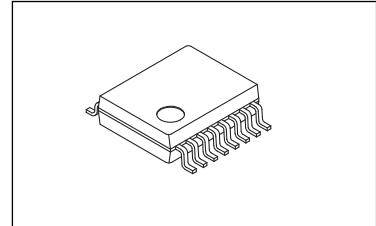


LB11660FV

Monolithic Digital IC

Half-pre Motor Driver
Single-Phase Full-Wave,
for Fan Motor



ON Semiconductor®

www.onsemi.com

Overview

The LB11660FV is a single-phase bipolar drive half-predriver motor driver that can easily implement a direct PWM driver motor driver circuit with excellent efficiency. The LB11660FV is particularly well suited for the miniature fans used in servers.

SSOP16 (225mil)

Features

- Single-phase full-wave drive (15V, 1.5A transistors are built in)
Half predriver with integrated high side transistor
- Built-in variable speed function controlled by an external input
The LB11660FV can implement quiet, low-vibration variable speed control using externally clocked high side transistor direct PWM drive.
- Minimum speed setting pin
- Current limiter circuit
(The limit value is determined by R_f ; $I_O = 1A$ when $R_F = 0.5\Omega$)
- Built-in kickback absorption circuit
- Soft switching circuit makes low current consumption, low loss, and low noise drive possible at phase switching
- Built-in HB
- Built-in lock protection and automatic recovery circuits
(built-in on/off ratio switching circuit controlled by the supply voltage)
- FG (speed detection) output
- Built-in thermal protection circuit (design guarantee)

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

LB11660FV

Specifications

Absolute Maximum Ratings at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings	Unit
V_{CC} maximum supply voltage	V_{CC} max		20	V
V_M maximum supply voltage	V_M max		20	V
OUT pin maximum output current	I_{OUT} max	$R_f \geq 0.39\Omega$	1.5	A
OUT pin output voltage 1	V_{OUT} max 1		20	V
OUT pin output voltage 2	V_{OUT} max 2	$T \leq 0.4\mu\text{s}$	26.5	V
PRE pin maximum source current	IPSO max		30	mA
PRE pin maximum sink current	IPSI max		-7	mA
PRE pin output voltage	V_P max		20	V
HB maximum output current	HB max		10	mA
V_{TH} input pin voltage	V_{TH} max		7	V
FG output pin voltage	V_{FG} max		18	V
FG output current	IFG max		10	mA
Allowable power dissipation	P_d max	When mounted on a circuit board *1	0.8	W
Operating temperature	T_{opr}	*2	-30 to +90	$^\circ\text{C}$
Storage temperature	T_{stg}		-55 to +150	$^\circ\text{C}$

*1 Specified circuit board : $114.3 \times 76.1 \times 1.6\text{mm}^3$, glass epoxy.

*2: T_j max is 150°C . This device must be used under conditions such that the chip temperature does not exceed $T_j = 150^\circ\text{C}$ during operation.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings	Unit
V_{CC} supply voltage	V_{CC}		4 to 15	V
V_M supply voltage	V_M		3 to 15	V
Current limiter operation range	ILIM		0.6 to 1.2	V
V_{TH} input level voltage range	V_{TH}		0 to 6	V
Hall sensor input common-mode input voltage range	V_{ICM}		0.2 to 3	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

