features

- Period Range: 1ms to 9.5 Hours
- Timing Reset by Power-On or Reset Input
- Configured with 1 to 3 Resistors
- <1.5\% Maximum Frequency Error
- Programmable Output Polarity
- 2.25V to 5.5 V Single Supply Operation
- $55 \mu \mathrm{~A}$ to $80 \mu \mathrm{~A}$ Supply Current
(2ms to 9.5hr Clock Period)
- 500 s S Start-Up Time
- CMOS Output Driver Sources/Sinks 20mA
- $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range
- Available in Low Profile (1 mm) SOT-23 (ThinSOT™) and $2 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN Packages

APPLICATIONS

- Power-On Reset Timer
- Long Time One Shot
- "Heartbeat" Timers
- Watchdog Timers
- Periodic "Wake-Up" Call
- High Vibration, High Acceleration Environments
$\mathbf{\Sigma \boldsymbol { T }}$, LT, LTC, LTM, Linear Technology, TimerBlox and the Linear logo are registered trademarks and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TimerBlox: Long Timer, Low Frequency Oscillator

DESCRIPTIOn

The LTC®6995 is a silicon oscillator with a programmable period range of 1.024 ms to 9.54 hours ($29.1 \mu \mathrm{~Hz}$ to 977 Hz), specifically intended for long duration timing events. The LTC6995 is part of the TimerBlox ${ }^{\circledR}$ family of versatile silicon timing devices.

A single resistor, R RET, programs the LTC6995's internal master oscillator frequency. The output clock period is determined by this master oscillator and an internal frequency divider, $\mathrm{N}_{\text {DIV }}$, programmable to eight settings from 1 to 2^{21}.

$$
t_{\text {OUT }}=\frac{N_{\text {DIV }} \bullet R_{\text {SET }}}{50 \mathrm{k} \Omega} \cdot 1.024 \mathrm{~ms}, N_{\text {DIV }}=1,8,64, \ldots, 2^{21}
$$

When oscillating, the LTC6995 generates a 50% duty cycle square wave output. A reset function is provided to stop the master oscillator and clear internal dividers. Removing reset initiates a full output clock cycle which is useful for programmable power-on reset and watchdog timer applications.
The LTC6995 has two versions of reset functionality. The reset input is active high for the LTC6995-1 and active low for the LTC6995-2. The polarity of the output when reset is selectable for both versions.

		OUTPUT (OSCILLATOR START STATE)	
RST/RST	POLARITY	LTC6995-1	LTC6995-2
0	0	Oscillating (Low)	0 (Reset)
1	0	0 (Reset)	0scillating (Low)
0	1	0scillating (High)	1 (Reset)
1	1	1 (Reset)	$0 s c i l l a t i n g ~(H i g h) ~$

TYPICAL APPLICATION

Active Low Power-On Reset Timer

LTC6995-1/LTC6995-2

ABSOLUTE MAXIMUUM RATINGS (Nole 1)

Supply Voltage (V^{+}) to GND6V	Specified Temperature Range (Note 3)
Maximum Voltage	LTC6995C ... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
on Any Pin (GND $-0.3 \mathrm{~V}) \leq \mathrm{V}_{\text {PIN }} \leq\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$	LTC6995I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Operating Temperature Range (Note 2)	LTC6995H..................................... $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6995C $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	LTC6995MP $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6995I $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Junction Temperature $150^{\circ} \mathrm{C}$
LTC6995H.................................... $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LTC6995MP.................................. $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 sec)
	S6 Package ... $300^{\circ} \mathrm{C}$

