

T

Output Controller Output Controller

IN
T

1

E
dg

e
D

et
ec

to
r

T
im

er
/C

ou
nt

er
 C

ha
nn

el

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

W
A

V
S

E
L

352 AT91RM3400
1790A–ATARM–11/03

WAVSEL = 00 When WAVSEL = 00, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF
has been reached, the value of TC_CV is reset. Incrementation of TC_CV starts again and the
cycle continues. See Figure 143.

An external event trigger or a software trigger can reset the value of TC_CV. It is important to
note that the trigger may occur at any time. See Figure 144.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same
time, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the
counter clock (CPCDIS = 1 in TC_CMR).

Figure 143. WAVSEL= 00 without trigger

Figure 144. WAVSEL= 00 with trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger

353

AT91RM3400

1790A–ATARM–11/03

WAVSEL = 10 When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then auto-
matically reset on a RC Compare. Once the value of TC_CV has been reset, it is then
incremented and so on. See Figure 145.

It is important to note that TC_CV can be reset at any time by an external event or a software
trigger if both are programmed correctly. See Figure 146.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or dis-
able the counter clock (CPCDIS = 1 in TC_CMR).

Figure 145. WAVSEL = 10 Without Trigger

Figure 146. WAVSEL = 10 With Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

Counter cleared by trigger

354 AT91RM3400
1790A–ATARM–11/03

WAVSEL = 01 When WAVSEL = 01, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF is
reached, the value of TC_CV is decremented to 0, then re-incremented to 0xFFFF and so on.
See Figure 147.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a
trigger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received
while TC_CV is decrementing, TC_CV then increments. See Figure 148.

RC Compare cannot be programmed to generate a trigger in this configuration.

At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the
counter clock (CPCDIS = 1).

Figure 147. WAVSEL = 01 Without Trigger

Figure 148. WAVSEL = 01 With Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

355

AT91RM3400

1790A–ATARM–11/03

WAVSEL = 11 When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached,
the value of TC_CV is decremented to 0, then re-incremented to RC and so on. See Figure
149.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a
trigger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received
while TC_CV is decrementing, TC_CV then increments. See Figure 150.

RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock
(CPCDIS = 1).

Figure 149. WAVSEL = 11 Without Trigger

Figure 150. WAVSEL = 11 With Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

356 AT91RM3400
1790A–ATARM–11/03

External Event/Trigger
Conditions

An external event can be programmed to be detected on one of the clock sources (XC0, XC1,
XC2) or TIOB. The external event selected can then be used as a trigger.

The parameter EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG
parameter defines the trigger edge for each of the possible external triggers (rising, falling or
both). If EEVTEDG is cleared (none), no external event is defined.

If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output
and the TC channel can only generate a waveform on TIOA.

When an external event is defined, it can be used as a trigger by setting bit ENETRG in
TC_CMR.

As in Capture Mode, the SYNC signal and the software trigger are also available as triggers.
RC Compare can also be used as a trigger depending on the parameter WAVSEL.

Output Controller The output controller defines the output level changes on TIOA and TIOB following an event.
TIOB control is used only if TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB: software trigger, external event and RC com-
pare. RA compare controls TIOA and RB compare controls TIOB. Each of these events can
be programmed to set, clear or toggle the output as defined in the corresponding parameter in
TC_CMR.

357

AT91RM3400

1790A–ATARM–11/03

Timer Counter (TC) User Interface

TC_BCR (Block Control Register) and TC_BMR (Block Mode Register) control the whole TC block. TC channels are con-
trolled by the registers listed in Table 62. The offset of each of the channel registers in Table 62 is in relation to the offset of
the corresponding channel as mentioned in Table 62.

Notes: 1. Read only if WAVE = 0

Table 61. Timer Counter Global Memory Map

Offset Channel/Register Name Access Reset Value

0x00 TC Channel 0 See Table 62

See Table 62
See Table 62

0x40 TC Channel 1

0x80 TC Channel 2

0xC0 TC Block Control Register TC_BCR Write-only –

0xC4 TC Block Mode Register TC_BMR Read/Write 0

Table 62. Timer Counter Channel Memory Map

Offset Register Name Access Reset Value

0x00 Channel Control Register TC_CCR Write-only –

0x04 Channel Mode Register TC_CMR Read/Write 0

0x08 Reserved –

0x0C Reserved –

0x10 Counter Value TC_CV Read-only 0

0x14 Register A TC_RA Read/Write(1) 0

0x18 Register B TC_RB Read/Write(1) 0

0x1C Register C TC_RC Read/Write 0

0x20 Status Register TC_SR Read-only 0

0x24 Interrupt Enable Register TC_IER Write-only –

0x28 Interrupt Disable Register TC_IDR Write-only –

0x2C Interrupt Mask Register TC_IMR Read-only 0

358 AT91RM3400
1790A–ATARM–11/03

TC Block Control Register
Register Name: TC_BCR

Access Type: Write-only

• SYNC: Synchro Command

0 = No effect.

1 = Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

TC Block Mode Register
Register Name: TC_BMR

Access Type: Read/Write

• TC0XC0S: External Clock Signal 0 Selection

• TC1XC1S: External Clock Signal 1 Selection

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SYNC

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TC2XC2S TCXC1S TC0XC0S

TC0XC0S Signal Connected to XC0

0 0 TCLK0

0 1 none

1 0 TIOA1

1 1 TIOA2

TC1XC1S Signal Connected to XC1

0 0 TCLK1

0 1 none

1 0 TIOA0

1 1 TIOA2

359

AT91RM3400

1790A–ATARM–11/03

• TC2XC2S: External Clock Signal 2 Selection

TC Channel Control Register
Register Name: TC_CCR

Access Type: Write-only

• CLKEN: Counter Clock Enable Command

0 = No effect.

1 = Enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command

0 = No effect.

1 = Disables the clock.

• SWTRG: Software Trigger Command

0 = No effect.

1 = A software trigger is performed: the counter is reset and the clock is started.

TC2XC2S Signal Connected to XC2

0 0 TCLK2

0 1 none

1 0 TIOA0

1 1 TIOA1

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – SWTRG CLKDIS CLKEN

360 AT91RM3400
1790A–ATARM–11/03

TC Channel Mode Register: Capture Mode
Register Name: TC_CMR

Access Type: Read/Write

• TCCLKS: Clock Selection

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• LDBSTOP: Counter Clock Stopped with RB Loading

0 = Counter clock is not stopped when RB loading occurs.

1 = Counter clock is stopped when RB loading occurs.

• LDBDIS: Counter Clock Disable with RB Loading

0 = Counter clock is not disabled when RB loading occurs.

1 = Counter clock is disabled when RB loading occurs.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – LDRB LDRA

15 14 13 12 11 10 9 8

WAVE = 0 CPCTRG – – – ABETRG ETRGEDG

7 6 5 4 3 2 1 0

LDBDIS LDBSTOP BURST CLKI TCCLKS

TCCLKS Clock Selected

0 0 0 TIMER_CLOCK1

0 0 1 TIMER_CLOCK2

0 1 0 TIMER_CLOCK3

0 1 1 TIMER_CLOCK4

1 0 0 TIMER_CLOCK5

1 0 1 XC0

1 1 0 XC1

1 1 1 XC2

BURST

0 0 The clock is not gated by an external signal.

0 1 XC0 is ANDed with the selected clock.

1 0 XC1 is ANDed with the selected clock.

1 1 XC2 is ANDed with the selected clock.

361

AT91RM3400

1790A–ATARM–11/03

• ETRGEDG: External Trigger Edge Selection

• ABETRG: TIOA or TIOB External Trigger Selection

0 = TIOB is used as an external trigger.

1 = TIOA is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable

0 = RC Compare has no effect on the counter and its clock.

1 = RC Compare resets the counter and starts the counter clock.

• WAVE

0 = Capture Mode is enabled.

1 = Capture Mode is disabled (Waveform Mode is enabled).

• LDRA: RA Loading Selection

• LDRB: RB Loading Selection

ETRGEDG Edge

0 0 none

0 1 rising edge

1 0 falling edge

1 1 each edge

LDRA Edge

0 0 none

0 1 rising edge of TIOA

1 0 falling edge of TIOA

1 1 each edge of TIOA

LDRB Edge

0 0 none

0 1 rising edge of TIOA

1 0 falling edge of TIOA

1 1 each edge of TIOA

362 AT91RM3400
1790A–ATARM–11/03

TC Channel Mode Register: Waveform Mode
Register Name: TC_CMR

Access Type: Read/Write

• TCCLKS: Clock Selection

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• CPCSTOP: Counter Clock Stopped with RC Compare

0 = Counter clock is not stopped when counter reaches RC.

1 = Counter clock is stopped when counter reaches RC.

• CPCDIS: Counter Clock Disable with RC Compare

0 = Counter clock is not disabled when counter reaches RC.

1 = Counter clock is disabled when counter reaches RC.

31 30 29 28 27 26 25 24

BSWTRG BEEVT BCPC BCPB

23 22 21 20 19 18 17 16

ASWTRG AEEVT ACPC ACPA

15 14 13 12 11 10 9 8

WAVE = 1 WAVSEL ENETRG EEVT EEVTEDG

7 6 5 4 3 2 1 0

CPCDIS CPCSTOP BURST CLKI TCCLKS

TCCLKS Clock Selected

0 0 0 TIMER_CLOCK1

0 0 1 TIMER_CLOCK2

0 1 0 TIMER_CLOCK3

0 1 1 TIMER_CLOCK4

1 0 0 TIMER_CLOCK5

1 0 1 XC0

1 1 0 XC1

1 1 1 XC2

BURST

0 0 The clock is not gated by an external signal.

0 1 XC0 is ANDed with the selected clock.

1 0 XC1 is ANDed with the selected clock.

1 1 XC2 is ANDed with the selected clock.

363

AT91RM3400

1790A–ATARM–11/03

• EEVTEDG: External Event Edge Selection

• EEVT: External Event Selection

Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms.

• ENETRG: External Event Trigger Enable

0 = The external event has no effect on the counter and its clock. In this case, the selected external event only controls the
TIOA output.

1 = The external event resets the counter and starts the counter clock.

• WAVSEL: Waveform Selection

• WAVE = 1

0 = Waveform Mode is disabled (Capture Mode is enabled).

1 = Waveform Mode is enabled.

• ACPA: RA Compare Effect on TIOA

• ACPC: RC Compare Effect on TIOA

EEVTEDG Edge

0 0 none

0 1 rising edge

1 0 falling edge

1 1 each edge

EEVT Signal selected as external event TIOB Direction

0 0 TIOB input(1)

0 1 XC0 output

1 0 XC1 output

1 1 XC2 output

WAVSEL Effect

0 0 UP mode without automatic trigger on RC Compare

1 0 UP mode with automatic trigger on RC Compare

0 1 UPDOWN mode without automatic trigger on RC Compare

1 1 UPDOWN mode with automatic trigger on RC Compare

ACPA Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

ACPC Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

364 AT91RM3400
1790A–ATARM–11/03

• AEEVT: External Event Effect on TIOA

• ASWTRG: Software Trigger Effect on TIOA

• BCPB: RB Compare Effect on TIOB

• BCPC: RC Compare Effect on TIOB

• BEEVT: External Event Effect on TIOB

• BSWTRG: Software Trigger Effect on TIOB

AEEVT Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

ASWTRG Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BCPB Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BCPC Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BEEVT Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BSWTRG Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

365

AT91RM3400

1790A–ATARM–11/03

TC Counter Value Register
Register Name: TC_CV

Access Type: Read-only

• CV: Counter Value

CV contains the counter value in real time.

TC Register A
Register Name: TC_RA

Access Type: Read-only if WAVE = 0, Read/Write if WAVE = 1

• RA: Register A

RA contains the Register A value in real time.

TC Register B
Register Name: TC_RB

Access Type: Read-only if WAVE = 0, Read/Write if WAVE = 1

• RB: Register B

RB contains the Register B value in real time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CV

7 6 5 4 3 2 1 0

CV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RA

7 6 5 4 3 2 1 0

RA

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RB

7 6 5 4 3 2 1 0

RB

366 AT91RM3400
1790A–ATARM–11/03

TC Register C
Register Name: TC_RC

Access Type: Read/Write

• RC: Register C

RC contains the Register C value in real time.

TC Status Register
Register Name: TC_SR

Access Type: Read-only

• COVFS: Counter Overflow Status

0 = No counter overflow has occurred since the last read of the Status Register.

1 = A counter overflow has occurred since the last read of the Status Register.

• LOVRS: Load Overrun Status

0 = Load overrun has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Sta-
tus Register, if WAVE = 0.

• CPAS: RA Compare Status

0 = RA Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RA Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPBS: RB Compare Status

0 = RB Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RB Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPCS: RC Compare Status

0 = RC Compare has not occurred since the last read of the Status Register.

1 = RC Compare has occurred since the last read of the Status Register.

• LDRAS: RA Loading Status

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RC

7 6 5 4 3 2 1 0

RC

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – MTIOB MTIOA CLKSTA

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

367

AT91RM3400

1790A–ATARM–11/03

0 = RA Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA Load has occurred since the last read of the Status Register, if WAVE = 0.

• LDRBS: RB Loading Status

0 = RB Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RB Load has occurred since the last read of the Status Register, if WAVE = 0.

• ETRGS: External Trigger Status

0 = External trigger has not occurred since the last read of the Status Register.

1 = External trigger has occurred since the last read of the Status Register.

• CLKSTA: Clock Enabling Status

0 = Clock is disabled.

1 = Clock is enabled.

• MTIOA: TIOA Mirror

0 = TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low.

1 = TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high.

• MTIOB: TIOB Mirror

0 = TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low.

1 = TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high.

368 AT91RM3400
1790A–ATARM–11/03

TC Interrupt Enable Register
Register Name: TC_IER

Access Type: Write-only

• COVFS: Counter Overflow

0 = No effect.

1 = Enables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0 = No effect.

1 = Enables the Load Overrun Interrupt.

• CPAS: RA Compare

0 = No effect.

1 = Enables the RA Compare Interrupt.

• CPBS: RB Compare

0 = No effect.

1 = Enables the RB Compare Interrupt.

• CPCS: RC Compare

0 = No effect.

1 = Enables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Enables the RA Load Interrupt.

• LDRBS: RB Loading

0 = No effect.

1 = Enables the RB Load Interrupt.

• ETRGS: External Trigger

0 = No effect.

1 = Enables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

369

AT91RM3400

1790A–ATARM–11/03

TC Interrupt Disable Register
Register Name: TC_IDR

Access Type: Write-only

• COVFS: Counter Overflow

0 = No effect.

1 = Disables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0 = No effect.

1 = Disables the Load Overrun Interrupt (if WAVE = 0).

• CPAS: RA Compare

0 = No effect.

1 = Disables the RA Compare Interrupt (if WAVE = 1).

• CPBS: RB Compare

0 = No effect.

1 = Disables the RB Compare Interrupt (if WAVE = 1).

• CPCS: RC Compare

0 = No effect.

1 = Disables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Disables the RA Load Interrupt (if WAVE = 0).

• LDRBS: RB Loading

0 = No effect.

1 = Disables the RB Load Interrupt (if WAVE = 0).

• ETRGS: External Trigger

0 = No effect.

1 = Disables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

370 AT91RM3400
1790A–ATARM–11/03

TC Interrupt Mask Register
Register Name: TC_IMR

Access Type: Read-only

• COVFS: Counter Overflow

0 = The Counter Overflow Interrupt is disabled.

1 = The Counter Overflow Interrupt is enabled.

• LOVRS: Load Overrun

0 = The Load Overrun Interrupt is disabled.

1 = The Load Overrun Interrupt is enabled.

• CPAS: RA Compare

0 = The RA Compare Interrupt is disabled.

1 = The RA Compare Interrupt is enabled.

• CPBS: RB Compare

0 = The RB Compare Interrupt is disabled.

1 = The RB Compare Interrupt is enabled.

• CPCS: RC Compare

0 = The RC Compare Interrupt is disabled.

1 = The RC Compare Interrupt is enabled.

• LDRAS: RA Loading

0 = The Load RA Interrupt is disabled.

1 = The Load RA Interrupt is enabled.

• LDRBS: RB Loading

0 = The Load RB Interrupt is disabled.

1 = The Load RB Interrupt is enabled.

• ETRGS: External Trigger

0 = The External Trigger Interrupt is disabled.

1 = The External Trigger Interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

371

AT91RM3400

1790A–ATARM–11/03

MultiMedia Card Interface (MCI)

Overview The MultiMedia Card Interface (MCI) supports the MultiMediaCard (MMC) Specification V2.2
and the SD Memory Card Specification V1.0.

The MCI includes a command register, response registers, data registers, timeout counters
and error detection logic that automatically handle the transmission of commands and, when
required, the reception of the associated responses and data with limited processor overhead.

The MCI supports stream, block and multi-block data read and write, and is compatible with
the Peripheral Data Controller channels, minimizing processor intervention for large buffer
transfers.