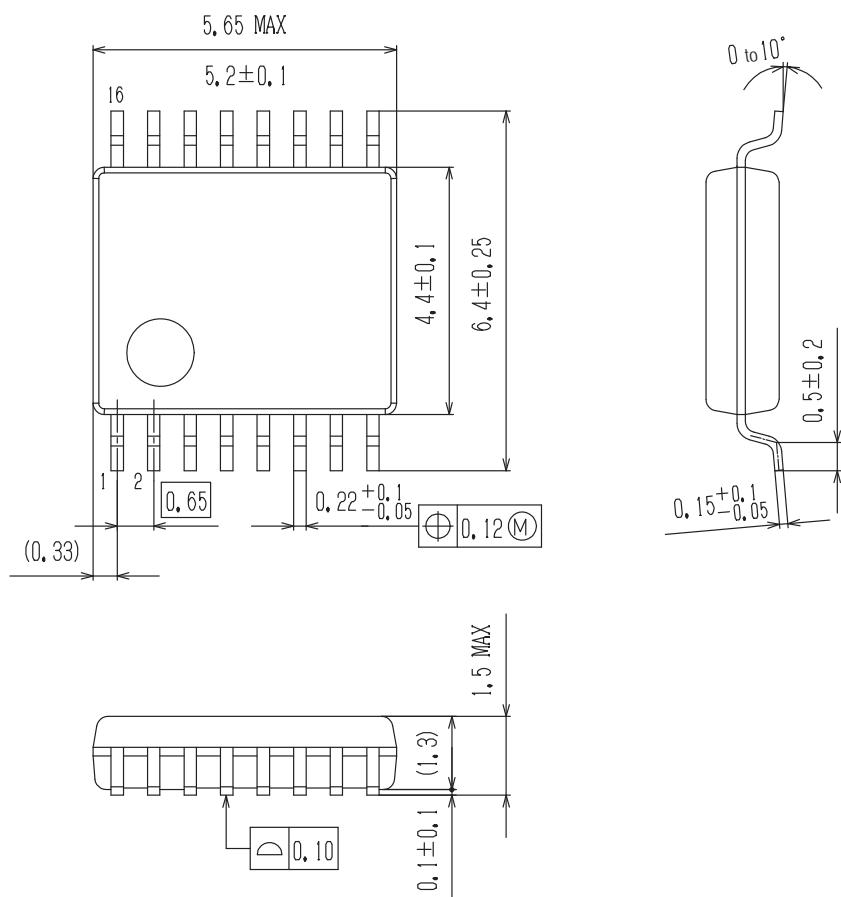
LB11660FV

Electrical Characteristics Unless otherwise specified $T_a = 25^\circ\text{C}$, $V_{CC} = 12\text{V}$

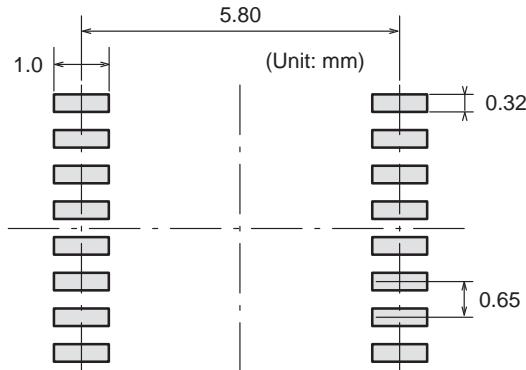
Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Circuit current	I_{CC1}	Drive mode		9	12	mA
HB voltage	V_{HB}	$I_{HB} = 5\text{mA}$	1.05	1.25	1.40	V
6VREG voltage	V_{6VREG}	$V_{6VREG} = 5\text{mA}$	5.80	6	6.20	V
CT pin high-level voltage	V_{CTH}		3.4	3.6	3.8	V
CT pin low-level voltage	V_{CTL}		1.4	1.6	1.8	V
ICT pin charge current 1	I_{CTC1}	$V_{CC} = 12\text{V}$	1.7	2.2	2.7	μA
ICT pin charge current 2	I_{CTC2}	$V_{CC} = 6\text{V}$	1.3	1.8	2.3	μA
ICT pin discharge current 1	I_{CTD1}	$V_{CC} = 12\text{V}$	0.11	0.15	0.19	μA
ICT pin discharge current 2	I_{CTD2}	$V_{CC} = 6\text{V}$	0.34	0.44	0.54	μA
ICT charge/discharge current ratio 1	R_{CT1}	$V_{CC} = 12\text{V}$	12	15	18	Times
ICT charge/discharge current ratio 2	R_{CT2}	$V_{CC} = 6\text{V}$	3	4	5	Times
ICT charge/discharge ratio threshold voltage	V_{RCT}		6	6.6	7.3	V
VTH bias current	I_{BVTH}		-2	-1	0	μA
OUT output high saturation voltage	V_{OH}	$I_O = 200\text{mA}$, $R_L = 1\Omega$		0.6	0.8	V
PRE output low saturation voltage	V_{PL}	$I_O = 5\text{mA}$		0.2	0.4	V
PRE output high saturation voltage	V_{PH}	$I_O = -20\text{mA}$		0.9	1.2	V
Current limiter	V_{RF}	$V_{CC} - V_M$	450	500	550	mV
PWM output pin high-level voltage	V_{PWMH}		2.2	2.5	2.8	V
PWM output pin low-level voltage	V_{PWML}		0.4	0.5	0.7	V
PWM external C charge current	I_{PWM1}		-23	-18	-14	μA
PWM external C discharge current	I_{PWM2}		18	24	30	μA
PWM oscillator frequency	F_{PWM}	$C = 200\text{pF}$	19	23	27	kHz
Hall sensor input sensitivity	V_{HN}	Zero peak value (including offset and hysteresis)		15	25	mV
FG output pin low-level voltage	$V_{FG/RD}$	$I_{FG/RD} = 5\text{mA}$		0.2	0.3	V
FG output pin leakage current	$I_{FGL/IRD}$	$V_{FG/RD} = 7\text{V}$			30	μA
Thermal protection circuit	THD	Design target value*3	150	180	210	$^\circ\text{C}$