PIn CONFIGURATION

ORDER InFORMATION

TAPE AND REEL (MINI)	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6995CDCB-1\#TRMPBF	LTC6995CDCB-1\#TRPBF	LGJM	6 -Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6995IDCB-1\#TRMPBF	LTC6995IDCB-1\#TRPBF	LGJM	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6995HDCB-1\#TRMPBF	LTC6995HDCB-1\#TRPBF	LGJM	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6995CDCB-2\#TRMPBF	LTC6995CDCB-2\#TRPBF	LGJP	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6995IDCB-2\#TRMPBF	LTC6995IDCB-2\#TRPBF	LGJP	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6995HDCB-2\#TRMPBF	LTC6995HDCB-2\#TRPBF	LGJP	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6995CS6-1\#TRMPBF	LTC6995CS6-1\#TRPBF	LTGJN	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6995IS6-1\#TRMPBF	LTC6995IS6-1\#TRPBF	LTGJN	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6995HS6-1\#TRMPBF	LTC6995HS6-1\#TRPBF	LTGJN	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6995MPS6-1\#TRMPBF	LTC6995MPS6-1\#TRPBF	LTGJN	6-Lead Plastic TSOT-23	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6995CS6-2\#TRMPBF	LTC6995CS6-2\#TRPBF	LTGJQ	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6995IS6-2\#TRMPBF	LTC6995IS6-2\#TRPBF	LTGJQ	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6995HS6-2\#TRMPBF	LTC6995HS6-2\#TRPBF	LTGJQ	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6995MPS6-2\#TRMPBF	LTC6995MPS6-2\#TRPBF	LTGJQ	6-Lead Plastic TSOT-23	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

TRM $=500$ pieces. *Temperature grades are identified by a label on the shipping container.
Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LTC6995-1/LTC6995-2

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to 5.5 V , RST $=0 \mathrm{~V}$ for LTC6995-1, $\overline{\mathrm{RST}}=\mathrm{V}^{+}$for LTC6995-2, DIVCODE $=0$ to 15 ($\mathrm{N}_{\text {DIV }}=1$ to 2^{21}), $\mathrm{R}_{\text {SET }}=50 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\text {LOAD }}=5 \mathrm{k}, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {OUT }}$ | Output Clock Period | | | 1.024 m | | 34,360 | Seconds |
| fout | Output Frequency | | | 29.1号 | | 977 | Hz |
| $\Delta f_{\text {OUT }}$ | Frequency Accuracy (Note 4) | $29.1 \mu \mathrm{~Hz} \leq \mathrm{f}_{\text {OUT }} \leq 977 \mathrm{~Hz}$ | \bullet | | ± 0.8 | $\begin{aligned} & \pm 1.5 \\ & \pm 2.2 \end{aligned}$ | \% |
| $\Delta \mathrm{f}_{\text {Out }} / \Delta \mathrm{T}$ | Frequency Drift Over Temperature | | \bullet | | ± 0.005 | | $\% /{ }^{\circ} \mathrm{C}$ |
| $\Delta f_{0 U T} / \Delta \mathrm{V}^{+}$ | Frequency Drift Over Supply | $\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 0.23 \\ & 0.06 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.16 \end{aligned}$ | \%/V |
| | Long-Term Frequency Stability | (Note 11) | | | 90 | | $\mathrm{ppm} / \sqrt{\mathrm{kHr}}$ |
| | Period Jitter (Note 10) | $\begin{aligned} & \hline N_{\text {DIV }}=1 \\ & N_{\text {DIV }}=8 \end{aligned}$ | | | $\begin{gathered} 15 \\ 7 \end{gathered}$ | | ppmRMS ppminms |
| BW | Frequency Modulation Bandwidth | | | | 0.4 •f fout | | Hz |
| ts | Frequency Change Settling Time (Note 9) | | | | 1 | | Cycle |

Analog Inputs

$V_{\text {SET }}$	Voltage at SET Pin		\bullet	0.97	1.00	1.03	V
$\Delta \mathrm{V}_{\text {SET }} / \Delta \mathrm{T}$	$\mathrm{V}_{\text {SET }}$ Drift Over Temperature		\bullet		± 75		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {SET }}$	Frequency-Setting Resistor		\bullet	50		800	$\mathrm{k} \Omega$
V DIV	DIV Pin Voltage		\bullet	0		V^{+}	V
$\Delta \mathrm{V}_{\text {DIV }} / \Delta \mathrm{V}^{+}$	DIV Pin Valid Code Range (Note 5)	Deviation from Ideal $\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}=(\text {DIVCODE }+0.5) / 16$	\bullet			± 1.5	\%
	DIV Pin Input Current		\bullet			± 10	nA