The MCI operates at a rate of up to Master Clock divided by 2 and supports interfacing of up to
16 slots (depending on the product). Each slot may be used to interface with a MultiMediaCard
bus (up to 30 Cards) or with an SD Memory Card. Only one slot can be selected at a time
(slots are multiplexed). A bit in the Command Register performs this selection.

The SD Memory Card communication is based on a 9-pin interface (clock, command, four
data and three power lines) and the MultiMediaCard on a 7-pin interface (clock, command,
one data and three power lines).

The SD Memory Card interface also supports MultiMedia Card operations. The main differ-
ences between SD and MultiMedia Cards are the initialization process and the bus topology.

The main features of the MCI are:

• Compatibility with MultiMedia Card Specification Version 2.2

• Compatibility with SD Memory Card Specification Version 1.0

• Cards clock rate up to Master Clock divided by 2

• Embedded power management to slow down clock rate when not used

• Supports up to sixteen multiplexed slots (product-dependent)

– One slot for one MultiMediaCard bus (up to 30 cards) or one SD Memory Card

• Support for stream, block and multi-block data read and write

• Supports connection to Peripheral Data Controller

– Minimizes processor intervention for large buffer transfers

372 AT91RM3400
1790A–ATARM–11/03

Block Diagram

Figure 151. Block Diagram

MCI Interface

Interrupt Control

PIO

PDC

APB Bridge

PMC MCK

MCI Interrupt

MCCK

MCCDA

MCDA0

MCDA1

MCDA2

MCDA3

MCCDB

MCDB0

MCDB1

MCDB2

MCDB3

ASB

APB

373

AT91RM3400

1790A–ATARM–11/03

Application Block Diagram

Figure 152. Application Block Diagram

Note: 1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

2 3 4 5 61 7

MMC

2 3 4 5 61 78

SDCard
9

Physical Layer
MCI Interface

Application Layer
ex: File System, Audio, Security, etc.

Table 63. I/O Lines Description

Pin Name Pin Description Type(1) Comments

MCCDA/MCCDB Command/response I/O/PP/OD CMD of an MMC or SD Card

MCCK Clock I CLK of an MMC or SD Card

MCDA0 - MCDA3 Data 0..3 of Slot A I/O/PP DAT0 of an MMC
DAT[0..3] of an SD Card

MCDB0 - MCDB3 Data 0..3 of Slot B I/O/PP DAT0 of an MMC
DAT[0..3] of an SD Card

374 AT91RM3400
1790A–ATARM–11/03

Product Dependencies

I/O Lines The pins used for interfacing the MultiMedia Cards or SD Cards may be multiplexed with PIO
lines. The programmer must first program the PIO controllers to assign the peripheral func-
tions to MCI pins.

Power
Management

The MCI may be clocked through the Power Management Controller (PMC), so the program-
mer must first to configure the PMC to enable the MCI clock.

Interrupt The MCI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).

Handling the MCI interrupt requires programming the AIC before configuring the MCI.

Bus Topology Figure 153. MultiMedia Memory Card Bus Topology

The MultiMedia Card communication is based on a 7-pin serial bus interface. It has three com-
munication lines and four supply lines.

Note: 1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

Figure 154. MMC Bus Connections

Table 64. Bus Topology

Pin
Number Name Type(1) Description MCI Pin Name

1 RSV NC Not connected

2 CMD I/O/PP/OD Command/response MCCDA/MCCDB

3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I Clock MCCK

6 VSS2 S Supply voltage ground VSS

7 DAT[0] I/O/PP Data 0 MCDA0/MCDB0

2 3 4 5 61 7

MMC

2 3 4 5 61 7 2 3 4 5 61 7 2 3 4 5 61 7

MCDA0

MCCDA

MCCK

MMC1 MMC2 MMC3

MCI

375

AT91RM3400

1790A–ATARM–11/03

Figure 155. SD Memory Card Bus Topology

The SD Memory Card bus includes the signals listed in Table 65.

Note: 1. I: input, O: output, PP: Push Pull, OD: Open Drain

Figure 156. SD Card Bus Connections

Table 65. SD Memory Card Bus Signals

Pin
Number Name Type(1) Description MCI Pin Name

1 CD/DAT[3] I/O/PP Card detect/ Data line Bit 3 MCDA3/MCDB3

2 CMD PP Command/response MCCDA/MCCDB

3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I Clock MCCK

6 VSS2 S Supply voltage ground VSS

7 DAT[0] I/O/PP Data line Bit 0 MCDA0/MCDB0

8 DAT[1] I/O/PP Data line Bit 1 MCDA1/MCDB1

9 DAT[2] I/O/PP Data line Bit 2 MCDA2/MCDB2

2 3 4 5 61 78

SD CARD
9

2
3

4
5

6
1

7MCDA0 - MCDA3

MCCDA

MCCK

8

SD CARD 1
9

2
3

4
5

6
1

7
8

SD CARD 2

9

MCDB0 - MCDB3

MCCDB

376 AT91RM3400
1790A–ATARM–11/03

Figure 157. Mixing MultiMedia and SD Memory Cards

When the MCI is configured to operate with SD memory cards, the width of the data bus can
be selected in the MCI_SDCR register. Clearing the SDCBUS bit in this register means that
the width is one bit and setting it means that the width is four bits. In the case of multimedia
cards, only the data line 0 is used. The other data lines can be used as independent PIOs.

MultiMedia Card
Operations

After a power-on reset, the cards are initialized by a special message-based MultiMedia Card
bus protocol. Each message is represented by one of the following tokens:

• Command: A command is a token that starts an operation. A command is sent from the
host either to a single card (addressed command) or to all connected cards (broadcast
command). A command is transferred serially on the CMD line.

• Response: A response is a token which is sent from an addressed card or (synchronously)
from all connected cards to the host as an answer to a previously received command. A
response is transferred serially on the CMD line.

• Data: Data can be transferred from the card to the host or vice versa. Data is transferred
via the data line.

Card addressing is implemented using a session address assigned during the initialization
phase by the bus controller to all currently connected cards. Their unique CID number identi-
fies individual cards.

The structure of commands, responses and data blocks is described in the MultiMedia-Card
System Specification Version 2.2. See also Table 66 on page 377.

MultiMediaCard bus data transfers are composed of these tokens.

There are different types of operations. Addressed operations always contain a command and
a response token. In addition, some operations have a data token; the others transfer their
information directly within the command or response structure. In this case, no data token is
present in an operation. The bits on the DAT and the CMD lines are transferred synchronous
to the clock MCCK.

Two types of data transfer commands are defined:

• Sequential commands: These commands initiate a continuous data stream. They are
terminated only when a stop command follows on the CMD line. This mode reduces the
command overhead to an absolute minimum.

• Block-oriented commands: These commands send a data block succeeded by CRC bits.

2 3 4 5 61 7 2 3 4 5 61 7 2 3 4 5 61 7

MMC1 MMC2 MMC3

MCDA0

MCCK

MCCDA

2
3

4
5

6
1

7
8

SD CARD

9

MCDB0 - MCDB3

MCCDB

377

AT91RM3400

1790A–ATARM–11/03

Both read and write operations allow either single or multiple block transmission. A multiple
block transmission is terminated when a stop command follows on the CMD line similarly to
the sequential read.

The MCI provides a set of registers to perform the entire range of MultiMediaCard operations.

Command-
response
Operation

After reset the MCI is disabled and becomes valid after setting the MCIEN bit in the MCI_CR
Control Register. The bit PWSEN allows saving power by dividing the MCI clock by 2 power
PWSDIV (MCI_MR) when the bus is inactive.

The command and the response of the card are clocked out with the rising edge of the MCCK.

All the timings for MultiMediaCard are defined in the MultiMediaCard System Specification
Version 2.2.

The two bus modes (open drain and push/pull) needed to process all the operations are
defined in the MCI command register. The MCI_CMDR allows a command to be carried out.

For example, to perform an ALL_SEND_CID command:

The command ALL_SEND_CID and the fields and values for the MCI_CMDR Control Register
are described in Table 66 and Table 67.

The MCI_ARGR contains the argument field of the command.

To send a command, the user must perform the following steps:

• Fill the argument register (MCI_ARGR) with the command argument.

• Set the command register (MCI_CMDR) (see Table 67).

The command is sent immediately after writing the command register. The status bit
CMDRDY in the status register (MCI_SR) is asserted until the command is completed. If the

Host Command NID Cycles CID or OCR

CMD S T Content CRC E Z ****** Z S T Content Z Z Z

Table 66. ALL_SEND_CID command description

CMD Index Type Argument Resp Abbreviation Command Description

CMD2 bcr [31:0] stuff bits R2 ALL_SEND_CID Asks all cards to send their
CID numbers on the CMD
line

Table 67. Fields and Values for MCI_CMDR Command Register

Field Value

CMDNB (command number) 2 (CMD2)

RSPTYP (response type) 2 (R2: 136 bits response)

SPCMD (special command) 0 (not a special command)

OPCMD (open drain command) 1

MAXLAT (max latency for command to response) 0 (NID cycles ==> 5 cycles)

TRCMD (transfer command) 0 (No transfer)

TRDIR (transfer direction) X (available only in transfer command)

TRTYP (transfer type) X (available only in transfer command)

378 AT91RM3400
1790A–ATARM–11/03

command requires a response, it can be read in the MCI response register (MCI_RSPR). The
response size can be 48 bits up to 136 bits according to the command. The MCI embeds an
error detection to prevent any corrupted data during the transfer.

The following flowchart shows how to send a command to the card and read the response if
needed. In this example, the status register bits are polled but setting the appropriate bits in
the interrupt enable register (MCI_IER) allows using an interrupt method.

Figure 158. Command/Response Functional Flow Diagram

Note: 1. If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3
response in the MultiMediaCard specification).

Data Transfer
Operation

The MultiMedia Card allows several read/write operations (single block, multiple blocks,
stream, etc.).

These operations can be done using the Peripheral Data Controller (PDC) features. If the
PDCMODE bit is set in MCI_MR, then all reads and writes use the PDC facilities. In all cases,
the block length must be defined in the mode register.

RETURN OK

RETURN ERROR

Set the command argument
MCI_ARGR = Argument(1)

Set the command
MCI_CMDR = Command

Read MCI_SR

CMDRDY

Status error flags?

Read response if required

Yes

Wait for command
ready status flag

Check error bits in the
status register (1)

0

1

379

AT91RM3400

1790A–ATARM–11/03

Read Operation The following flowchart shows how to read a single block with or without use of PDC facilities.
In this example, a polling method is used to wait for the end of read. Similarly, the user can
configure the interrupt enable register (MCI_IER) to trigger an interrupt at the end of read.
These two methods can be applied for all MultiMediaCard read functions.

Figure 159. Read Functional Flow Diagram

Read status register MCI_SR

Send command SEL_DESEL_CARD
to select the card

Send command SET_BLOCKLEN

Read with PDC

Reset the PDCMODE bit
MCI_MR &= ~PDCMODE
Set the block length
MCI_MR |= (BlockLenght <<16)

Number words read =
BlockLength/4

Poll the bit
RXRDY = 0?

Read data = MCI_RDR

Send command
READ_SINGLE_BLOCK

Yes

Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length
MCI_MR |= (BlockLength << 16)

Configure the PDC channel
PDC_RPR = Data Buffer Address
PDC_RCR = BlockLength/4
PDC2_PTCR = PDC_RXTEN

Send command
READ_SINGLE_BLOCK

Read status register MCI_SR

Poll the bit
ENDRX = 0?

Yes

RETURN RETURN

YesNo

No

No

380 AT91RM3400
1790A–ATARM–11/03

Write Operation In write operation the MCI Mode Register (MCI_MR) is used to define the padding value when
writing non-multiple block size. If the bit PDCPADV is 0, then 0x00 value is used when pad-
ding data, otherwise 0xFF is used. If set, the bit PDCMODE enables PDC transfer.

The following flowchart shows how to write a single block with or without use of PDC facilities.
Polling or interrupt method can be used to wait for the end of write according to the contents of
the Interrupt Mask Register (MCI_IMR).

This flowchart can be adapted to perform all the MultiMedia Card write functions.

Figure 160. Write Functional Flow Diagram

Read status register MCI_SR

Send command SEL_DESEL_CARD
to select the card

Send command SET_BLOCKLEN

Write using PDC

Reset the PDCMODE bit
MCI_MR &= ~PDCMODE
Set the block length
MCI_MR |= (BlockLenght <<16)

Number words write =
BlockLength/4

Poll the bit
TXRDY = 0?

MCI_TDR = Data to write

Send command
WRITE_SINGLE_BLOCK

Yes

Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length
MCI_MR |= (BlockLength << 16)

Configure the PDC channel
PDC_TPR = Data Buffer Address to write
PDC_TCR = BlockLength/4
PDC2_PTCR = PDC_TXTEN

Send command
WRITE_SINGLE_BLOCK

Read status register MCI_SR

Poll the bit
ENDTX = 0?

Yes

RETURN RETURN

No Yes

Yes

No

No

No

381

AT91RM3400

1790A–ATARM–11/03

SD Card
Operations

The MultiMedia Card Interface allows processing of SD Memory Card (Secure Digital Memory
Card) commands. The SD Memory Card will include a copyright protection mechanism that
complies with the security requirements of the SDMI standard, is faster and applicable to
higher memory capacity.

The physical form factor, pin assignment and data transfer protocol are forward-com-patible
with the MultiMedia Card with some additions.

The SD Memory Card communication is based on a 9-pin interface (Clock, Command,
4 x Data and 3 x Power lines). The communication protocol is defined as a part of this specifi-
cation. The main difference between the SD Memory Card and the MultiMedia Card is the
initialization process.

The SD Card Control Register (MCI_SDCR) allows selection of the card slot and the data bus
width.

The SD Card bus allows dynamic configuration of the number of data lines. After power up, by
default, the SD Memory Card will use only DAT0 for data transfer. After initialization, the host
can change the bus width (number of active data lines).

382 AT91RM3400
1790A–ATARM–11/03

MultiMedia Card (MCI) User Interface

Note: 1. The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C).
N depends on the size of the response.

Table 68. MCI Register Mapping

Offset Register Register Name Read/Write Reset

0x00 Control Register MCI_CR Write ---

0x04 Mode Register MCI_MR Read/write 0x0

0x08 Data Timeout Register MCI_DTOR Read/write 0x0

0x0C SD Card Register MCI_SDCR Read/write 0x0

0x10 Argument Register MCI_ARGR Read/write 0x0

0x14 Command Register MCI_CMDR Write ---

0x18 - 0x1C Reserved

0x20 Response Register(1) MCI_RSPR Read 0x0

0x24 Response Register(1) MCI_RSPR Read 0x0

0x28 Response Register(1) MCI_RSPR Read 0x0

0x2C Response Register(1) MCI_RSPR Read 0x0

0x30 Receive Data Register MCI_RDR Read 0x0

0x34 Transmit Data Register MCI_TDR Write ---

0x38 - 0x3C Reserved

0x40 Status Register MCI_SR Read 0xC0E5

0x44 Interrupt Enable Register MCI_IER Write ---

0x48 Interrupt Disable Register MCI_IDR Write ---

0x4C Interrupt Mask Register MCI_IMR Read 0x0

0x50-0xFF Reserved

0x100-0x124 Reserved for the PDC

383

AT91RM3400

1790A–ATARM–11/03

MCI Control Register
Register name: MCI_CR

Access Type: Write-only

• MCIEN: Multi-Media Interface Enable

0 = No effect.

1 = Enables the Multi-Media Interface if MCDIS is 0.

• MCIDIS: Multi-Media Interface Disable

0 = No effect.

1 = Disables the Multi-Media Interface.

• PWSEN: Power Save Mode Enable

0 = No effect.

1 = Enables the Power Saving Mode if PWSDIS is 0.

• PWSDIS: Power Save Mode Disable

0 = No effect.

1 = Disables the Power Saving Mode.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – PWSDIS PWSEN MCIDIS MCIEN

384 AT91RM3400
1790A–ATARM–11/03

MCI Mode Register
Name: MCI_MR

Access Type: Read/write

• CLKDIV: Clock Divider

Multi-Media Card Interface clock (MCCK) is Master Clock (MCK) divided by (2*(CLKDIV+1)).

• PWSDIV: Power Saving Divider

Multimedia Card Interface clock is divided by 2(PWSDIV) when entering Power Saving Mode.

• PDCPADV: PDC Padding Value

0 = 0x00 value is used when padding data in write transfer (not only PDC transfer).

1 = 0xFF value is used when padding data in write transfer (not only PDC transfer).

• PDCMODE: PDC-oriented Mode

0 = Disables PDC transfer

1 = Enables PDC transfer. In this case, UNRE and OVRE (MCI_SR) are deactivated.

• BLKLEN: Data Block Length

This field determines the size of the data block.

Bits 16 and 17 must be 0.