*3: This is a design guarantee and is not tested in individual units. The thermal protection circuit is included to prevent any thermal damage to the IC. Since this would imply operation outside the IC's guaranteed temperature range, the application thermal design must be such that the thermal protection circuit will not operate if the fan is operating constantly.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

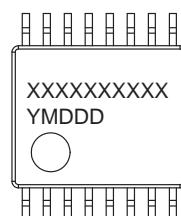

Package Dimensions

unit : mm


SSOP16 (225mil)

CASE 565AM

ISSUE A


SOLDERING FOOTPRINT*

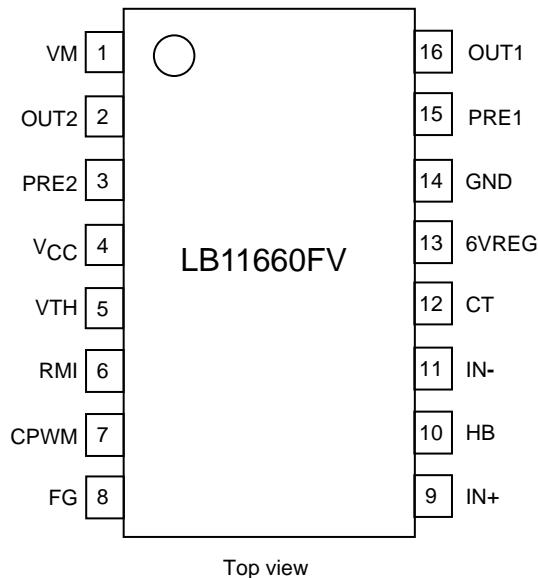
NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code