Power Supply

V^{+}	Operating Supply Voltage Range			\bullet	2.25	5.5	V
	Power-On Reset Voltage			\bullet		1.95	V
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\text {SET }}=50 \mathrm{k}$	$\begin{aligned} & \hline \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 135 \\ & 105 \end{aligned}$	$\begin{aligned} & 170 \\ & 135 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\text {SET }}=100 \mathrm{k}$	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 100 \\ 80 \end{gathered}$	$\begin{aligned} & 130 \\ & 105 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\text {SET }}=800 \mathrm{k}$	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 65 \\ & 55 \end{aligned}$	$\begin{aligned} & 100 \\ & 85 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{I}_{\text {SET }}=0 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$		60		$\mu \mathrm{A}$ $\mu \mathrm{A}$

LTC6995-1/LTC6995-2

ELECTRICAL CHARACTERISTICS The odenotes the speciifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to 5.5 V , RST $=0 \mathrm{~V}$ for LTC6995-1, $\overline{\text { RST }}=V^{+}$for LTC6995-2, DIVCODE $=0$ to $15\left(N_{\text {DIV }}=1\right.$ to $\left.2^{21}\right), R_{S E T}=50 \mathrm{k}$ to 800k, $R_{\text {LOAD }}=\infty, C_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Digital I/0								
	RST Pin Input Capacitance					2.5		pF
	RST Pin Input Current	RST $=0 \mathrm{~V}$ to					± 10	nA
$\mathrm{V}_{\text {IH }}$	High Level RST Pin Input Voltage	(Note 6)		\bullet	0.7 • ${ }^{+}$			V
VIL	Low Level RST Pin Input Voltage	(Note 6)		\bullet			$0.3 \cdot \mathrm{~V}^{+}$	V
IOUT(MAX)	Output Current	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5.5 V			± 20			mA
V_{OH}	High Level Output Voltage (Note 7)	$\mathrm{V}^{+}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-16 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 5.45 \\ & 4.84 \end{aligned}$	$\begin{array}{r} 5.48 \\ 5.15 \\ \hline \end{array}$		V
		$\mathrm{V}^{+}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-10 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 3.24 \\ & 2.75 \end{aligned}$	$\begin{aligned} & \hline 3.27 \\ & 2.99 \end{aligned}$		V
		$\mathrm{V}^{+}=2.25 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=-8 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 2.17 \\ & 1.58 \end{aligned}$	$\begin{aligned} & 2.21 \\ & 1.88 \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage (Note 7)	$\mathrm{V}^{+}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=16 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.02 \\ & 0.26 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.04 \\ & 0.54 \\ & \hline \end{aligned}$	V V
		$\mathrm{V}^{+}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.03 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.46 \end{aligned}$	V
		$\mathrm{V}^{+}=2.25 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=8 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.03 \\ & 0.26 \end{aligned}$	$\begin{aligned} & \hline 0.07 \\ & 0.54 \\ & \hline \end{aligned}$	V
$t_{\text {RST }}$	Reset Propagation Delay	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 16 \\ & 24 \\ & 40 \end{aligned}$		ns ns ns
${ }^{\text {twIDTH }}$	Minimum Input Pulse Width	$\mathrm{V}^{+}=3.3 \mathrm{~V}$				5		ns
t_{r}	Output Rise Time (Note 8)	$\begin{aligned} & \hline \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 1.1 \\ & 1.7 \\ & 2.7 \end{aligned}$		ns ns ns
t_{f}	Output Fall Time (Note 8)	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$				$\begin{aligned} & \hline 1.0 \\ & 1.6 \\ & 2.4 \end{aligned}$		ns ns ns

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC6995C is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 3: The LTC6995C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LTC6995C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but it is not tested or QA sampled at these temperatures. The LTC6995I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LTC6995H is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LTC6995MP is guaranteed to meet specified performance from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: Frequency accuracy is defined as the deviation from the fout equation, assuming $R_{S E T}$ is used to program the frequency.
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation of how the DIV pin voltage selects the value of DIVCODE.
Note 6: The RST pin has hysteresis to accommodate slow rising or falling signals. The threshold voltages are proportional to V^{+}. Typical values can be estimated at any supply voltage using $\mathrm{V}_{\mathrm{RST}}(\mathrm{RISING}) \approx 0.55 \cdot \mathrm{~V}^{+}+185 \mathrm{mV}$ and $\mathrm{V}_{\text {RST }}($ FALLING $) ~ \approx 0.48 \bullet \mathrm{~V}^{+}-155 \mathrm{mV}$.