31 30 29 28 27 26 25 24

– – BLKLEN

23 22 21 20 19 18 17 16

BLKLEN 0 0

15 14 13 12 11 10 9 8

PDCMODE PDCPADV – – – PWSDIV

7 6 5 4 3 2 1 0

CLKDIV

385

AT91RM3400

1790A–ATARM–11/03

MCI Data Timeout Register
Name: MCI_DTOR

Access Type: Read/write

• DTOCYC: Data Timeout Cycle Number

• DTOMUL: Data Timeout Multiplier

These fields determine the maximum number of Master Clock cycles that the MCI waits between two data block transfers.
It equals (DTOCYC x Multiplier).

Multiplier is defined by DTOMUL as shown in the following table:

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– DTOMUL DTOCYC

DTOMUL Multiplier

0 0 0 1

0 0 1 16

0 1 0 128

0 1 1 256

1 0 0 1024

1 0 1 4096

1 1 0 65536

1 1 1 1048576

386 AT91RM3400
1790A–ATARM–11/03

MCI SD Card Register
Name: MCI_SDCR

Access Type: Read/write

• SDCSEL: SD Card Selector

0 = SD card A selected.

1 = SD card B selected.

• SDCBUS

0 = 1-bit data bus

1 = 4-bit data bus

MCI Argument Register
Name: MCI_ARGR

Access Type: Read/write

• ARG: Command Argument

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SDCBUS – – – SDCSEL

31 30 29 28 27 26 25 24

ARG

23 22 21 20 19 18 17 16

ARG

15 14 13 12 11 10 9 8

ARG

7 6 5 4 3 2 1 0

ARG

387

AT91RM3400

1790A–ATARM–11/03

MCI Command Register
Name: MCI_CMDR

Access Type: Write-only

This register is write-protected while CMDRDY is 0 in MCI_SR and in the case of a no Interrupt command sent (bit
SPCMD). This means that the current command execution cannot be interrupted or modified.

• CMDNB: Command Number

• RSPTYP: Response Type

• SPCMD: Special CMD

• OPDCMD: Open Drain Command

0 = Push pull command

1 = Open drain command

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – TRTYPE TRDIR TRCMD

15 14 13 12 11 10 9 8

– – – MAXLAT OPDCMD SPCMD

7 6 5 4 3 2 1 0

RSPTYP CMDNB

RSP Response Type

0 0 No response.

0 1 48-bit response.

1 0 136-bit response.

1 1 Reserved.

SPCMD CMD

0 0 0 Not a special CMD.

0 0 1 Initialization CMD:
74 clock cycles for initialization sequence.

0 1 0 Synchronized CMD:
Wait for the end of the current data block transfer before sending the pending
command.

0 1 1 Reserved.

1 0 0 Interrupt command:

Corresponds to the Interrupt Mode (CMD40).

1 0 1 Interrupt response:

Corresponds to the Interrupt Mode (CMD40).

388 AT91RM3400
1790A–ATARM–11/03

• MAXLAT: Max Latency for Command to Response

0 =5-cycle max latency

1 = 64-cycle max latency

• TRCMD: Transfer Command

• TRDIR: Transfer Direction

0 = Write

1 = Read

• TRTYP: Transfer Type

MCI SD Response Register
Name: MCI_RSPR

Access Type: Read-only

• RSP: Response

TRCMD Transfer Type

0 0 No transfer.

0 1 Start Transfer.

1 0 Stop Transfer.

1 1 Reserved.

TRTYP Transfer Type

0 0 Block.

0 1 Multiple Block.

1 0 Stream.

1 1 Reserved.

31 30 29 28 27 26 25 24

RSP

23 22 21 20 19 18 17 16

RSP

15 14 13 12 11 10 9 8

RSP

7 6 5 4 3 2 1 0

RSP

389

AT91RM3400

1790A–ATARM–11/03

MCI SD Receive Data Register
Name: MCI_RDR

Access Type: Read-only

• DATA: Data to Read

MCI SD Transmit Data Register
Name: MCI_TDR

Access Type: Write-only

• DATA: Data to Write

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

390 AT91RM3400
1790A–ATARM–11/03

MCI Status Register
Name: MCI_SR

Access Type: Read-only

• CMDRDY: Command Ready

0 = A command is in progress.

1 = The last command has been sent. Cleared when writing in the MCI_CMDR.

• RXRDY: Receiver Ready

0 = Data has not yet been received since the last read of MCI_RDR.

1 = Data has been received since the last read of MCI_RDR.

• TXRDY: Transmit Ready

0= The last data written in MCI_TDR has not yet been transferred in the Shift Register.

1= The last data written in MCI_TDR has been transferred in the Shift Register.

• BLKE: Data Block Ended

0 = A data block transfer is not yet finished.

1 = A data block transfer has ended. Set at the end of the last block in PDCMODE, otherwise at the end of the first block.
Cleared when reading the MCI_SR.

• DTIP: Data Transfer in Progress

0 = No data transfer in progress.

1 = The current data transfer is still in progress, including CRC16 calculation. Cleared at the end of the CRC16 calculation.

• NOTBUSY: Data Not Busy

0 = The card is not ready for new data transfer.

1 = The card is ready for new data transfer (Data line DAT0 high corresponding to a free data receive buffer in the card).

• ENDRX: End of RX Buffer

0 = The Receive Counter Register has not reached 0 since the last write in MCI_RCR or MCI_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in MCI_RCR or MCI_RNCR.

• ENDTX: End of TX Buffer

0 = The Transmit Counter Register has not reached 0 since the last write in MCI_TCR or MCI_TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in MCI_TCR or MCI_TNCR.

• RXBUFF: RX Buffer Full

0 = MCI_RCR or MCI_RNCR has a value other than 0.

1 = Both MCI_RCR and MCI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty

0 = MCI_TCR or MCI_TNCR has a value other than 0.

1 = Both MCI_TCR and MCI_TNCR have a value of 0.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE TCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF – – – – – –

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

391

AT91RM3400

1790A–ATARM–11/03

• RINDE: Response Index Error

0 = No error.

1 = A mismatch is detected between the command index sent and the response index received. Cleared when writing in the
MCI_CMDR.

• RDIRE: Response Direction Error

0 = No error.

1 = The direction bit from card to host in the response has not been detected.

• RCRCE: Response CRC Error

0 = No error.

1 = A CRC7 error has been detected in the response. Cleared when writing in the MCI_CMDR.

• RENDE: Response End Bit Error

0 = No error.

1 = The end bit of the response has not been detected. Cleared when writing in the MCI_CMDR.

• RTOE: Response Time-out Error

0 = No error.

1 = The response time-out set by MAXLAT in the MCI_CMDR has been exceeded. Cleared when writing in the
MCI_CMDR.

• DCRCE: Data CRC Error

0 = No error.

1 = A CRC16 error has been detected in the last data block. Cleared when sending a new data transfer command.

• DTOE: Data Time-out Error

0 = No error.

1 = The data time-out set by DTOCYC and DTOMUL in MCI_DTOR has been exceeded. Cleared when writing in the
MCI_CMDR.

• OVRE: Overrun

0 = No error.

1 = At least one 8-bit received data has been lost (not read). Cleared when sending a new data transfer command.

• UNRE: Underrun

0 = No error.

1 = At least one 8-bit data has been sent without valid information (not written). Cleared when sending a new data transfer
command.

392 AT91RM3400
1790A–ATARM–11/03

MCI Interrupt Enable Register
Name: MCI_IER

Access Type: Write-only

• CMDRDY: Command Ready Interrupt Enable

• RXRDY: Receiver Ready Interrupt Enable

• TXRDY: Transmit Ready Interrupt Enable

• BLKE: Data Block Ended Interrupt Enable

• DTIP: Data Transfer in Progress Interrupt Enable

• NOTBUSY: Data Not Busy Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• RINDE: Response Index Error Interrupt Enable

• RDIRE: Response Direction Error Interrupt Enable

• RCRCE: Response CRC Error Interrupt Enable

• RENDE: Response End Bit Error Interrupt Enable

• RTOE: Response Time-out Error Interrupt Enable

• DCRCE: Data CRC Error Interrupt Enable

• DTOE: Data Time-out Error Interrupt Enable

• OVRE: Overrun Interrupt Enable

• UNRE: UnderRun Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE TCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF – – – – – –

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

393

AT91RM3400

1790A–ATARM–11/03

MCI Interrupt Disable Register
Name: MCI_IDR

Access Type: Write-only

• CMDRDY: Command Ready Interrupt Disable

• RXRDY: Receiver Ready Interrupt Disable

• TXRDY: Transmit Ready Interrupt Disable

• BLKE: Data Block Ended Interrupt Disable

• DTIP: Data Transfer in Progress Interrupt Disable

• NOTBUSY: Data Not Busy Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• RINDE: Response Index Error Interrupt Disable

• RDIRE: Response Direction Error Interrupt Disable

• RCRCE: Response CRC Error Interrupt Disable

• RENDE: Response End Bit Error Interrupt Disable

• RTOE: Response Time-out Error Interrupt Disable

• DCRCE: Data CRC Error Interrupt Disable

• DTOE: Data Time-out Error Interrupt Disable

• OVRE: Overrun Interrupt Disable

• UNRE: UnderRun Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE TCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF – – – – – –

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

394 AT91RM3400
1790A–ATARM–11/03

MCI Interrupt Mask Register
Name: MCI_IMR

Access Type: Read-only

• CMDRDY: Command Ready Interrupt Mask

• RXRDY: Receiver Ready Interrupt Mask

• TXRDY: Transmit Ready Interrupt Mask

• BLKE: Data Block Ended Interrupt Mask

• DTIP: Data Transfer in Progress Interrupt Mask

• NOTBUSY: Data Not Busy Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• RINDE: Response Index Error Interrupt Mask

• RDIRE: Response Direction Error Interrupt Mask

• RCRCE: Response CRC Error Interrupt Mask

• RENDE: Response End Bit Error Interrupt Mask

• RTOE: Response Time-out Error Interrupt Mask

• DCRCE: Data CRC Error Interrupt Mask

• DTOE: Data Time-out Error Interrupt Mask

• OVRE: Overrun Interrupt Mask

• UNRE: UnderRun Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE TCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF – – – – – –

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

395

AT91RM3400

1790A–ATARM–11/03

USB Device Port (UDP)

Overview The USB Device Port (UDP) is compliant with the Universal Serial Bus (USB) V2.0 full-speed
device specification. It is designed to be associated with Atmel’s embedded USB transceiver
and interfaced with an ARM7TDMI and ARM9TDMI core.

The number and size of endpoints is product-dependent. Each endpoint is associated with
one or two banks of a dual-port RAM used to store the current data payload. If two banks are
used, one DPR bank is read or written by the processor, while the other is read or written by
the USB device peripheral. This feature is mandatory for isochronous endpoints. Thus the
device maintains the maximum bandwidth (1M bytes/s) by working with endpoints with two
banks of DPR.

Suspend and resume are automatically detected by the USB device, which notifies the pro-
cessor by raising an interrupt. Depending on the product, an external signal can be used to
send a wake-up to the USB host controller.

The main features of the UDP are:

• USB V2.0 Full-speed Compliant, 12 Mbits per second

• Embedded USB V2.0 Full-speed Transceiver

• Embedded Dual-port RAM for Endpoints

• Suspend/Resume Logic

• Ping-pong Mode (2 Memory Banks) for Isochronous and Bulk Endpoints

396 AT91RM3400
1790A–ATARM–11/03

Block Diagram

Figure 161. USB Device Port Block Diagram

Access to the UDP is via the APB bus interface. Read and write to the data FIFO are done by
reading and writing 8-bit values to APB registers.

The UDP peripheral requires two clocks: one peripheral clock used by the MCK domain and a
48 MHz clock used by the 12 MHz domain.

A USB 2.0 full-speed pad is embedded and controlled by the SIE.

The signal external_resume is optional. It allows the UDP peripheral to wake-up once in sys-
tem mode. The host will then be notified that the device asks for a resume. This optional
feature must be also negotiated with the host during the enumeration.

Atmel Bridge

12 MHz

Suspend/Resume Logic

W
r
a
p
p
e
r

W
r
a
p
p
e
r

U
s
e
r

I
n
t
e
r
f
a
c
e

Serial
Interface
Engine

SIE

MCK

Master Clock
Domain

Dual
Port
RAM

FIFO

UDPCK

Recovered 12 MHz
Domain

udp_int

USB Device

Embedded
USB

Transceiver

DP

DM

External Resume

APB
to

MCU
Bus

txoen

eopn

txd

rxdm

rxd

rxdp

397

AT91RM3400

1790A–ATARM–11/03

Product Dependencies
Note: For further details on the USB Device hardware implementation, see the specific Product Prop-

erties document.

The USB physical transceiver is integrated into the product. The bi-directional differential sig-
nals DP and DM are available from the product boundary.

Two I/O lines may be used by the application:

• One to check that VBUS is still available from the host. Self-powered devices may use this
entry to be notified that the host has been powered off. In this case, the board pull-up on
DP must be disabled in order to prevent feeding current to the host.

• One to control the board pull-up on DP. Thus, when the device is ready to communicate
with the host, it activates its DP pull-up through this control line.

I/O Lines DP and DM are not controlled by any PIO controllers. The embedded USB physical trans-
ceiver is controlled by the USB device peripheral.

To reserve an I/O line to check VBUS, the programmer must first program the PIO controller to
assign this I/O in input PIO mode.

To reserve an I/O line to control the board pull-up, the programmer must first program the PIO
controller to assign this I/O in output PIO mode.

Power
Management

The USB device peripheral requires a 48 MHz clock. This clock must be generated by a PLL
with an accuracy of ± 0.25%.

Thus, the USB device receives two clocks from the Power Management Controller (PMC): the
master clock, MCK, used to drive the peripheral user interface and the UDPCK used to inter-
face with the bus USB signals (recovered 12 MHz domain).

Interrupt The USB device interface has an interrupt line connected to the Advanced Interrupt Controller
(AIC).

Handling the USB device interrupt requires programming the AIC before configuring the UDP.

398 AT91RM3400
1790A–ATARM–11/03

Typical Connection
USB_CNX is an input signal used to check if the host is connected

USB_DP_PUP is an output signal used to enable pull-up on DP.

Figure 162 shows automatic activation of pull-up after reset.

Figure 162. Board Schematic to Interface USB Device Peripheral

3V3

15pF

15pF

27Ω

33pF

15kΩ

47kΩ

100nF
DDM

DDP

PAn

PAm

System
Reset

15KΩ

22KΩ

27Ω Type B
Connector

399

AT91RM3400

1790A–ATARM–11/03

Functional Description

USB V2.0 Full-
speed Introduction

The USB V2.0 full-speed provides communication services between host and attached USB
devices. Each device is offered with a collection of communication flows (pipes) associated
with each endpoint. Software on the host communicates with an USB device through a set of
communication flows.

Figure 163. Example of USB V2.0 Full-speed Communication Control

USB V2.0 Full-speed Transfer Types

A communication flow is carried over one of four transfer types defined by the USB device.

Table 69. USB Communication Flow

Transfer Direction Bandwidth Endpoint Size Error Detection Retrying

Control Bi-directional Not guaranteed 8, 16, 32, 64 Yes Automatic

Isochronous Uni-directional Guaranteed 1 - 1023 Yes No

Interrupt Uni-directional Not guaranteed ≤ 64 Yes Yes

Bulk Uni-directional Not guaranteed 8, 16, 32, 64 Yes Yes

EP0

USB Host V2.0

Software Client 1 Software Client 2

Data Flow: Bulk Out Transfer

Data Flow: Bulk In Transfer

Data Flow: Control Transfer

Data Flow: Control Transfer

EP1

EP2

USB Device 2.0
Block 1

USB Device 2.0
Block 2

EP5

EP4

EP0

Data Flow: Isochronous In Transfer

Data Flow: Isochronous Out Transfer

400 AT91RM3400
1790A–ATARM–11/03

USB Bus Transactions Each transfer results in one or more transactions over the USB bus. There are five kinds of
transactions flowing across the bus in packets:

1. Setup Transaction

2. Data IN Transaction

3. Data OUT Transaction

4. Status IN Transaction

5. Status OUT Transaction

USB Transfer Event
Definitions

As shown in Table 70, transfers are sequential events carried out on the USB bus.

Notes: 1. Control transfer must use endpoints with no ping-pong attributes.
2. Isochronous transfers must use endpoints with ping-pong attributes.
3. Control transfers can be aborted using a stall handshake.