Y = Year

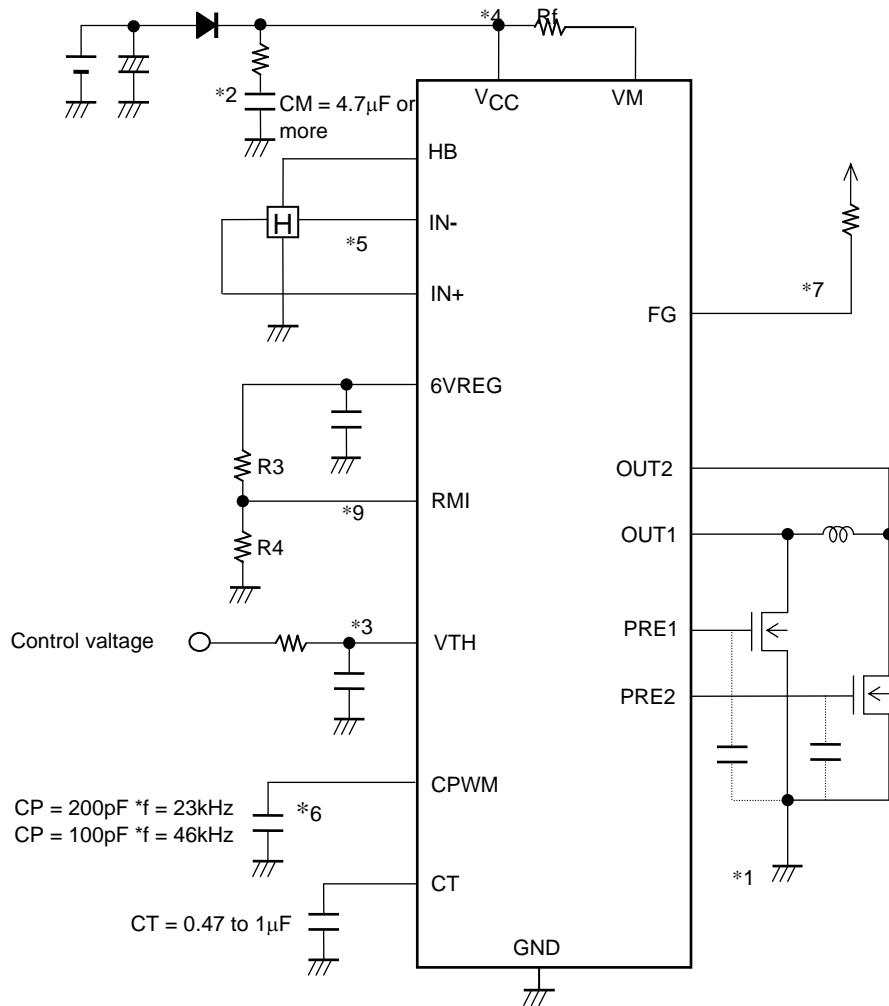

M = Month

DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

LB11660FV

Pin Assignment



Truth Table

IN-	IN+	VTH	CPWM	CT	OUT1	OUT2	PRE1	PRE2	FG	Mode
High	Low	Low	High	Low	High	Off	Low	High	Low	During rotation – drive
Low	High				Off	High	High	Low	Off	
High	Low	High	Low	High	Off	Off	Low	High	Low	During rotation – regeneration
Low	High				Off	Off	High	Low	Off	
High	Low	-	-	High	Off	Off	Low	High	Low	Lock protection
Low	High				Off	Off	High	Low	Off	

CPWM – High is the state where CPWM > VTH, and CPWM – Low is the state where CPWM < VTH.

Application Circuit Example 1

*1. Power supply and ground lines

The IC ground is the control current power supply system ground, and the external n-channel transistor ground is the motor power supply system ground.

These two systems should be formed from separate lines and the control system external components should be connected to the IC ground.

*2. Regeneration power supply stabilization capacitor

Use a $4.7\mu\text{F}/25\text{V}$ capacitor at least for CM, which is the power supply stabilization capacitor for both PWM drive and kickback absorption.

The capacitor CM must be connected to prevent destruction of the IC when power is applied or removed.

*3. Speed Control

(1) Control voltage

The PWM duty is determined by comparing the VTH pin voltage with the PWM oscillator waveform.

When the VTH voltage falls, the on duty increases and when the VTH voltage falls below the PWM output low level, the duty will go to 100%.

(2) Thermistor

For thermistor applications, normally the 6VREG level will be resistor divided and the divided level input to the VTH pin.

The PWM duty is changed by changes in the VTH pin voltage due to changes in temperature.

*4. Current limiter setting

The current limiter circuit operates if the voltage across the resistor between VCC and the VM pin exceeds 0.5V.

Since the current limiter circuit applies limitation at a current determined by $I_O = VRF/Rf$ (where $VRF = 0.5\text{V}$ (typical), Rf : resistance of the current detection resistor), the current limiter will operate at $I_O = 1\text{A}$ when $Rf = 0.5\Omega$.

The resistor RF must be connected in the circuit and it must have a value such that the circuit operates within the recommended current limiter operating range.