Note 7: To conform to the Logic IC Standard, current out of a pin is arbitrarily given a negative value.
Note 8: Output rise and fall times are measured between the 10% and the 90% power supply levels with 5 pF output load. These specifications are based on characterization.
Note 9: Settling time is the amount of time required for the output to settle within $\pm 1 \%$ of the final frequency after a $0.5 \times$ or $2 \times$ change in $I_{\text {SET }}$.
Note 10: Jitter is the ratio of the deviation of the period to the mean of the period. This specification is based on characterization and is not 100% tested.
Note 11: Long-term drift of silicon oscillators is primarily due to the movement of ions and impurities within the silicon and is tested at $30^{\circ} \mathrm{C}$ under otherwise nominal operating conditions. Long-term drift is specified as $\mathrm{ppm} / \sqrt{\mathrm{kHr}}$ due to the typically nonlinear nature of the drift. To calculate drift for a set time period, translate that time into thousands of hours, take the square root and multiply by the typical drift number. For instance, a year is 8.77 kHr and would yield a drift of 266 ppm at $90 \mathrm{ppm} / \sqrt{\mathrm{kHr}}$. Drift without power applied to the device may be approximated as $1 / 10$ th of the drift with power, or $9 p p m / \sqrt{k H r}$ for a $90 \mathrm{ppm} / \sqrt{\mathrm{kHr}}$ device.

TYPICAL PERFORMAOCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{~K}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

699512601
Frequency Error vs $\mathbf{R}_{\text {SET }}$

699512 G04

Frequency Error vs Temperature

Frequency Drift vs Supply Voltage

Frequency Error vs Temperature

699512 G03

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PIn functions

(DCB/S6)
\mathbf{V}^{+}(Pin 1/Pin 5): Supply Voltage (2.25V to 5.5V). This supply should be kept free from noise and ripple. It should be bypassed directly to the GND pin with a $0.1 \mu \mathrm{~F}$ capacitor.
DIV (Pin 2/Pin 4): Programmable Divider and Polarity Input. An internal A/D converter (referenced to V^{+}) monitors the DIV pin voltage ($V_{\text {DIV }}$) to determine a 4 -bit result (DIVCODE). VIV may be generated by a resistor divider between V^{+}and GND. Use 1% resistors to ensure an accurate result. The DIV pin and resistors should be shielded from the OUT pin or any other traces that have fast edges. Limit the capacitance on the DIV pin to less than 100 pF so that $\mathrm{V}_{\text {DIV }}$ settles quickly. The MSB of DIVCODE (POL) determines the polarity of the OUT pin.
SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage on the SET pin ($\mathrm{V}_{\text {SET }}$) is regulated to 1 V above GND. The amount of current sourced from the SET pin (ISET) programs the master oscillator frequency. The I IST current range is $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$. The output oscillation will stop if $I_{\text {SET }}$ drops below approximately 500 nA . A resistor connected between SET and GND is the most accurate way to set the frequency. For best performance, use a precision metal or thin film resistor of 0.5% or better tolerance and
$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better temperature coefficient. For lower accuracy applications an inexpensive 1% thick film resistor may be used.
Limit the capacitance on the SET pin to less than 10pF to minimize jitter and ensure stability. Capacitance less than 100 pF maintains the stability of the feedback circuit regulating the $\mathrm{V}_{\text {SET }}$ voltage.

RST or $\overline{\text { RST }}$ (Pin 4/Pin 1): Output Reset. The reset input is used to stop the output oscillator and to clear internal dividers. When reset is released the oscillator starts with a full half period time interval. The output logic state when reset is determined by the programmed DIVCODE. The LTC6995-1 has an active high RST input. The LTC6995-2 has an active low RST input.

LTC6995-1/LTC6995-2

PIn functions (cce//6)

GND (Pin 5/Pin 2): Ground. Tie to a low inductance ground plane for best performance.
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings from GND to V^{+}with an output resistance of approximately
30Ω. When driving an LED or other low impedance load a series output resistor should be used to limit source/ sink current to 20 mA .