Table 70. USB Transfer Events

Control Transfers(1) (3) • Setup transaction > Data IN transactions >
Status OUT transaction

• Setup transaction > Data OUT transactions >
Status IN transaction

• Setup transaction > Status IN transaction

Interrupt IN Transfer
(device toward host)

• Data IN transaction > Data IN transaction

Interrupt OUT Transfer
(host toward device)

• Data OUT transaction > Data OUT transaction

Isochronous IN Transfer(2)

(device toward host)

• Data IN transaction > Data IN transaction

Isochronous OUT Transfer(2)
(host toward device)

• Data OUT transaction > Data OUT transaction

Bulk IN Transfer
(device toward host)

• Data IN transaction > Data IN transaction

Bulk OUT Transfer
(host toward device)

• Data OUT transaction > Data OUT transaction

401

AT91RM3400

1790A–ATARM–11/03

Handling Transactions with USB V2.0 Device Peripheral

Setup Transaction Setup is a special type of host-to-device transaction used during control transfers. Control
transfers must be performed using endpoints with no ping-pong attributes. A setup transaction
needs to be handled as soon as possible by the firmware. It is used to transmit requests from
the host to the device. These requests are then handled by the USB device and may require
more arguments. The arguments are sent to the device by a Data OUT transaction which fol-
lows the setup transaction. These requests may also return data. The data is carried out to the
host by the next Data IN transaction which follows the setup transaction. A status transaction
ends the control transfer.

When a setup transfer is received by the USB endpoint:

• The USB device automatically acknowledges the setup packet
• RXSETUP is set in the USB_CSRx register
• An endpoint interrupt is generated while the RXSETUP is not cleared. This interrupt is

carried out to the microcontroller if interrupts are enabled for this endpoint.

Thus, firmware must detect the RXSETUP polling the USB_CSRx or catching an interrupt,
read the setup packet in the FIFO, then clear the RXSETUP. RXSETUP cannot be cleared
before the setup packet has been read in the FIFO. Otherwise, the USB device would accept
the next Data OUT transfer and overwrite the setup packet in the FIFO.

Figure 164. Setup Transaction Followed by a Data OUT Transaction

RX_Data_BKO
(USB_CSRx)

ACK
PIDData OUTData OUT

PID
NAK
PID

ACK
PIDData SetupSetup

PID
USB
Bus Packets

RXSETUP Flag

Set by USB Device Cleared by Firmware
Set by USB
Device Peripheral

FIFO (DPR)
Content

Data Setup DataXX XX OUT

Interrupt Pending

Setup Received Setup Handled by Firmware Data Out Received

Data OUTData OUT
PID

402 AT91RM3400
1790A–ATARM–11/03

Data IN Transaction Data IN transactions are used in control, isochronous, bulk and interrupt transfers and conduct
the transfer of data from the device to the host. Data IN transactions in isochronous transfer
must be done using endpoints with ping-pong attributes.

Using Endpoints
Without Ping-pong
Attributes

To perform a Data IN transaction, using a non ping-pong endpoint:

1. The microcontroller checks if it is possible to write in the FIFO by polling TXPKTRDY in
the endpoint’s USB_CSRx register (TXPKTRDY must be cleared).

2. The microcontroller writes data to be sent in the endpoint’s FIFO, writing zero or more
byte values in the endpoint’s USB_FDRx register,

3. The microcontroller notifies the USB peripheral it has finished by setting the TXPK-
TRDY in the endpoint’s USB_CSRx register,

4. The microcontroller is notified that the endpoint’s FIFO has been released by the USB
device when TXCOMP in the endpoint’s USB_CSRx register has been set. Then an
interrupt for the corresponding endpoint is pending while TXCOMP is set.

TXCOMP is set by the USB device when it has received an ACK PID signal for the Data IN
packet. An interrupt is pending while TXCOMP is set.
Note: Refer to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0, for more information on

the Data IN protocol layer.

Figure 165. Data IN Transfer for Non Ping-pong Endpoint

USB Bus Packets Data IN 2Data IN NAKACKData IN 1

FIFO (DPR)
Content

Load In Data IN 2Load In ProgressData IN 1

Cleared by Firmware Start to Write Data
Payload in FIFO

Set by the Firmware
Data Payload Written in FIFO

TXCOMP Flag
(USB_CSRx)

TXPKTRDY Flag
(USB_CSRx)

Cleared by USB Device

PID
Data IN Data IN

PIDPID PIDPID
ACK
PID

Progress

Prevous Data IN TX Microcontroller Load Data in FIFO Data is Sent on USB Bus

Interrupt PendingInterrupt Pending

403

AT91RM3400

1790A–ATARM–11/03

Using Endpoints With
Ping-pong Attribute

The use of an endpoint with ping-pong attributes is necessary during isochronous transfer. To
be able to guarantee a constant bandwidth, the microcontroller must prepare the next data
payload to be sent while the current one is being sent by the USB device. Thus two banks of
memory are used. While one is available for the microcontroller, the other one is locked by the
USB device.

Figure 166. Bank Swapping Data IN Transfer for Ping-pong Endpoints

When using a ping-pong endpoint, the following procedures are required to perform Data IN
transactions:

1. The microcontroller checks if it is possible to write in the FIFO by polling TXPKTRDY to
be cleared in the endpoint’s USB_CSRx register.

2. The microcontroller writes the first data payload to be sent in the FIFO (Bank 0), writing
zero or more byte values in the endpoint’s USB_FDRx register.

3. The microcontroller notifies the USB peripheral it has finished writing in Bank 0 of the
FIFO by setting the TXPKTRDY in the endpoint’s USB_CSRx register.

4. Without waiting for TXPKTRDY to be cleared, the microcontroller writes the second
data payload to be sent in the FIFO (Bank 1), writing zero or more byte values in the
endpoint’s USB_FDRx register.

5. The microcontroller is notified that the first Bank has been released by the USB device
when TXCOMP in the endpoint’s USB_CSRx register is set. An interrupt is pending
while TXCOMP is being set.

6. Once the microcontroller has received TXCOMP for the first Bank, it notifies the USB
device that it has prepared the second Bank to be sent rising TXPKTRDY in the end-
point’s USB_CSRx register.

7. At this step, Bank 0 is available and the microcontroller can prepare a third data pay-
load to be sent.

USB Device USB Bus

ReadWrite

Read and Write at the Same Time

1st Data Payload

2nd Data Payload

3rd Data Payload

3rd Data Payload

2nd Data Payload

1st Data Payload

Data IN Packet

Data IN Packet

Data IN Packet

Microcontroller

Endpoint 1
Bank 0

Endpoint 1
Bank 1

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 1

404 AT91RM3400
1790A–ATARM–11/03

Figure 167. Data IN Transfer for Ping-pong Endpoint

Warning: There is software critical path due to the fact that once the second bank is filled, the
driver has to wait for TX_COMP to set TX_PKTRDY. If the delay between receiving
TX_COMP is set and TX_PKTRDY is set is too long, some Data IN packets may be NACKed,
reducing the bandwidth.

Data INData IN

 Read by USB Device

 Read by USB DeviceBank 1

Bank 0
FIFO (DPR)

TXCOMP Flag
(USB_CSRx)

Interrupt Cleared by Firmware

Set by USB
Device

TXPKTRDY Flag
(USB_MCSRx)

ACK
PID

Data IN
PID

ACK
PID

Set by Firmware,
Data Payload Written in FIFO Bank 1

Cleared by USB Device,
Data Payload Fully Transmitted

Data IN
PID

USB Bus
Packets

Set by USB Device

Set by Firmware,
Data Payload Written in FIFO Bank 0

Written by FIFO (DPR)
Microcontroller

Written by
Microcontroller

Written by
Microcontroller

Microcontroller
Load Data IN Bank 0

Microcontroller Load Data IN Bank 1
USB Device Send Bank 0

Microcontroller Load Data IN Bank 0
USB Device Send Bank 1

Interrupt Pending

405

AT91RM3400

1790A–ATARM–11/03

Data OUT Transaction Data OUT transactions are used in control, isochronous, bulk and interrupt transfers and con-
duct the transfer of data from the host to the device. Data OUT transactions in isochronous
transfers must be done using endpoints with ping-pong attributes.

Data OUT Transaction
Without Ping-pong
Attributes

To perform a Data OUT transaction, using a non ping-pong endpoint:

1. The host generates a Data OUT packet.

2. This packet is received by the USB device endpoint. While the FIFO associated to this
endpoint is being used by the microcontroller, a NAK PID is returned to the host. Once
the FIFO is available, data are written to the FIFO by the USB device and an ACK is
automatically carried out to the host.

3. The microcontroller is notified that the USB device has received a data payload polling
RX_DATA_BK0 in the endpoint’s USB_CSRx register. An interrupt is pending for this
endpoint while RX_DATA_BK0 is set.

4. The number of bytes available in the FIFO is made available by reading RXBYTECNT
in the endpoint’s USB_CSRx register.

5. The microcontroller carries out data received from the endpoint’s memory to its mem-
ory. Data received is available by reading the endpoint’s USB_FDRx register.

6. The microcontroller notifies the USB device that it has finished the transfer by clearing
RX_DATA_BK0 in the endpoint’s USB_CSRx register.

7. A new Data OUT packet can be accepted by the USB device.

Figure 168. Data OUT Transfer for Non Ping-pong Endpoints

An interrupt is pending while the flag RX_DATA_BK0 is set. Memory transfer between the
USB device, the FIFO and microcontroller memory can not be done after RX_DATA_BK0 has
been cleared. Otherwise, the USB device would accept the next Data OUT transfer and over-
write the current Data OUT packet in the FIFO.

ACK
PID

Data OUTNAK
PIDPIDPIDPIDPID

Data OUT2ACKData OUT Data OUT 1USB Bus
Packets

RX_DATA_BK0

Set by USB Device Cleared by Firmware,
Data Payload Written in FIFO

FIFO (DPR)
Content

Written by USB Device Microcontroller Read

Data OUT 1 Data OUT 1 Data OUT 2

Host Resends the Next Data Payload
Microcontroller Transfers Data

Host Sends Data Payload

Data OUT2 Data OUT2

Host Sends the Next Data Payload

Written by USB Device

(USB_CSRx)
Interrupt Pending

406 AT91RM3400
1790A–ATARM–11/03

Using Endpoints With
Ping-pong Attributes

During isochronous transfer, using an endpoint with ping-pong attributes is necessary. To be
able to guarantee a constant bandwidth, the microcontroller must read the previous data pay-
load sent by the host, while the current data payload is received by the USB device. Thus two
banks of memory are used. While one is available for the microcontroller, the other one is
locked by the USB device.

Figure 169. Bank Swapping in Data OUT Transfers for Ping-pong Endpoints

When using a ping-pong endpoint, the following procedures are required to perform Data OUT
transactions:

1. The host generates a Data OUT packet.

2. This packet is received by the USB device endpoint. It is written in the endpoint’s FIFO
Bank 0.

3. The USB device sends an ACK PID packet to the host. The host can immediately send
a second Data OUT packet. It is accepted by the device and copied to FIFO Bank 1.

4. The microcontroller is notified that the USB device has received a data payload, polling
RX_DATA_BK0 in the endpoint’s USB_CSRx register. An interrupt is pending for this
endpoint while RX_DATA_BK0 is set.

5. The number of bytes available in the FIFO is made available by reading RXBYTECNT
in the endpoint’s USB_CSRx register.

6. The microcontroller transfers out data received from the endpoint’s memory to the
microcontroller’s memory. Data received is made available by reading the endpoint’s
USB_FDRx register.

7. The microcontroller notifies the USB peripheral device that it has finished the transfer
by clearing RX_DATA_BK0 in the endpoint’s USB_CSRx register.

8. A third Data OUT packet can be accepted by the USB peripheral device and copied in
the FIFO Bank 0.

9. If a second Data OUT packet has been received, the microcontroller is notified by the
flag RX_DATA_BK1 set in the endpoint’s USB_CSRx register. An interrupt is pending
for this endpoint while RX_DATA_BK1 is set.

USB Device USB Bus

ReadWrite

Write and Read at the Same Time

1st Data Payload

2nd Data Payload

3rd Data Payload

3rd Data Payload

2nd Data Payload

1st Data Payload

Data IN Packet

Data IN Packet

Data IN Packet

Microcontroller

Endpoint 1
Bank 0

Endpoint 1
Bank 1

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 1

407

AT91RM3400

1790A–ATARM–11/03

10. The microcontroller transfers out data received from the endpoint’s memory to the
microcontroller’s memory. Data received is available by reading the endpoint’s
USB_FDRx register.

11. The microcontroller notifies the USB device it has finished the transfer by clearing
RX_DATA_BK1 in the endpoint’s USB_CSRx register.

12. A fourth Data OUT packet can be accepted by the USB device and copied in the FIFO
Bank 0.

Figure 170. Data OUT Transfer for Ping-pong Endpoint

Note: An interrupt is pending while the RX_DATA_BK0 or RX_DATA_BK1 flag is set.

Warning: When RX_DATA_BK0 and RX_DATA_BK1 are both set, there is no way to deter-
mine which one to clear first. Thus the software must keep an internal counter to be sure to
clear alternatively RX_DATA_BK0 then RX_DATA_BK1. This situation may occur when the
software application is busy elsewhere and the two banks are filled by the USB host. Once the
application comes back to the USB driver, the two flags are set.

A
P

Data OUT
PID

ACK Data OUT 3Data OUTData OUT 2Data OUTData OUT 1PID

Data OUT 3Data OUT 1Data OUT1

Data OUT 2 Data OUT 2

PID PID PID
ACK

 Cleared by Firmware

USB Bus
Packets

RX_DATA_BK0 Flag

RX_DATA_BK1 Flag

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 1

FIFO (DPR)
Bank 0

Bank 1

Write by USB Device Write In Progress

Read By Microcontroller

Read By Microcontroller

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 0

Host Sends First Data Payload
 Microcontroller Reads Data 1 in Bank 0,
 Host Sends Second Data Payload

 Microcontroller Reads Data2 in Bank 1,
 Host Sends Third Data Payload

Cleared by Firmware

Write by USB Device

FIFO (DPR)

(USB_CSRx)

(USB_CSRx)

Interrupt Pending

Interrupt Pending

408 AT91RM3400
1790A–ATARM–11/03

Status Transaction A status transaction is a special type of host to device transaction used only in a control trans-
fer. The control transfer must be performed using endpoints with no ping-pong attributes.
According to the control sequence (read or write), the USB device sends or receives a status
transaction.

Figure 171. Control Read and Write Sequences

Notes: 1. During the Status IN stage, the host waits for a zero length packet (Data IN transaction with
no data) from the device using DATA1 PID. Please refer to Chapter 8 of the Universal Serial
Bus Specification, Rev. 2.0, to get more information on the protocol layer.

2. During the Status OUT stage, the host emits a zero length packet to the device (Data OUT
transaction with no data).

Control Read Setup TX Data OUT TX Data OUT TX

Data Stage

Control Write

Setup Stage

Setup Stage

Setup TX

Setup TX
No Data
Control

Data IN TX Data IN TX

Status Stage

Status Stage

Status IN TX

Status OUT TX

Status IN TX

Data Stage

Setup Stage Status Stage

409

AT91RM3400

1790A–ATARM–11/03

Status IN Transfer Once a control request has been processed, the device returns a status to the host. This is a
zero length Data IN transaction.

1. The microcontroller waits for TXPKTRDY in the USB_CSRx endpoint’s register to be
cleared. (At this step, TXPKTRDY must be cleared because the previous transaction
was a setup transaction or a Data OUT transaction.)

2. Without writing anything to the USB_FDRx endpoint’s register, the microcontroller sets
TXPKTRDY. The USB device generates a Data IN packet using DATA1 PID.

3. This packet is acknowledged by the host and TXPKTRDY is set in the USB_CSRx end-
point’s register.

Figure 172. Data Out Followed by Status IN Transfer.

Data INNAKData OUTData OUT ACK
PIDPIDPID PID

USB Bus
Packets

RX_DATA_BKO
(USB_CSRx)

Cleared by Firmware

Set by USB Device

Cleared by USB Device
TXPKTRDY
(USB_CSRx)

Set by Firmware

Host Sends the Last
Data Payload to the Device

Device Sends a Status IN
to the Host

Interrupt Pending

410 AT91RM3400
1790A–ATARM–11/03

Status OUT Transfer Once a control request has been processed and the requested data returned, the host
acknowledges by sending a zero length packet. This is a zero length Data OUT transaction.

1. The USB device receives a zero length packet. It sets RX_DATA_BK0 flag in the
USB_CSRx register and acknowledges the zero length packet.

2. The microcontroller is notified that the USB device has received a zero length packet
sent by the host polling RX_DATA_BK0 in the USB_CSRx register. An interrupt is
pending while RX_DATA_BK0 is set. The number of bytes received in the endpoint’s
USB_BCR register is equal to zero.

3. The microcontroller must clear RX_DATA_BK0.

Figure 173. Data IN Followed by Status OUT Transfer

Data OUTData INData IN ACK
PIDPID PID

ACK
PID

RX_DATA_BKO
(USB_CSRx)

TXCOMP
(USB_CSRx)

Set by USB Device

USB Bus
Packets

Cleared by Firmware

Cleared by FirmwareSet by USB Device

Device Sends a
Status OUT to Host

Device Sends the Last
Data Payload to Host

Interrupt Pending

411

AT91RM3400

1790A–ATARM–11/03

Stall Handshake A stall handshake can be used in one of two distinct occasions. (For more information on the
stall handshake, refer to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0.)