LB11660FV

*5. Hall sensor input

Lines that are as short as possible must be used to prevent noise from entering the system. The Hall sensor input circuit consists of a comparator with hysteresis (20mV). We recommend that the Hall sensor input level be at least three times this hysteresis, i.e. at least 60mVp-p.

*6. PWM oscillator frequency setting capacitor

The PWM oscillator oscillates at $f = 23\text{kHz}$ when CP is 200pF and at $f = 46\text{kHz}$ when CP is 100pF , and this frequency becomes the PWM reference frequency.

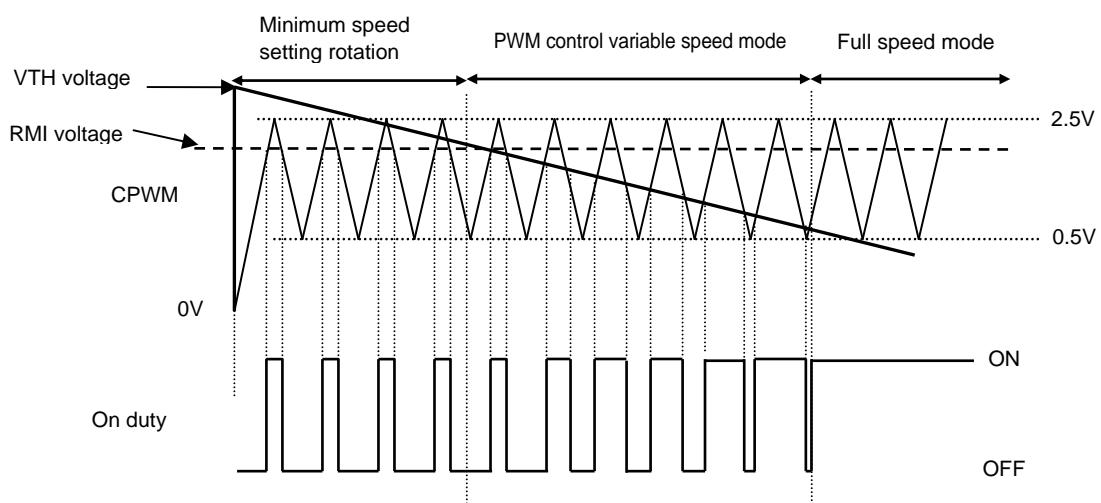
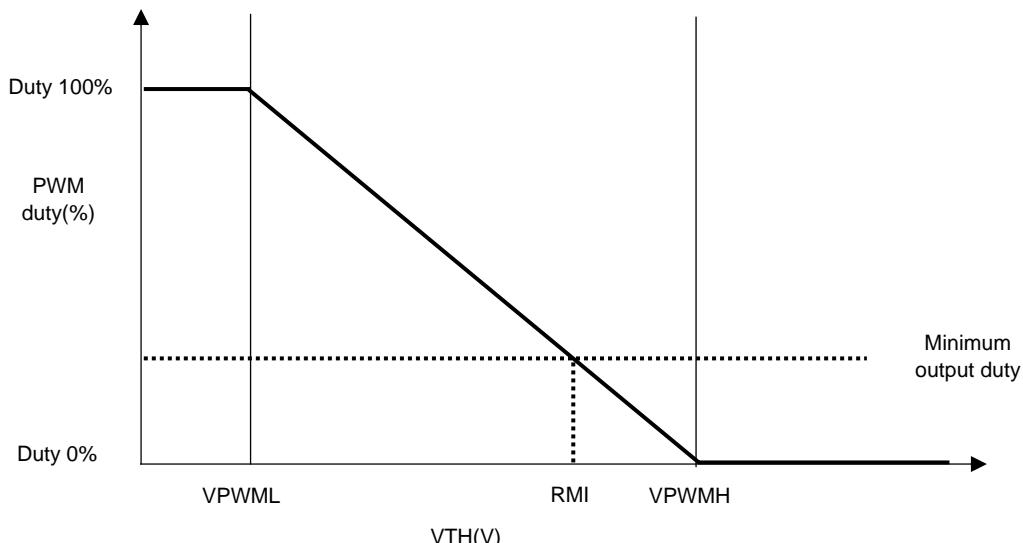
Note that the PWM frequency is given approximately by the following equation.

$$f [\text{kHz}] \approx (4.6 \times 10^6) \div C [\text{pF}]$$

*7. FG output

This is an open collector output, and a rotation count detection function can be implemented using this FG output, which corresponds to the phase switching. This pin must be left open if unused.