• A functional stall is used when the halt feature associated with the endpoint is set. (Refer
to Chapter 9 of the Universal Serial Bus Specification, Rev 2.0, for more information on the
halt feature.)

• To abort the current request, a protocol stall is used, but uniquely with control transfer.

The following procedure generates a stall packet:

1. The microcontroller sets the FORCESTALL flag in the USB_CSRx endpoint’s register.

2. The host receives the stall packet.

3. The microcontroller is notified that the device has sent the stall by polling the
STALLSENT to be set. An endpoint interrupt is pending while STALLSENT is set. The
microcontroller must clear STALLSENT to clear the interrupt.

When a setup transaction is received after a stall handshake, STALLSENT must be cleared in
order to prevent interrupts due to STALLSENT being set.

Figure 174. Stall Handshake (Data IN Transfer)

Figure 175. Stall Handshake (Data OUT Transfer)

Data IN Stall PIDPIDUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by
USB Device

Cleared by Firmware

Interrupt Pending

Data OUT PID Stall PID Data OUTUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by USB Device

Interrupt Pending

412 AT91RM3400
1790A–ATARM–11/03

Controlling Device
States

A USB device has several possible states. Please refer to Chapter 9 of the Universal Serial
Bus Specification, Rev 2.0.

Figure 176. USB Device State Diagram

Movement from one state to another depends on the USB bus state or on standard requests
sent through control transactions via the default endpoint (endpoint 0).

After a period of bus inactivity, the UDP device enters Suspend Mode. Accepting Sus-
pend/Resume requests from the USB host is mandatory. Constraints in Suspend Mode are
very strict for bus-powered applications; devices may not consume more than 500 uA on the
USB bus.

While in Suspend Mode, the host may wake up a device by sending a resume signal (bus
activity) or a USB device may send a wake-up request to the host, e.g., waking up a PC by
moving a USB mouse.

The wake-up feature is not mandatory for all devices and must be negotiated with the host.

Attached

Suspended

Suspended

Suspended

Suspended

Hub Reset
or

Deconfigured

Hub
Configured

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Reset

Reset

Address
Assigned

Device
Deconfigured

Device
Configured

Powered

Default

Address

Configured

Power
Interruption

413

AT91RM3400

1790A–ATARM–11/03

From Powered State to
Default State

After its connection to a USB host, the USB device waits for an end-of-bus reset. The USB
host stops driving a reset state once it has detected the device’s pull-up on DP. The unmasked
flag ENDBURST is set in the register UDP_ISR and an interrupt is triggered. The UDP soft-
ware enables the default endpoint, setting the EPEDS flag in the UDP_CSR[0] register and,
optionally, enabling the interrupt for endpoint 0 by writing 1 to the UDP_IER register. The enu-
meration then begins by a control transfer.

From Default State to
Address State

After a set address standard device request, the USB host peripheral enters the address state.
Before this, it achieves the Status IN transaction of the control transfer, i.e., the UDP device
sets its new address once the TXCOMP flag in the UDP_CSR[0] register has been received
and cleared.

To move to address s tate , the dr iver so f tware se ts the FADDEN f lag in the
UDP_GLB_STATE, sets its new address, and sets the FEN bit in the UDP_FADDR register.

From Address State to
Configured State

Once a valid Set Configuration standard request has been received and acknowledged, the
device enables endpoints corresponding to the current configuration. This is done by setting
the EPEDS and EPTYPE fields in the UDP_CSRx registers and, optionally, enabling corre-
sponding interrupts in the UDP_IER register.

Enabling Suspend When a Suspend (no bus activity on the USB bus) is detected, the RXSUSP signal in the
UDP_ISR register is set. This triggers an interrupt if the corresponding bit is set in the
UDP_IMR register.

This flag is cleared by writing to the UDP_ICR register. Then the device enters Suspend
Mode. As an example, the microcontroller switches to slow clock, disables the PLL and main
oscillator, and goes into Idle Mode. It may also switch off other devices on the board.

The USB device peripheral clocks may be switched off. However, the transceiver and the USB
peripheral must not be switched off, otherwise the resume is not detected.

Receiving a Host
Resume

In suspend mode, the USB transceiver and the USB peripheral must be powered to detect the
RESUME. However, the USB device peripheral may not be clocked as the WAKEUP signal is
asynchronous.

Once the resume is detected on the bus, the signal WAKEUP in the UDP_ISR is set. It may
generate an interrupt if the corresponding bit in the UDP_IMR register is set. This interrupt
may be used to wake-up the core, enable PLL and main oscillators and configure clocks. The
WAKEUP bit must be cleared as soon as possible by setting WAKEUP in the UDP_ICR
register.

Sending an External
Resume

The External Resume is negotiated with the host and enabled by setting the ESR bit in the
USB_GLB_STATE. An asynchronous event on the ext_resume_pin of the peripheral gener-
ates a WAKEUP interrupt. On early versions of the USP peripheral, the K-state on the USB
line is generated immediately. This means that the USB device must be able to answer to the
host very quickly. On recent versions, the software sets the RMWUPE bit in the
UDP_GLB_STATE register once it is ready to communicate with the host. The K-state on the
bus is then generated.

The WAKEUP bit must be cleared as soon as possible by setting WAKEUP in the UDP_ICR
register.

414 AT91RM3400
1790A–ATARM–11/03

USB Device Port (UDP) User Interface

Table 71. USB Device Port Memory Map

Offset Register Name Access Reset State

0x000 Frame Number Register USB_FRM_NUM Read 0x0000_0000

0x004 Global State Register USB_GLB_STAT Read/write 0x0000_0010

0x008 Function Address Register USB_FADDR Read/write 0x0000_0100

0x00C Reserved – – –

0x010 Interrupt Enable Register USB_IER Write

0x014 Interrupt Disable Register USB_IDR Write

0x018 Interrupt Mask Register USB_IMR Read 0x0000_1200

0x01C Interrupt Status Register USB_ISR Read 0x0000_0000

0x020 Interrupt Clear Register USB_ICR Write

0x024 Reserved – – –

0x028 Reset Endpoint Register USB_RST_EP Read/write

0x02C Reserved – – –

0x030 Endpoint 0 Control and Status Register USB _CSR0 Read/write 0x0000_0000

0x034 Endpoint 1 Control and Status Register USB _CSR1 Read/write 0x0000_0000

0x038 Endpoint 2 Control and Status Register USB _CSR2 Read/write 0x0000_0000

0x03C Endpoint 3 Control and Status Register USB _CSR3 Read/write 0x0000_0000

0x040 Endpoint 4 Control and Status Register USB _CSR4 Read/write 0x0000_0000

0x044 Endpoint 5 Control and Status Register USB _CSR5 Read/write 0x0000_0000

0x048 Endpoint 6 Control and Status Register USB _CSR6 Read/write 0x0000_0000

0x04C Endpoint 7 Control and Status Register USB _CSR7 Read/write 0x0000_0000

0x050 Endpoint 0 FIFO Data Register USB_FDR0 Read/write 0x0000_0000

0x054 Endpoint 1 FIFO Data Register USB_FDR1 Read/write 0x0000_0000

0x058 Endpoint 2 FIFO Data Register USB_FDR2 Read/write 0x0000_0000

0x05C Endpoint 3 FIFO Data Register USB_FDR3 Read/write 0x0000_0000

0x060 Endpoint 4 FIFO Data Register USB_FDR4 Read/write 0x0000_0000

0x064 Endpoint 5 FIFO Data Register USB_FDR5 Read/write 0x0000_0000

0x068 Endpoint 6 FIFO Data Register USB_FDR6 Read/write 0x0000_0000

0x06C Endpoint 7 FIFO Data Register USB_FDR7 Read/write 0x0000_0000

0x070 Reserved – – –

0x074 Reserved – – –

415

AT91RM3400

1790A–ATARM–11/03

USB Frame Number Register
Register Name: USB_FRM_NUM

Access Type: Read-only

• FRM_NUM[10:0]: Frame Number as Defined in the Packet Field Formats

This 11-bit value is incremented by the host on a per frame basis. This value is updated at each start of frame.

Value Updated at the SOF_EOP (Start of Frame End of Packet).

• FRM_ERR: Frame Error

This bit is set at SOF_EOP when the SOF packet is received containing an error.

This bit is reset upon receipt of SOF_PID.

• FRM_OK: Frame OK

This bit is set at SOF_EOP when the SOF packet is received without any error.

This bit is reset upon receipt of SOF_PID (Packet Identification).

In the Interrupt Status Register, the SOF interrupt is updated upon receiving SOF_PID. This bit is set without waiting for
EOP.
Note: In the 8-bit Register Interface, FRM_OK is bit 4 of FRM_NUM_H and FRM_ERR is bit 3 of FRM_NUM_L.

31 30 29 28 27 26 25 24
--- --- --- --- --- --- --- ---

23 22 21 20 19 18 17 16
– – – – – – FRM_OK FRM_ERR

15 14 13 12 11 10 9 8
– – – – – FRM_NUM

7 6 5 4 3 2 1 0
FRM_NUM

416 AT91RM3400
1790A–ATARM–11/03

USB Global State Register
Register Name: USB_GLB_STAT

Access Type: Read/Write

This register is used to get and set the device state as specified in Chapter 9 of the USB Serial Bus Specification, Rev.2.0.

• FADDEN: Function Address Enable

Read:

0 = Device is not in address state.

1 = Device is in address state.

Write:

0 = No effect, only a reset can bring back a device to the default state.

1 = Set device in address state. This occurs after a successful Set Address request. Beforehand, the USB_FADDR register
must have been initialized with Set Address parameters. Set Address must complete the Status Stage before setting FAD-
DEN. Please refer to chapter 9 of the Universal Serial Bus Specification, Rev. 2.0 to get more details.

• CONFG: Configured

Read:

0 = Device is not in configured state.

1 = Device is in configured state.

Write:

0 = Set device in a nonconfigured state

1 = Set device in configured state.

The device is set in configured state when it is in address state and receives a successful Set Configuration request.
Please refer to Chapter 9 of the Universal Serial Bus Specification, Rev. 2.0 to get more details.

• ESR: Enable Send Resume

0 = Disable the Remote Wake Up sequence.

1 = Remote Wake Up can be processed and the pin send_resume is enabled.

• RSMINPR: A Resume Has Been Sent to the Host

Read:

0 = No effect.

1 = A Resume has been received from the host during Remote Wake Up feature.

• RMWUPE: Remote Wake Up Enable

0 = Must be cleared after receiving any HOST packet or SOF interrupt.

1 = Enables the K-state on the USB cable if ESR is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – RMWUPE RSMINPR ESR CONFG FADDEN

417

AT91RM3400

1790A–ATARM–11/03

USB Function Address Register
Register Name: USB_FADDR

Access Type: Read/Write

• FADD[6:0]: Function Address Value

The Function Address Value must be programmed by firmware once the device receives a set address request from the
host, and has achieved the status stage of the no-data control sequence. Please refer to the Universal Serial Bus Specifica-
tion, Rev. 2.0 to get more information. After power up, or reset, the function address value is set to 0.

• FEN: Function Enable

Read:

0 = Function endpoint disabled.

1 = Function endpoint enabled.

Write:

0 = Disable function endpoint.

1 = Default value.

The Function Enable bit (FEN) allows the microcontroller to enable or disable the function endpoints. The microcontroller
sets this bit after receipt of a reset from the host. Once this bit is set, the USB device is able to accept and transfer data
packets from and to the host.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – FEN

7 6 5 4 3 2 1 0
– FADD

418 AT91RM3400
1790A–ATARM–11/03

USB Interrupt Enable Register
Register Name: USB_IER

Access Type: Write-only

• EP0INT: Enable Endpoint 0 Interrupt

• EP1INT: Enable Endpoint 1 Interrupt

• EP2INT: Enable Endpoint 2Interrupt

• EP3INT: Enable Endpoint 3 Interrupt

• EP4INT: Enable Endpoint 4 Interrupt

• EP5INT: Enable Endpoint 5 Interrupt

• EP6INT: Enable Endpoint 6 Interrupt

• EP7INT: Enable Endpoint 7 Interrupt

0 = No effect.

1 = Enable corresponding Endpoint Interrupt.

• RXSUSP: Enable USB Suspend Interrupt

0 = No effect.

1 = Enable USB Suspend Interrupt.

• RXRSM: Enable USB Resume Interrupt

0 = No effect.

1 = Enable USB Resume Interrupt.

• EXTRSM: Enable External Resume Interrupt

0 = No effect.

1 = Enable External Resume Interrupt.

• SOFINT: Enable Start Of Frame Interrupt

0 = No effect.

1 = Enable Start Of Frame Interrupt.

• WAKEUP: Enable USB bus Wakeup Interrupt

0 = No effect.

1 = Enable USB bus Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0
EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

419

AT91RM3400

1790A–ATARM–11/03

USB Interrupt Disable Register
Register Name: USB_IDR

Access Type: Write-only

• EP0INT: Disable Endpoint 0 Interrupt

• EP1INT: Disable Endpoint 1 Interrupt

• EP2INT: Disable Endpoint 2 Interrupt

• EP3INT: Disable Endpoint 3 Interrupt

• EP4INT: Disable Endpoint 4 Interrupt

• EP5INT: Disable Endpoint 5 Interrupt

• EP6INT: Disable Endpoint 6 Interrupt

• EP7INT: Disable Endpoint 7 Interrupt

0 = No effect.

1 = Disable corresponding Endpoint Interrupt.

• RXSUSP: Disable USB Suspend Interrupt

0 = No effect.

1 = Disable USB Suspend Interrupt.

• RXRSM: Disable USB Resume Interrupt

0 = No effect.

1 = Disable USB Resume Interrupt.

• EXTRSM: Disable External Resume Interrupt

0 = No effect.

1 = Disable External Resume Interrupt.

• SOFINT: Disable Start Of Frame Interrupt

0 = No effect.

1 = Disable Start Of Frame Interrupt

• WAKEUP: Disable USB Bus Interrupt

0 = No effect.

1 = Disable USB Bus Wakeup Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0
EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

420 AT91RM3400
1790A–ATARM–11/03

USB Interrupt Mask Register
Register Name: USB_IMR

Access Type: Read-only

• EP0INT: Mask Endpoint 0 Interrupt

• EP1INT: Mask Endpoint 1 Interrupt

• EP2INT: Mask Endpoint 2 Interrupt

• EP3INT: Mask Endpoint 3 Interrupt

• EP4INT: Mask Endpoint 4 Interrupt

• EP5INT: Mask Endpoint 5 Interrupt

• EP6INT: Mask Endpoint 6 Interrupt

• EP7INT: Mask Endpoint 7 Interrupt

0 = Corresponding Endpoint Interrupt is disabled.

1 = Corresponding Endpoint Interrupt is enabled.

• RXSUSP: Mask USB Suspend Interrupt

0 = USB Suspend Interrupt is disabled.

1 = USB Suspend Interrupt is enabled.

• RXRSM: Mask USB Resume Interrupt.

0 = USB Resume Interrupt is disabled.

1 = USB Resume Interrupt is enabled.

• EXTRSM: Mask External Resume Interrupt

0 = External Resume Interrupt is disabled.

1 = External Resume Interrupt is enabled.

• SOFINT: Mask Start Of Frame Interrupt

0 = Start of Frame Interrupt is disabled.

1 = Start of Frame Interrupt is enabled.

• WAKEUP: USB Bus WAKEUP Interrupt

0 = USB Bus Wakeup Interrupt is disabled.

1 = USB Bus Wakeup Interrupt is enabled.
Note: When the USB block is in suspend mode, the application may power down the USB logic. In this case, any USB HOST resume

request that is made must be taken into account and, thus, the reset value of the RXRSM bit of the register USB_IMR is
enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0
EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

421

AT91RM3400

1790A–ATARM–11/03

USB Interrupt Status Register
Register Name: USB_ISR

Access Type: Read -only

• EP0INT: Endpoint 0 Interrupt Status

0 = No Endpoint0 Interrupt pending.

1 = Endpoint0 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading USB_CSR0:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP0INT is a sticky bit. Interrupt remains valid until EP0INT is cleared by writing in the corresponding USB_CSR0 bit.

• EP1INT: Endpoint 1 Interrupt Status

0 = No Endpoint1 Interrupt pending.

1 = Endpoint1 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading USB_CSR1:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP1INT is a sticky bit. Interrupt remains valid until EP1INT is cleared by writing in the corresponding USB_CSR1 bit.

• EP2INT: Endpoint 2 Interrupt Status

0 = No Endpoint2 Interrupt pending.

1 = Endpoint2 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading USB_CSR2:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP2INT is a sticky bit. Interrupt remains valid until EP2INT is cleared by writing in the corresponding USB_CSR2 bit.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – WAKEUP ENDBUSRES SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0
EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

422 AT91RM3400
1790A–ATARM–11/03

• EP3INT: Endpoint 3 Interrupt Status

0 = No Endpoint3 Interrupt pending.

1 = Endpoint3 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading USB_CSR3:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP3INT is a sticky bit. Interrupt remains valid until EP3INT is cleared by writing in the corresponding USB_CSR3 bit.

• EP4INT: Endpoint 4 Interrupt Status

0 = No Endpoint4 Interrupt pending.

1 = Endpoint4 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading USB_CSR4:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP4INT is a sticky bit. Interrupt remains valid until EP4INT is cleared by writing in the corresponding USB_CSR4 bit.

• EP5INT: Endpoint 5 Interrupt Status

0 = No Endpoint5 Interrupt pending.

1 = Endpoint5 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading USB_CSR5:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP5INT is a sticky bit. Interrupt remains valid until EP5INT is cleared by writing in the corresponding USB_CSR5 bit.

• EP6INT: Endpoint 6 Interrupt Status

0 = No Endpoint6 Interrupt pending.

1 = Endpoint6 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading USB_CSR6:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP6INT is a sticky bit. Interrupt remains valid until EP6INT is cleared by writing in the corresponding USB_CSR6 bit.

423

AT91RM3400

1790A–ATARM–11/03

• EP7INT: Endpoint 7 Interrupt Status

0 = No Endpoint7 Interrupt pending.

1 = Endpoint7 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading USB_CSR7:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP7INT is a sticky bit. Interrupt remains valid until EP7INT is cleared by writing in the corresponding USB_CSR7 bit.

• RXSUSP: USB Suspend Interrupt Status

0 = No USB Suspend Interrupt pending.

1 = USB Suspend Interrupt has been raised.

The USB device sets this bit when it detects no activity for 3ms. The USB device enters Suspend mode.

• RXRSM: USB Resume Interrupt Status

0 = No USB Resume Interrupt pending.

1 =USB Resume Interrupt has been raised.

The USB device sets this bit when a USB resume signal is detected at its port.

• EXTRSM: External Resume Interrupt Status

0 = No External Resume Interrupt pending.

1 = External Resume Interrupt has been raised.

This interrupt is raised when, in suspend mode, an asynchronous rising edge on the send_resume is detected.

If RMWUPE = 1, a resume state is sent in the USB bus.

• SOFINT: Start of Frame Interrupt Status

0 = No Start of Frame Interrupt pending.

1 = Start of Frame Interrupt has been raised.

This interrupt is raised each time a SOF token has been detected. It can be used as a synchronization signal by using

isochronous endpoints.

• ENDBUSRES: End of BUS Reset Interrupt Status

0 = No End of Bus Reset Interrupt pending.

1 = End of Bus Reset Interrupt has been raised.

This interrupt is raised at the end of a USB reset sequence. The USB device must prepare to receive requests on the end-
point 0. The host starts the enumeration, then performs the configuration.

• WAKEUP: USB Resume Interrupt Status

0 = No Wakeup Interrupt pending.

1 = A Wakeup Interrupt (USB Host Sent a RESUME or RESET) occurred since the last clear.

424 AT91RM3400
1790A–ATARM–11/03

USB Interrupt Clear Register
Register Name: USB_ICR

Access Type: Write-only

• RXSUSP: Clear USB Suspend Interrupt

0 = No effect.

1 = Clear USB Suspend Interrupt.

• RXRSM: Clear USB Resume Interrupt

0 = No effect.

1 = Clear USB Resume Interrupt.

• EXTRSM: Clear External Resume Interrupt

0 = No effect.

1 = Clear External Resume Interrupt.

• SOFINT: Clear Start Of Frame Interrupt

0 = No effect.

1 = Clear Start Of Frame Interrupt.

• ENDBURST: Clear End of Bus Reset Interrupt

0 = No effect.

1 = Clear Start Of Frame Interrupt.

• WAKEUP: Clear Wakeup Interrupt

0 = No effect.

1 = Clear Wakeup Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – WAKEUP ENDBURST SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0
– – – – – – – –

425

AT91RM3400

1790A–ATARM–11/03

USB Reset Endpoint Register
Register Name: USB_RST_EP

Access Type: Read/write

• EP0: Reset Endpoint 0

• EP1: Reset Endpoint 1

• EP2: Reset Endpoint 2

• EP3: Reset Endpoint 3

• EP4: Reset Endpoint 4

• EP5: Reset Endpoint 5

• EP6: Reset Endpoint 6

• EP7: Reset Endpoint 7

This flag is used to reset the FIFO associated with the endpoint and the bit RXBYTECOUNT in the register UDP_CSRx.It
also resets the data toggle to DATA0. It is useful after removing a HALT condition on a BULK endpoint. Refer to Chapter
5.8.5 in the USB Serial Bus Specification, Rev. 2.0.

Warning: This flag must be cleared at the end of the reset. It does not clear USB_CSRx flags.

0 = No reset.

1 = Forces the corresponding endpoint FIF0 pointers to 0, therefore RXBYTECNT field is read at 0 in USB_CSRx register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
EP7 EP6 EP5 EP4 EP3 EP2 EP1 EP0

426 AT91RM3400
1790A–ATARM–11/03

USB Endpoint Control and Status Register
Register Name: USB_CSRx [x = 0. 7]

Access Type: Read/Write

• TXCOMP: Generates an IN packet with data previously written in the DPR

This flag generates an interrupt while it is set to one.

Write (Cleared by the firmware)

0 = Clear the flag, clear the interrupt.

1 = No effect.

Read (Set by the USB peripheral)

0 = Data IN transaction has not been acknowledged by the Host.

1 = Data IN transaction is achieved, acknowledged by the Host.

After having issued a Data IN transaction setting TXPKTRDY, the device firmware waits for TXCOMP to be sure that the
host has acknowledged the transaction.

• RX_DATA_BK0: Receive Data Bank 0

This flag generates an interrupt while it is set to one.

Write (Cleared by the firmware)

0 = Notify USB peripheral device that data have been read in the FIFO's Bank 0.

1 = No effect.

Read (Set by the USB peripheral)

0 = No data packet has been received in the FIFO's Bank 0

1 = A data packet has been received, it has been stored in the FIFO's Bank 0.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to
the microcontroller memory. The number of bytes received is available in RXBYTCENT field. Bank 0 FIFO values are read
through the USB_FDRx register. Once a transfer is done, the device firmware must release Bank 0 to the USB peripheral
device by clearing RX_DATA_BK0.

• RXSETUP: Sends STALL to the Host (Control endpoints)

This flag generates an interrupt while it is set to one.

Read

0 = No setup packet available.

1 = A setup data packet has been sent by the host and is available in the FIFO.

Write

0 = Device firmware notifies the USB peripheral device that it has read the setup data in the FIFO.

31 30 29 28 27 26 25 24
– – – – – RXBYTECNT

23 22 21 20 19 18 17 16
RXBYTECNT

15 14 13 12 11 10 9 8
EPEDS – – – DTGLE EPTYPE

7 6 5 4 3 2 1 0
DIR RX_DATA_

BK1
FORCE
STALL

TXPKTRDY STALLSENT
ISOERROR

RXSETUP RX_DATA_
BK0

TXCOMP

427

AT91RM3400

1790A–ATARM–11/03

1 = No effect.

This flag is used to notify the USB device firmware that a valid Setup data packet has been sent by the host and success-
fully received by the USB device. The USB device firmware may transfer Setup data from the FIFO by reading the
USB_FDRx register to the microcontroller memory. Once a transfer has been done, RXSETUP must be cleared by the
device firmware.

Ensuing Data OUT transactions is not accepted while RXSETUP is set.

• STALLSENT: Stall sent (Control, Bulk Interrupt endpoints)/ ISOERROR (Isochronous endpoints)

This flag generates an interrupt while it is set to one.

STALLSENT: this ends a STALL handshake

Read

0 = the host has not acknowledged a STALL.

1 = host has acknowledge the stall.

Write

0 = reset the STALLSENT flag, clear the interrupt.

1 = No effect.

This is mandatory for the device firmware to clear this flag. Otherwise the interrupt remains.

Please refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 to get more information on the
STALL handshake.

ISOERROR: a CRC error has been detected in an isochronous transfer

Read

0 = No error in the previous isochronous transfer.

1 = CRC error has been detected, data available in the FIFO are corrupted.

Write

0 = reset the ISOERROR flag, clear the interrupt.

1 = No effect.

• TXPKTRDY: Transmit Packet Ready

This flag is cleared by the USB device.

This flag is set by the USB device firmware.

Read

0 = Data values can be written in the FIFO.

1 = Data values can not be written in the FIFO.

Write

0 = No effect.

1 = A new data payload is has been written in the FIFO by the firmware and is ready to be sent.

This flag is used to generate a Data IN transaction (device to host). Device firmware checks that it can write a data payload
in the FIFO, checking that TXPKTRDY is cleared. Transfer to the FIFO is done by writing in the USB_FDRx register. Once
the data payload has been transferred to the FIFO, the firmware notifies the USB device setting TXPKTRDY to one. USB
bus transactions can start. TXCOMP is set once the data payload has been received by the host.

• FORCESTALL: Force Stall (used by Control, Bulk and Isochronous endpoints)

Write-only

0 = No effect.

1 = Send STALL to the host.

428 AT91RM3400
1790A–ATARM–11/03

Please refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 to get more information on the
STALL handshake.

Control endpoints: during the data stage and status stage, this indicates that the microcontroller can not complete the
request.

Bulk and interrupt endpoints: notify the host that the endpoint is halted.

The host acknowledges the STALL, device firmware is notified by the STALLSENT flag.

• RX_DATA_BK1: Receive Data Bank 1 (only used by endpoints with ping-pong attributes)

This flag generates an interrupt while it is set to one.

Write (Cleared by the firmware)

0 = Notify USB device that data have been read in the FIFO’s Bank 1.

1 = No effect.

Read (Set by the USB peripheral)

0 = No data packet has been received in the FIFO's Bank 1.

1 = A data packet has been received, it has been stored in FIFO's Bank 1.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to
microcontroller memory. The number of bytes received is available in RXBYTECNT field. Bank 1 FIFO values are read
through USB_FDRx register. Once a transfer is done, the device firmware must release Bank 1 to the USB device by clear-
ing RX_DATA_BK1.

• DIR: Transfer Direction (only available for control endpoints)

Read/Write

0 = Allow Data OUT transactions in the control data stage.

1 = Enable Data IN transactions in the control data stage.

Please refer to Chapter 8.5.3 of the Universal Serial Bus Specification, Rev. 2.0 to get more information on the control data
stage.

This bit must be set before USB_CSRx/RXSETUP is cleared at the end of the setup stage. According to the request sent in
the setup data packet, the data stage is either a device to host (DIR = 1) or host to device (DIR = 0) data transfer. It is not
necessary to check this bit to reverse direction for the status stage.

• EPTYPE[2:0]: Endpoint Type

• DTGLE: Data Toggle

Read-only

0 = Identifies DATA0 packet.

1 = Identifies DATA1 packet.

Please refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0 to get more information on DATA0, DATA1
packet definitions.

Read/Write

000 Control

001 Isochronous OUT

101 Isochronous IN

010 Bulk OUT

110 Bulk IN

011 Interrupt OUT

111 Interrupt IN

429

AT91RM3400

1790A–ATARM–11/03

• EPEDS: Endpoint Enable Disable

Read

0 = Endpoint disabled.

1 = Endpoint enabled.

Write

0 = Disable endpoint.

1 = Enable endpoint.

• RXBYTECNT[10:0]: Number of Bytes Available in the FIFO

Read-only.

When the host sends a data packet to the device, the USB device stores the data in the FIFO and notifies the microcontrol-
ler. The microcontroller can load the data from the FIFO by reading RXBYTECENT bytes in the USB_FDRx register.

430 AT91RM3400
1790A–ATARM–11/03

USB FIFO Data Register
Register Name: USB_FDRx [x = 0. 7]

Access Type: Read/Write

• FIFO_DATA[7:0]: FIFO Data Value

The microcontroller can push or pop values in the FIFO through this register.

RXBYTECNT in the corresponding USB_CSRx register is the number of bytes to be read from the FIFO (sent by the host).

The maximum number of bytes to write is fixed by the Max Packet Size in the Standard Endpoint Descriptor. It can not be
more than the physical memory size associated to the endpoint. Please refer to the Universal Serial Bus Specification, Rev.
2.0 to get more information.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
FIFO_DATA

431

AT91RM3400

1790A–ATARM–11/03

DC Characteristics

Absolute Maximum Ratings

Table 72. Absolute Maximum Ratings*

Operating Temperature (Industrial)..........-40°C to +85°C *NOTICE: Stresses beyond those listed under “Absolute Maxi-
mum Ratings” may cause permanent damage to
the device. This is a stress rating only and func-
tional operation of the device at these or other con-
ditions beyond those indicated in the operational
sections of this specification is not implied. Expo-
sure to absolute maximum rating conditions for
extended periods may affect device reliability.

Storage Temperature -60°C to +150°C

Voltage on Input Pins
with Respect to Ground-0.3V to +3.6V

Maximum Operating Voltage
(VDDCORE, VDDPLL and VDDOSC) 1.95V

Maximum Operating Voltage
(VDDIO).. 3.6V

DC Output Current.. 8 mA

432 AT91RM3400
1790A–ATARM–11/03

DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-
ified and are certified for a junction temperature up to TJ = 100°C.

4. Pin Group 1: PIOA and PIOB
5. Pin Group 2: NRST
6. Pin Group 3: JTAGSEL/TCK/TMS/TST
7. Pin Group 4: TDI
8. Pin Group 5: TDO
9. VDD is applicable to VDDIO,VDDPLL and VDDOSC
10. IO= Output Current

Table 73. DC Characteristics

Symbol Parameter Conditions Min Typ Max Units

VDDCORE DC Supply Core 1.65 1.95 V

VDDOSC DC Supply Oscillator 1.65 1.95 V

VDDPLL DC Supply PLL 1.65 1.95 V

VDDIO DC Supply I/Os VDDCORE VDDCORE + 1.5 or 3.6 V

VIL Input Low-level Voltage
Pin Group 1(1) and Pin Group 4(4

Pin Group 2(2) and Pin Group 3(3)

-0.3

-0.3

0.3xVDDIO

0.8
V

VIH Input High-level Voltage
Pin Group 1(1) and Pin Group 4(4)

Pin Group 2(2) and Pin Group 3(3)

0.7xVDDIO

2.0

VDDIO+0.3

VDDIO+0.3
V

VOL Output Low-level Voltage

Pin Group 1(1)

IOL = 8 mA(7) 0.4

VPin Group 5(5)

IOL = 4 mA(7)

IOL = 8 mA(7)

0.2
0.4

VOH Output High-level Voltage

Pin Group 1(1)

IOH = 8 mA(7) VDDIO-0.4

VPin Group 5(5)

IOH = 4 mA(7)

IOH = 8 mA(7)

VDDIO-0.2
VDDIO-0.4

ILEAK Input Leakage Current Pullup resistors disabled 1 µA

IPULL Input Pull-up Current

Pin Group 1(1)

VDD = 3.0V(6), VIN = 0
VDD = 3.6V(6), VIN = 0

µA9.6

26.6

Pin Group 3(3)

VDD = 3.3V(6), VIN = 0 122.7 339 µA

Pin Group 4(4)

VDD = 3.0V(6), VIN = 0
VDD = 3.6V(6), VIN = 0

µA157.8

363

CIN Input Capacitance 100-LQFP Package 8.3 pF

ISC Static Current

On VDDCORE = 2V,
MCK = 0 Hz

TA = 25°C 15 45

µA
All inputs driven TMS,
TDI, TCK, NRST = 1

TA = 85°C 130 340

433

AT91RM3400

1790A–ATARM–11/03

Clocks Characteristics
These parameters are given in the following conditions:

• VDDCORE = 1.8V

• Ambient Temperature = 25°C

The Temperature Derating Factor described in “Applicable Conditions and Derating Data” on page 439, section “Tempera-
ture Derating Factor” on page 440 and VDDCORE Voltage Derating Factor described in “Applicable Conditions and Derating
Data” on page 439, section “VDDCORE Voltage Derating Factor” on page 440 are both applicable to these characteristics.

Processor Clock Characteristics

Master Clock Characteristics

XIN Clock Characteristics

Notes: 1. These characteristics apply only when the Main Oscillator is in Bypass Mode (i.e., when MOSCEN = 0 in the CKGR_MOR
register, refer to “PMC Clock Generator Main Oscillator Register” on page 146).