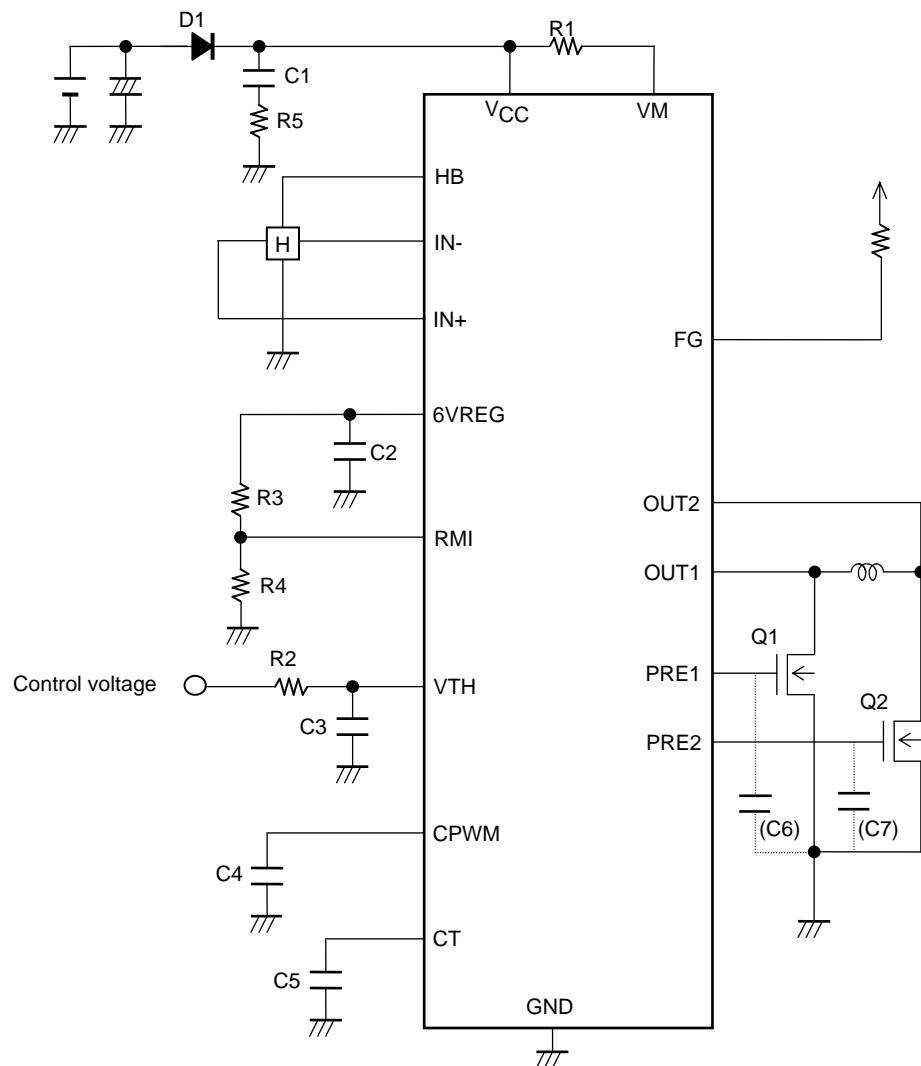
*8. HB pin



This pin provides a Hall effect sensor bias constant-voltage output of 1.25V.

*9. RMI pin

This pin is the speed control minimum speed setting.