Table 74. Processor Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPPCK) Processor Clock Frequency 90 MHz

tCPPCK Processor Clock Period 11.1 ns

Table 75. Master Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPMCK) Master Clock Frequency 70.0 MHz

tCPMCK Master Clock Period 14.3 ns

tCHMCK Master Clock High Half-period 7.1 ns

tCLMCK Master Clock Low Half-period 7.1 ns

Table 76. XIN Clock Electrical Characteristics

Symbol Parameter Conditions Min Max Units

1/(tCPXIN) XIN Clock Frequency 50.0 MHz

tCPXIN XIN Clock Period 20.0 ns

tCHXIN XIN Clock High Half-period 0.4 x tCPXIN 0.6 x tCPXIN

tCLXIN XIN Clock Low Half-period 0.4 x tCPXIN 0.6 x tCPXIN

CIN XIN Input Capacitance (1) 25 pF

RIN XIN Pulldown Resistor (1) 500 kΩ

434 AT91RM3400
1790A–ATARM–11/03

Power Consumption
The values in Table 77 and Table 78 are measured values on the AT91RM3400DK Evaluation
Board with operating conditions as follows:

• VDDIO = 3.3V

• VDDCORE = VDDPLL = VDDOSC = 1.8V

• TA = 25°C
• MCK = 48 MHz

• PCK = 48 MHz

• SLCK = 32,768 Hz

These figures represent the power consumption measured on the VDDCORE power supply.

Note: 1. Code in internal SRAM.

Notes: 1. Code in internal SRAM.
2. Power consumption on the VDDPLL power supply.
3. Power consumption on the VDDOSC power supply.

Table 77. Power Consumption for PMC Modes(1)

Mode Conditions Consumption Unit

Active ARM Core clock enabled.
All peripheral clocks activated.

34.1

mA

Normal ARM Core clock enabled.
All peripheral clocks deactivated.

19.4

Idle ARM Core clock disabled and waiting for the next
interrupt.

All peripheral clocks deactivated.
5.1

Slow Clock Main oscillator and PLLs are switched off.

Processor and all peripherals run at slow clock.
0.6

Standby Combination of Idle and Slow Clock Modes. 0.5

Table 78. Power Consumption by Peripheral(1)

Peripheral Consumption Unit

PIO Controller 0.4

mA

USART 0.9

MCI 1.2

UDP 1.0

TWI 0.2

SPI 0.9

SSC 1.1

Timer Counter Channels 0.2

PMC
PLL(2)

Slow Clock Oscillator(3)

Main Oscillator(3)

4

1.3
550

mA

µA
µA

435

AT91RM3400

1790A–ATARM–11/03

Crystal Oscillators Characteristics

32 kHz Oscillator Characteristics

Notes: 1. Rs is the equivalent series resistance, CL is the equivalent load capacitance

Main Oscillator Characteristics

Notes: 1. CS is the shunt capacitance

PLL Characteristics

Table 79. 32 kHz Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCP32KHz) Crystal Oscillator Frequency 32.768 kHz

Duty Cycle Measured at the PCK output pin 40 50 60 %

tST Startup Time VDDOSC = 1.2 to 2V

Rs = 50 kΩ, CL =12.5 pF(1) 900
ms

Table 80. Main Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCPMAIN) Crystal Oscillator Frequency 3 16 20 MHz

CL1, CL2 Internal Load Capacitance
(CL1 = CL2)

25 pF

CL Equivalent Load Capacitance 12.5 pF

Duty Cycle 40 50 60 %

tST Startup Time VDDPLL = 1.2 to 2V
CS = 3 pF(1) 1/(tCPMAIN) = 3 MHz

CS = 7 pF(1) 1/(tCPMAIN) = 16 MHz
CS = 7 pF(1) 1/(tCPMAIN) = 20 MHz

14.5

1.4
1

ms

Table 81. Phase Lock Loop Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FOUT Output Frequency 20 100 MHz

FIN Input Frequency 1 32 MHz

KO VCO Gain 120 190 300 MHz/V

IP Pump Current 36 44 60 µA

436 AT91RM3400
1790A–ATARM–11/03

Transceiver Characteristics

Electrical Characteristics

Table 82. Electrical Parameters

Symbol Parameter Conditions Min Typ Max Unit

Input Levels

VIL Low Level 0.8 V

VIH High Level 2.0 V

VDI Differential Input Sensivity |(D+) - (D-)| 0.2 V

VCM Differential Input Common
Mode Range

0.8 2.5 V

CIN Transceiver capacitance Capacitance to ground on each line 9.18 pF

I Hi-Z State Data Line Leakage 0V < VIN < 3.3V -10 10 µA

REXT Recommended External USB
Series Resistor

In series with each USB pin with ±5% 27 Ω

Output Levels

VOL Low Level Output Measured with RL of 1.425 kOhm tied
to 3.6V

0.0 0.3 V

VOH High Level Output Measured with RL of 14.25 kOhm tied
to GND

2.8 3.6 V

VCRS Output Signal Crossover
Voltage

Measure conditions described in
Figure 177

1.3 2.0 V

437

AT91RM3400

1790A–ATARM–11/03

Switching Characteristics

Figure 177. USB Data Signal Rise and Fall Times

Table 83. In Low Speed

Symbol Parameter Conditions Min Typ Max Unit

tFR Transition Rise Time CLOAD = 400 pF 75 300 ns

tFE Transition Fall Time CLOAD = 400 pF 75 300 ns

tFRFM Rise/Fall Time Matching CLOAD = 400 pF 80 125 %

Table 84. In Full Speed

Symbol Parameter Conditions Min Typ Max Unit

tFR Transition Rise Time CLOAD = 50 pF 4 20 ns

tFE Transition Fall Time CLOAD = 50 pF 4 20 ns

tFRFM Rise/Fall Time Matching 90 111.11 %

10% 10%

90%VCRS

tR tF
Differential
Data Lines

Rise Time Fall Time

Fosc = 6MHz/750kHz
REXT=27 ohms

CloadBuffer

(b)

(a)

438 AT91RM3400
1790A–ATARM–11/03

439

AT91RM3400

1790A–ATARM–11/03

AC Characteristics

Applicable Conditions and Derating Data

Conditions and
Timings
Computation

The delays are given as typical values under the following conditions:

• VDDIO = 3.3V

• VDDCORE = 1.8V

• Ambient Temperature = 25°C

• Load Capacitance = 0 pF

• The output level change detection is (0.5 x VDDIO).

• The input level is (0.3 x VDDIO) for a low-level detection and is (0.7 x VDDIO) for a high-level
detection.

The minimum and maximum values given in the AC characteristics tables of this datasheet
take into account process variation and design. In order to obtain the timingfor other condi-
tions, the following equation should be used:

where:

• δT° is the derating factor in temperature given in Figure 178 on page 440.

• δVDDCORE is the derating factor for the Core Power Supply given in Figure 179 on page 440.

• tDATASHEET is the minimum or maximum timing value given in this datasheet for a load
capacitance of 0 pF.

• δVDDIO is the derating factor for the IO Power Supply given in Figure 180 on page 441.

• CSIGNAL is the capacitance load on the considered output pin(1).

• δCSIGNAL is the load derating factor depending on the capacitance load on the related output
pins given in Min and Max in this datasheet.

The input delays are given as typical values.
Note: 1. The user must take into account the package capacitance load contribution (CIN) described

in Table 73 on page 432.

t δT° δVDDCORE tDATASHEET×() δVDDIO CSIGNAL δCSIGNAL×()∑×()+()×=

440 AT91RM3400
1790A–ATARM–11/03

Temperature Derating Factor

Figure 178. Derating Curve for Different Operating Temperatures

VDDCORE Voltage Derating Factor

Figure 179. Derating Curve for Different Core Supply Voltages

0.8

0.9

1

1.1

1.2

-60 -40 -20 0 20 40 60 80 100 120 140 160

Operating Temperature (°C)

D
er

at
in

g
F

ac
to

r

0.5

1

1.5

2

2.5

3

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

Core Supply Voltage (V)

D
er

at
in

g
F

ac
to

r

441

AT91RM3400

1790A–ATARM–11/03

VDDIO Voltage Derating Factor

Figure 180. Derating Curve for Different IO Supply Voltages

Note: The derating factor in this example is applicable only to timings related to output pins.

0.5

1

1.5

2

2.5

3

3.5

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

I/O Supply Voltage (V)

D
e

ra
ti

ng
 F

a
ct

or

Derating factor for

typ case is 1

442 AT91RM3400
1790A–ATARM–11/03

JTAG/ICE Timings

ICE Interface Signals

Table 85 shows timings relative to operating condition limits defined in the section “Conditions
and Timings Computation” on page 439.

Figure 181. ICE Interface Signals

Table 85. ICE Interface Timing specification

Symbol Parameter Conditions Min Max Units

ICE0 TCK Low Half-period 24.0 ns

ICE1 TCK High Half-period 24.0 ns

ICE2 TCK Period 48.0 ns

ICE3 TDI, TMS, Setup before TCK
High

1.1 ns

ICE4 TDI, TMS, Hold after TCK High 0 ns

ICE5 TDO Hold Time
CTDO = 0 pF 4.3 ns

CTDO derating 0.037 ns/pF

ICE6 TCK Low to TDO Valid
CTDO = 0 pF 10.7 ns

CTDO derating 0.037 ns/pF

TCK

ICE3
ICE4

ICE6

TMS/TDI

TDO

ICE5

ICE1

ICE2

ICE0

443

AT91RM3400

1790A–ATARM–11/03

JTAG Interface Signals

Table 86 shows timings relative to operating condition limits defined in the section “Conditions
and Timings Computation” on page 439.

Table 86. JTAG Interface Timing specification

Symbol Parameter Conditions Min Max Units

JTAG0 TCK Low Half-period 6.5 ns

JTAG1 TCK High Half-period 5.5 ns

JTAG2 TCK Period 12.0 ns

JTAG3 TDI, TMS Setup before TCK
High

0.6 ns

JTAG4 TDI, TMS Hold after TCK High 1.5 ns

JTAG5 TDO Hold Time
CTDO = 0 pF 2.4 ns

CTDO derating 0.037 ns/pF

JTAG6 TCK Low to TDO Valid
CTDO = 0 pF 6.2 ns

CTDO derating 0.037 ns/pF

JTAG7 Device Inputs Setup Time 0 ns

JTAG8 Device Inputs Hold Time 3.0 ns

JTAG9 Device Outputs Hold Time
COUT = 0 pF 2.7 ns

COUT derating 0.035 ns/pF

JTAG10 TCK to Device Outputs Valid
COUT = 0 pF 9.0 ns

COUT derating 0.035 ns/pF

444 AT91RM3400
1790A–ATARM–11/03

Figure 182. JTAG Interface Signals

TCK

JTAG9

TMS/TDI

TDO

Device
Outputs

JTAG5

JTAG4JTAG3

 JTAG
0 JTAG1

JTAG2

JTAG10

Device
 Inputs

JTAG8JTAG7

JTAG6

445

AT91RM3400

1790A–ATARM–11/03

Mechanical Characteristics

Thermal Data In Table 87, the device lifetime is estimated using the MIL-217 standard in the “moderately
controlled” environmental model (this model is described as corresponding to an installation in
a permanent rack with adequate cooling air), depending on the device Junction Temperature.
(For details see the section “Junction Temperature” on page 445.)

Note that the user must be extremely cautious with this MTBF calculation. It should be noted
that the MIL-217 model is pessimistic with respect to observed values due to the way the
data/models are obtained (test under severe conditions). The life test results that have been
measured are always better than the predicted ones.

Table 88 summarizes the thermal resistance data depending on the package.

Junction Temperature

The average chip-junction temperature, TJ, in °C can be obtained from the following:

•

•

where:

• θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 88 on
page 445

• θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in
Table 88 on page 445

• θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet

• PD = device power consumption (W) estimated from data provided in the section “Power
Consumption” on page 434

• TA = ambient temperature (°C)

From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation should be used to compute the resulting average chip-junction temperature TJ in °C.

Table 87. MTBF Versus Junction Temperature

Junction Temperature (TJ) (°C) Estimated Lifetime (MTBF) (Year)

100 9

125 5

150 2

175 1

Table 88. Thermal Resistance Data

Symbol Parameter Condition Package Typ Unit

θJA Junction-to-ambient thermal resistance Still Air LQFP100 40.2
°C/W

θJC Junction-to-case thermal resistance LQFP100 13.1

TJ TA PD θJA×()+=

TJ TA P(D θ(HEATSINK× θJC))+ +=

446 AT91RM3400
1790A–ATARM–11/03

Package Drawing

Figure 183. 100-lead LQFP Package Drawing

Table 89. 100-lead LQFP Package Dimensions (in mm)

Symbol Min Nom Max Symbol Min Nom Max

c 0.09 0.2 B 0.17 0.22 0.27

c1 0.09 0.16 b1 0.17 0.2 0.23

L 0.45 0.6 0.75 Tolerances of Form and Position

L1 1.00 REF aaa 0.2

R2 0.08 0.2 bbb 0.2

R1 0.08 BSC

S 0.2 D 16.0

θ 0° 3.5° 7° D1 14.0

θ1 0° E 16.0

θ2 11° 12° 13° E1 14.0

θ3 11° 12° 13° e 0.50

A 1.6

A1 0.05 0.15 ccc 0.10

A2 1.35 1.4 1.45 ddd 0.06

447

AT91RM3400

1790A–ATARM–11/03

AT91RM3400 Ordering Information

Table 90. Ordering Information

Ordering Code Package ROM Code Revision Temperature Operating Range

AT91RM3400-AI-001 LQFP 100 001 Industrial (-40°C to 85°C)

i

AT91RM3400

1790A–ATARM–11/03

Table of Contents Features... 1
Description .. 2
Block Diagram... 3
Key Features ... 4

ARM7TDMI Processor ... 4
Debug and Test.. 4
Boot ROM Program.. 4
Embedded Software Services.. 4
Reset Controller ... 4
Memory Controller.. 4
Advanced Interrupt Controller .. 5
Power Management Controller .. 6
System Timer ... 6
Real-time Clock.. 6
Debug Unit ... 6
Parallel Input/Output Controller.. 7
Serial Peripheral Interface.. 7
Two-wire Interface.. 8
USART ... 8
Serial Synchronous Controller ... 8
Timer Counter .. 8
Multimedia Card Interface .. 9
USB Device Port .. 9

AT91RM3400 Product Properties... 11
Power Supplies ... 11
Pinout... 11

Mechanical Overview of the 100-lead LQFP Package................................... 12
Peripheral Multiplexing on PIO Lines ... 13

PIO Controller A Multiplexing ... 13
PIO Controller B Multiplexing ... 15

Pin Name Description... 16
Peripheral Identifiers .. 19

System Interrupt... 20
External Interrupts.. 20

Product Memory Mapping.. 20
Internal Memory Mapping .. 20
Peripheral Mapping .. 21

Peripheral Implementation... 23
USART ... 23
Timer Counter .. 23
USB Device Port .. 23

ARM7TDMI Processor Overview .. 25
Overview.. 25

ii AT91RM3400
1790A–ATARM–11/03

ARM7TDMI Processor .. 26
Instruction Type.. 26
Data Type... 26
ARM7TDMI Operating Mode.. 26
ARM7TDMI Registers .. 26
ARM Instruction Set Overview ... 28
Thumb Instruction Set Overview .. 29

AT91RM3400 Debug and Test Features .. 31
Overview.. 31
Block Diagram... 32
Application Examples .. 33

Debug Environment ... 33
Test Environment ... 33

Debug and Test Pin Description ... 34
Functional Description... 34

Test Pin .. 34
Embedded In-circuit Emulator.. 34
Debug Unit ... 35
IEEE 1149.1 JTAG Boundary Scan ... 35
AT91RM3400 ID Code Register .. 42

Boot Program... 43
Overview.. 43
Flow Diagram .. 44
Bootloader... 45

Valid Image Detection .. 46
Structure of ARM Vector 6 ... 47
Bootloader Sequence... 48

Boot Uploader ... 52
External Communication Channels.. 52

Hardware and Software Constraints... 54

Embedded Software Services .. 55
Overview.. 55
Service Definition ... 55

Service Structure.. 55
Using a Service .. 56

Embedded Software Services ... 59
Definition .. 59
ROM Entry Service .. 59
Tempo Service ... 60
Xmodem Service.. 63
DataFlash Service.. 69
CRC Service .. 74

iii

AT91RM3400

1790A–ATARM–11/03

Sine Service ... 76

Reset Controller... 77
Overview.. 77
NRST Conditions .. 77
Reset Management ... 78
Recommended Features of the Reset Controller .. 78

Memory Controller (MC).. 79
Overview.. 79
Block Diagram... 80
Functional Description... 81

Bus Arbiter ... 81
Address Decoder ... 81
Remap Command .. 82
Abort Status ... 83
Memory Protection Unit.. 83
Misalignment Detector ... 84

AT91RM3400 Memory Controller (MC) User Interface 85
MC Remap Control Register .. 86
MC Abort Status Register .. 87
MC Abort Address Status Register .. 89
MC Protection Unit Area 0 to 15 Registers .. 90
MC Protection Unit Peripheral.. 91
MC Protection Unit Enable Register .. 92

Peripheral Data Controller (PDC) ... 93
Overview.. 93
Block Diagram... 93
Functional Description... 94

Configuration.. 94
Memory Pointers .. 94
Transfer Counters .. 94
Data Transfers ... 95
Priority of PDC Transfer Requests... 95

Peripheral Data Controller (PDC) User Interface .. 96
PDC Receive Pointer Register... 96
PDC Receive Counter Register ... 97
PDC Transmit Pointer Register.. 97
PDC Transmit Counter Register .. 97
PDC Receive Next Pointer Register .. 98
PDC Receive Next Counter Register ... 98
PDC Transmit Next Pointer Register ... 98
PDC Transmit Next Counter Register .. 99
PDC Transfer Control Register .. 99

iv AT91RM3400
1790A–ATARM–11/03

PDC Transfer Status Register.. 100

Advanced Interrupt Controller (AIC).. 101
Overview.. 101
Block Diagram... 102
Application Block Diagram.. 102
AIC Detailed Block Diagram .. 102
I/O Line Description.. 103
Product Dependencies... 103

I/O Lines... 103
Power Management ... 103
Interrupt Sources.. 103

Functional Description... 104
Interrupt Source Control ... 104
Interrupt Latencies ... 106
Normal Interrupt ... 107
Fast Interrupt.. 109
Protect Mode.. 112
Spurious Interrupt... 113
General Interrupt Mask .. 113

Advanced Interrupt Controller (AIC) User Interface 114
AIC Source Mode Register .. 115
AIC Source Vector Register ... 115
AIC Interrupt Vector Register ... 116
AIC FIQ Vector Register... 116
AIC Interrupt Status Register ... 117
AIC Interrupt Pending Register .. 117
AIC Interrupt Mask Register... 118
AIC Core Interrupt Status Register .. 118
AIC Interrupt Enable Command Register... 119
AIC Interrupt Disable Command Register.. 119
AIC Interrupt Clear Command Register ... 120
AIC Interrupt Set Command Register .. 120
AIC End of Interrupt Command Register ... 121
AIC Spurious Interrupt Vector Register.. 121
AIC Debug Control Register... 122
AIC Fast Forcing Enable Register.. 123
AIC Fast Forcing Disable Register... 123
AIC Fast Forcing Status Register... 124

Power Management Controller (PMC) ... 125
Overview.. 125
Block Diagram... 126
Product Dependencies... 127

I/O Lines... 127

v

AT91RM3400

1790A–ATARM–11/03

Interrupt.. 127
Oscillator and PLL Characteristics ... 127
Peripheral Clocks ... 127
USB Clocks .. 127

Functional Description... 128
Operating Modes Definition.. 128
Clock Definitions .. 128
Clock Generator ... 128
Slow Clock Oscillator ... 129
Main Oscillator ... 130
Divider and PLL Blocks .. 132
Clock Controllers.. 133

Clock Switching Details ... 137
Master Clock Switching Timings .. 137
Clock Switching Waveforms... 138

Power Management Controller (PMC) User Interface 140
PMC System Clock Enable Register.. 141
PMC System Clock Disable Register... 142
PMC System Clock Status Register... 143
PMC Peripheral Clock Enable Register ... 144
PMC Peripheral Clock Disable Register .. 144
PMC Peripheral Clock Status Register .. 145
PMC Clock Generator Main Oscillator Register... 146
PMC Clock Generator Main Clock Frequency Register............................... 147
PMC Clock Generator PLL A Register... 148
PMC Clock Generator PLL B Register... 149
PMC Master Clock Register... 150
PMC Programmable Clock Register 0 to 3 .. 151
PMC Interrupt Enable Register .. 152
PMC Interrupt Disable Register ... 152
PMC Status Register.. 153
PMC Interrupt Mask Register... 154

System Timer (ST) ... 155
Overview.. 155
Block Diagram... 155
Application Block Diagram.. 155
Product Dependencies... 156

Power Management ... 156
Interrupt Sources.. 156
Watchdog Overflow.. 156

Functional Description... 156
System Timer Clock ... 156

Period Interval Timer (PIT)... 156
Watchdog Timer (WDT) ... 157
Real-time Timer (RTT) ... 157

vi AT91RM3400
1790A–ATARM–11/03

System Timer (ST) User Interface ... 159
ST Control Register.. 159
ST Period Interval Mode Register .. 160
ST Watchdog Mode Register ... 160
ST Real-Time Mode Register... 161
ST Status Register ... 161
ST Interrupt Enable Register.. 162
ST Interrupt Disable Register... 162
ST Interrupt Mask Register .. 163
ST Real-time Alarm Register ... 163
ST Current Real-Time Register.. 164

Real Time Clock (RTC) .. 165
Overview.. 165
Block Diagram... 165
Product Dependencies... 165

Power Management ... 165
Interrupt.. 165

Functional Description... 166
Reference Clock... 166
Timing .. 166
Alarm.. 166
Error Checking ... 166
Updating Time/Calendar .. 167

Real Time Clock (RTC) User Interface .. 168
RTC Control Register... 169
RTC Mode Register ... 170
RTC Time Register .. 170
RTC Calendar Register.. 171
RTC Time Alarm Register .. 172
RTC Calendar Alarm Register ... 173
RTC Status Register .. 174
RTC Status Clear Command Register ... 175
RTC Interrupt Enable Register... 176
RTC Interrupt Disable Register .. 177
RTC Interrupt Mask Register ... 178
RTC Valid Entry Register ... 179

Debug Unit (DBGU) ... 181
Overview.. 181
Block Diagram... 182
Product Dependencies... 183

I/O Lines... 183
Power Management ... 183
Interrupt Source ... 183

vii

AT91RM3400

1790A–ATARM–11/03

UART Operations.. 183
Baud Rate Generator ... 183
Receiver ... 184
Transmitter ... 186
Peripheral Data Controller.. 187
Test Modes .. 187
Debug Communication Channel Support... 189
Chip Identifier ... 189
ICE Access Prevention .. 189

Debug Unit User Interface ... 190
Debug Unit Control Register .. 191
Debug Unit Mode Register... 192
Debug Unit Interrupt Enable Register .. 193
Debug Unit Interrupt Disable Register ... 194
Debug Unit Interrupt Mask Register... 195
Debug Unit Status Register.. 196
Debug Unit Receiver Holding Register .. 198
Debug Unit Baud Rate Generator Register.. 199
Debug Unit Chip ID Register.. 200
Debug Unit Chip ID Extension Register ... 202
Debug Unit Force NTRST Register.. 202

Parallel Input/Output Controller (PIO) ... 203
Overview.. 203
Block Diagram... 204
Product Dependencies... 205

Pin Multiplexing .. 205
External Interrupt Lines .. 205
Power Management ... 205
Interrupt Generation ... 205

Functional Description... 206
Pull-up Resistor Control ... 207
I/O Line or Peripheral Function Selection .. 207
Peripheral A or B Selection .. 207
Output Control.. 207
Synchronous Data Output.. 208
Multi Drive Control (Open Drain).. 208
Output Line Timings ... 208
Inputs ... 209
Input Glitch Filtering ... 209
Input Change Interrupt ... 210

I/O Lines Programming Example .. 211
Parallel Input/Output Controller (PIO) User Interface.................................. 212

PIO Enable Register .. 214
PIO Disable Register.. 214
PIO Status Register ... 215

viii AT91RM3400
1790A–ATARM–11/03

PIO Output Enable Register... 215
PIO Output Disable Register.. 216
PIO Output Status Register.. 216
PIO Input Filter Enable Register .. 217
PIO Input Filter Disable Register.. 217
PIO Input Filter Status Register ... 218
PIO Set Output Data Register.. 218
PIO Clear Output Data Register... 219
PIO Output Data Status Register ... 219
PIO Pin Data Status Register... 220
PIO Interrupt Enable Register .. 220
PIO Interrupt Disable Register ... 221
PIO Interrupt Mask Register... 221
PIO Interrupt Status Register ... 222
PIO Multi-driver Enable Register.. 222
PIO Multi-driver Disable Register... 223
PIO Multi-driver Status Register... 223
PIO Pull Up Disable Register ... 224
PIO Pull Up Enable Register.. 224
PIO Pad Pull Up Status Register ... 225
PIO Peripheral A Select Register... 225
PIO Peripheral B Select Register... 226
PIO Peripheral AB Status Register .. 226
PIO Output Write Enable Register ... 227
PIO Output Write Disable Register .. 227
PIO Output Write Status Register .. 228

Serial Peripheral Interface (SPI) ... 229
Overview.. 229
Block Diagram... 230
Application Block Diagram.. 231
Product Dependencies... 232

I/O Lines... 232
Power Management ... 232
Interrupt.. 232

Functional Description... 232
Master Mode Operations.. 232
SPI Slave Mode ... 237
Data Transfer ... 238

Serial Peripheral Interface (SPI) User Interface ... 240
SPI Control Register .. 241
SPI Mode Register ... 242
SPI Receive Data Register .. 244
SPI Transmit Data Register ... 244
SPI Status Register.. 245
SPI Interrupt Enable Register .. 246

ix

AT91RM3400

1790A–ATARM–11/03

SPI Interrupt Disable Register.. 247
SPI Interrupt Mask Register ... 248
SPI Chip Select Register.. 249

Two-wire Interface (TWI) ... 251
Overview.. 251
Block Diagram... 251
Application Block Diagram.. 251
Product Dependencies... 252

I/O Lines... 252
Power Management ... 252
Interrupt.. 252

Functional Description... 252
Transfer Format ... 252
Modes of Operation.. 253
Transmitting Data... 253
Read/Write Flowcharts... 255

Two-wire Interface (TWI) User Interface .. 258
TWI Control Register.. 259
TWI Master Mode Register .. 260
TWI Internal Address Register ... 261
TWI Clock Waveform Generator Register.. 261
TWI Status Register ... 262
TWI Interrupt Enable Register.. 263
TWI Interrupt Disable Register... 264
TWI Interrupt Mask Register .. 265
TWI Receive Holding Register ... 266
TWI Transmit Holding Register .. 266

Universal Synchronous Asynchronous Receiver Transceiver (USART) 267
Overview.. 267
Block Diagram... 268
Application Block Diagram.. 269
I/O Lines Description ... 269
Product Dependencies... 270

I/O Lines... 270
Power Management ... 270
Interrupt.. 270

Functional Description... 271
Baud Rate Generator ... 271
Receiver and Transmitter Control .. 275
Synchronous and Asynchronous Modes.. 275
ISO7816 Mode ... 285
IrDA Mode .. 287
RS485 Mode .. 290

x AT91RM3400
1790A–ATARM–11/03

Modem Mode ... 291
Test Modes .. 291

USART User Interface ... 293
USART Control Register .. 294
USART Mode Register... 296
USART Interrupt Enable Register .. 299
USART Interrupt Disable Register ... 300
USART Interrupt Mask Register... 301
USART Channel Status Register ... 302
USART Receive Holding Register ... 304
USART Transmit Holding Register .. 304
USART Baud Rate Generator Register ... 305
USART Receiver Time-out Register .. 306
USART Transmitter Timeguard Register ... 307
USART FI DI RATIO Register.. 308
USART Number of Errors Register .. 309
USART IrDA FILTER Register ... 310

Serial Synchronous Controller (SSC).. 311
Overview.. 311
Block Diagram... 312
Application Block Diagram.. 312
Pin Name List .. 313
Product Dependencies... 313

I/O Lines... 313
Power Management ... 313
Interrupt.. 313

Functional Description... 314
Clock Management .. 315
Transmitter Operations .. 317
Receiver Operations .. 318
Start.. 318
Frame Sync.. 320
Data Format ... 320
Loop Mode ... 322
Interrupt.. 322

SSC Application Examples .. 323
Serial Synchronous Controller (SSC) User Interface 324

SSC Control Register... 326
SSC Clock Mode Register ... 327
SSC Receive Clock Mode Register ... 328
SSC Receive Frame Mode Register .. 330
SSC Transmit Clock Mode Register .. 332
SSC Transmit Frame Mode Register ... 334
SSC Receive Holding Register .. 336
SSC Transmit Holding Register ... 336

xi

AT91RM3400

1790A–ATARM–11/03

SSC Receive Synchronization Holding Register.. 337
SSC Transmit Synchronization Holding Register... 337
SSC Status Register .. 338
SSC Interrupt Enable Register... 340
SSC Interrupt Disable Register .. 341
SSC Interrupt Mask Register ... 342

Timer Counter (TC).. 343
Overview.. 343
Block Diagram... 344
Pin Name List .. 345
Product Dependencies... 345

I/O Lines... 345
Power Management ... 345
Interrupt.. 345

Functional Description... 345
TC Description ... 345
Capture Operating Mode.. 348

Waveform Operating Mode .. 350
Timer Counter (TC) User Interface .. 357

TC Block Control Register.. 358
TC Block Mode Register .. 358
TC Channel Control Register ... 359
TC Channel Mode Register: Capture Mode... 360
TC Channel Mode Register: Waveform Mode ... 362
TC Counter Value Register .. 365
TC Register A... 365
TC Register B... 365
TC Register C .. 366
TC Status Register... 366
TC Interrupt Enable Register ... 368
TC Interrupt Disable Register... 369
TC Interrupt Mask Register .. 370

MultiMedia Card Interface (MCI)... 371
Overview.. 371
Block Diagram... 372
Application Block Diagram.. 373
Product Dependencies... 374

I/O Lines... 374
Power Management ... 374
Interrupt.. 374

Bus Topology.. 374
MultiMedia Card Operations .. 376

Command-response Operation.. 377

xii AT91RM3400
1790A–ATARM–11/03

Data Transfer Operation .. 378
Read Operation.. 379
Write Operation .. 380

SD Card Operations.. 381
MultiMedia Card (MCI) User Interface ... 382

MCI Control Register.. 383
MCI Mode Register .. 384
MCI Data Timeout Register.. 385
MCI SD Card Register ... 386
MCI Argument Register.. 386
MCI Command Register... 387
MCI SD Response Register ... 388
MCI SD Receive Data Register.. 389
MCI SD Transmit Data Register... 389
MCI Status Register ... 390
MCI Interrupt Enable Register.. 392
MCI Interrupt Disable Register... 393
MCI Interrupt Mask Register .. 394

USB Device Port (UDP) ... 395
Overview.. 395
Block Diagram... 396
Product Dependencies... 397

I/O Lines... 397
Power Management ... 397
Interrupt.. 397

Typical Connection... 398
Functional Description... 399

USB V2.0 Full-speed Introduction.. 399
Handling Transactions with USB V2.0 Device Peripheral 401
Controlling Device States... 412

USB Device Port (UDP) User Interface ... 414
USB Frame Number Register .. 415
USB Global State Register... 416
USB Function Address Register .. 417
USB Interrupt Enable Register... 418
USB Interrupt Disable Register .. 419
USB Interrupt Mask Register ... 420
USB Interrupt Status Register.. 421
USB Interrupt Clear Register ... 424
USB Reset Endpoint Register.. 425
USB Endpoint Control and Status Register ... 426
USB FIFO Data Register.. 430

DC Characteristics .. 431

xiii

AT91RM3400

1790A–ATARM–11/03

Absolute Maximum Ratings... 431
DC Characteristics.. 432
Clocks Characteristics ... 433

Processor Clock Characteristics .. 433
Master Clock Characteristics ... 433
XIN Clock Characteristics .. 433

Power Consumption... 434
Crystal Oscillators Characteristics ... 435

32 kHz Oscillator Characteristics .. 435
Main Oscillator Characteristics .. 435

PLL Characteristics .. 435
Transceiver Characteristics... 436

Electrical Characteristics ... 436
Switching Characteristics ... 437

AC Characteristics .. 439
Applicable Conditions and Derating Data .. 439

Conditions and Timings Computation .. 439
Temperature Derating Factor... 440
VDDCORE Voltage Derating Factor .. 440
VDDIO Voltage Derating Factor... 441

JTAG/ICE Timings .. 442
ICE Interface Signals ... 442
JTAG Interface Signals .. 443

Mechanical Characteristics .. 445
Thermal Data ... 445

Junction Temperature .. 445
Package Drawing .. 446

AT91RM3400 Ordering Information ... 447

Document Details .. 449
Revision History ... 449

 Printed on recycled paper.

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1790A–ATARM–11/03

© Atmel Corporation 2003. All rights reserved. ATMEL® and combinations thereof and DataFlash® are the
registered trademarks of Atmel Corporation or its subsidiaries.

ARM®, ARM7TDMI® and Thumb® are the registered trademarks and ARM9TDMI™, ARM920T™ and AMBA™

are the trademarks of ARM Ltd.; CompactFlash® is a registered trademark of the CompactFlash Association;
SmartMedia™ is a trademark of the Solid State Floppy Disk Card Forum.

Other terms and product names may be the trademarks of others.

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001
Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

 Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

 http://moschip.ru/get-element

 Вы можете разместить у нас заказ для любого Вашего проекта, будь то
серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и
пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы
двойного назначения, продукции таких производителей как XILINX, Intel
(ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits,
Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов,
предоставляет возможность заказывать и получать с международных складов
практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить
квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с
ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

 Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:
moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9

mailto:info@moschip.ru