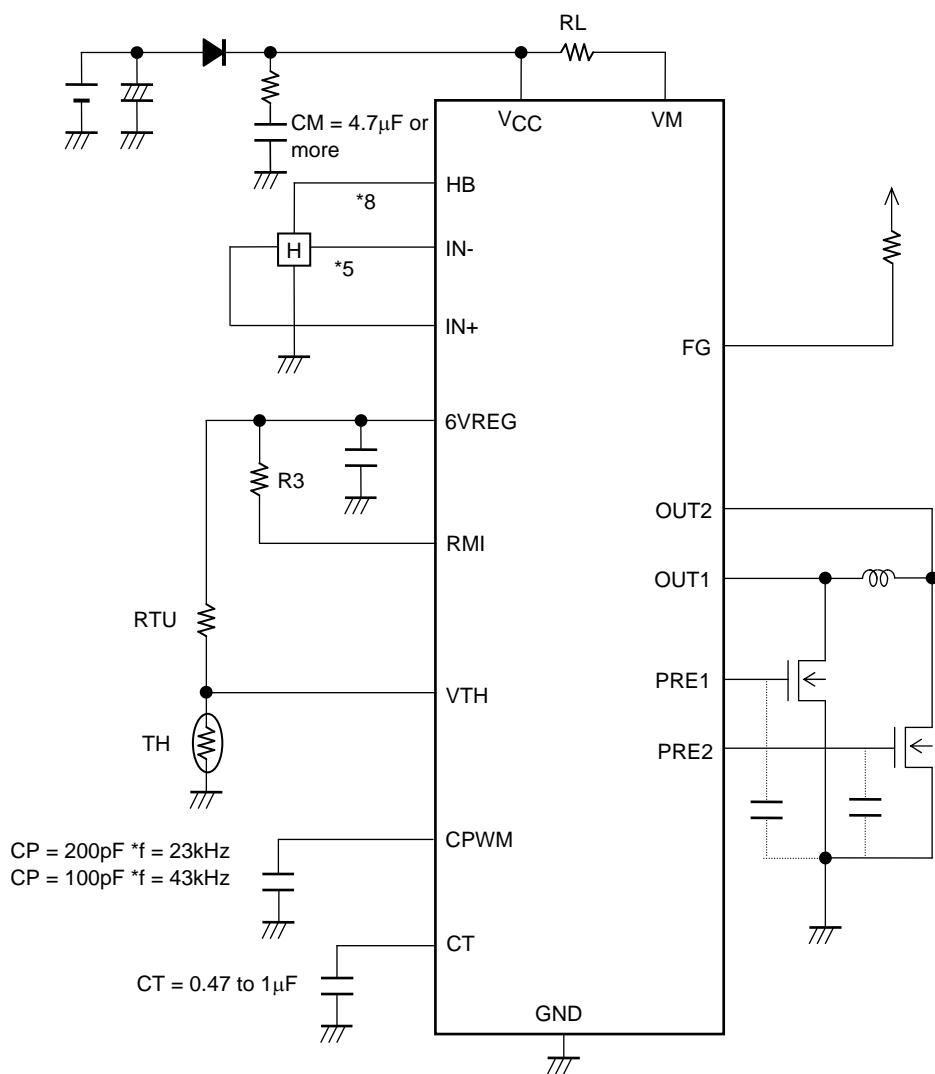
The minimum output duty is set by R3 and R4. Leave R4 open to have the motor stop when the duty is 0%.


Rotation Control Timing Chart

LB11660FV

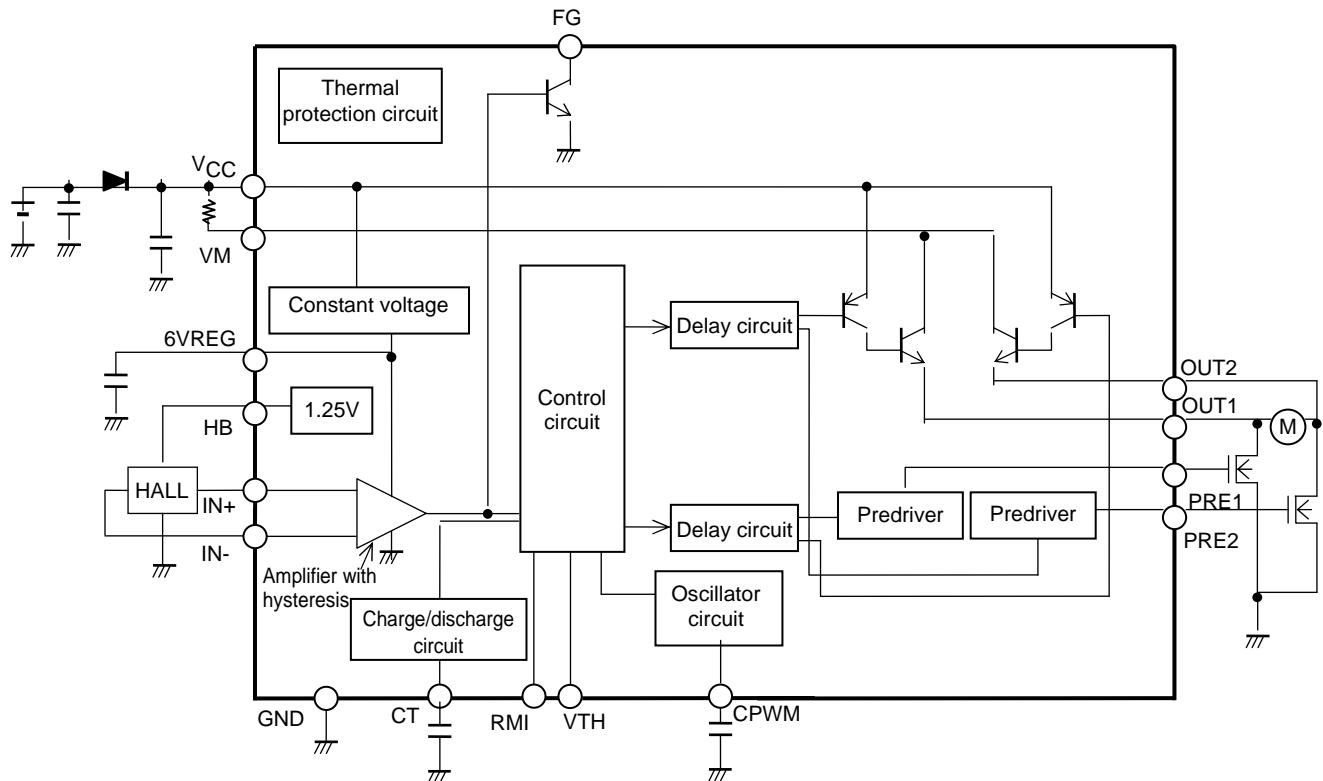
Application Circuit Example 2

Mounting circuit board (Component values are provided for reference purposes)


Parts List

- D1 : SBM30-03-Tr (Our product)
- Q1, 2 : CPH3418 (Our product)
- R1 : 0.51Ω size 3225
- R2 : 15kΩ size 1608
- R3 : 39kΩ size 1608
- R4 : 20kΩ size 1608
- R5 : 2.2Ω size 1608
- C1 : 4.7μF/25V size 3216
- C2 : 2.2μF size 1608
- C3 : 2.2μF size 1608
- C4 : 220pF size 1005
- C5 : 0.47μF size 1608
- C6, 7 : No connection

LB11660FV


Application Circuit Example 3

No minimum speed setting, thermistor input used

LB11660FV

Internal Equivalent Circuit Diagram

ORDERING INFORMATION

Device	Package	Wire Bond	Shipping (Qty / Packing)
LB11660FV-MPB-H	SSOP16 (225mil) (Pb-Free / Halogen Free)	Au-Wire	90 / Fan-Fold
LB11660FV-TLM-H	SSOP16 (225mil) (Pb-Free / Halogen Free)	Au-Wire	2000 / Tape & Reel
LB11660FV-W-AH	SSOP16 (225mil) (Pb-Free / Halogen Free)	Cu-Wire	2000 / Tape & Reel

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Данный компонент на территории Российской Федерации**Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

<http://moschip.ru/get-element>

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9