BLOCK DIAGRAII (S6 package pin numbers shown)

LTC6995-1/LTC6995-2

OPERATION

The LTC6995 is built around a master oscillator with a 1 MHz maximum frequency. The oscillator is controlled by the SET pin current ($\mathrm{I}_{\mathrm{SET}}$) and voltage ($\mathrm{V}_{\mathrm{SET}}$), with a $1 \mathrm{MHz} \cdot 50 \mathrm{k}$ conversion factor that is accurate to $\pm 0.8 \%$ under typical conditions.

$$
f_{\mathrm{MASTER}}=\frac{1}{\mathrm{t}_{\mathrm{MASTER}}}=1 \mathrm{MHz} \cdot 50 \mathrm{k} \Omega \cdot \frac{\left.\right|_{\mathrm{SET}}}{\mathrm{~V}_{\mathrm{SET}}}
$$

A feedback loop maintains $\mathrm{V}_{\text {SET }}$ at $1 \mathrm{~V} \pm 30 \mathrm{mV}$, leaving $\mathrm{I}_{\text {SET }}$ as the primary means of controlling the output frequency. The simplest way to generate $I_{\text {SET }}$ is to connect a resistor ($\mathrm{R}_{\mathrm{SET}}$) between SET and GND, such that $\mathrm{I}_{\mathrm{SET}}=\mathrm{V}_{\mathrm{SET}} / \mathrm{R}_{\mathrm{SET}}$. The master oscillator equation reduces to:

$$
\mathrm{f}_{\text {MASTER }}=\frac{1}{\mathrm{t}_{\text {MASTER }}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k} \Omega}{\mathrm{R}_{\text {SET }}}
$$

From this equation, it is clear that $V_{\text {SET }}$ drift will not affect the output frequency when using a single program resistor ($\mathrm{R}_{\text {SET }}$). Error sources are limited to $\mathrm{R}_{\text {SET }}$ tolerance and the inherent frequency accuracy $\Delta f_{0 u t}$ of the LTC6995.
$R_{\text {SET }}$ may range from 50k to 800k (equivalent to $I_{\text {SET }}$ between $1.25 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$).
Before reaching the OUT pin, the oscillator frequency passes through a fixed $\div 1024$ divider. The LTC6995 also includes a programmable frequency divider which can further divide the frequency by $1,8,64,512,4096,2^{15}$, 2^{18} or 2^{21}. The divider ratio N DIV is set by a resistor divider attached to the DIV pin.

$$
\begin{aligned}
& \mathrm{f}_{\text {OUT }}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k} \Omega}{1024 \cdot \mathrm{~N}_{\text {DIV }}} \cdot \frac{\mathrm{I}_{\text {SET }}}{\mathrm{V}_{\text {SET }}} \text {, or } \\
& \mathrm{t}_{\text {OUT }}=\frac{1}{\mathrm{f}_{\text {OUT }}}=\frac{\mathrm{N}_{\text {DIV }}}{50 \mathrm{k} \Omega} \cdot \frac{\mathrm{~V}_{\text {SET }}}{\mathrm{I}_{\text {SET }}} \cdot 1.024 \mathrm{~ms}
\end{aligned}
$$

with $\mathrm{R}_{\text {SET }}$ in place of $\mathrm{V}_{\mathrm{SET}} / \mathrm{I}_{\text {SET }}$ the equation reduces to:

$$
\mathrm{t}_{\text {OUT }}=\frac{\mathrm{N}_{\text {DIV }} \bullet \mathrm{R}_{\text {SET }}}{50 \mathrm{k} \Omega} \cdot 1.024 \mathrm{~ms}
$$

DIVCODE

The DIV pin connects to an internal, V^{+}referenced 4-bit A / D converter that determines the DIVCODE value. DIVCODE programs two settings on the LTC6995:

1. DIVCODE determines the output frequency divider setting, NDIV.
2. DIVCODE determines the polarity of the RST and OUT pins, via the POL bit.
$V_{\text {DIV }}$ may be generated by a resistor divider between V^{+} and GND as shown in Figure 1.

Figure 1. Simple Technique for Setting DIVCODE
Table 1 offers recommended 1% resistor values that accurately produce the correct voltage division as well as the corresponding NDIV and POL values for the recommended resistor pairs. Other values may be used as long as:

1. The $\mathrm{V}_{\mathrm{DIV}} / \mathrm{V}^{+}$ratio is accurate to $\pm 1.5 \%$ (including resistor tolerances and temperature effects)
2. The driving impedance (R1||R2) does not exceed 500k .

If the voltage is generated by other means (i.e., the output of a DAC) it must track the V^{+}supply voltage. The last column in Table 1 shows the ideal ratio of $V_{\text {DIV }}$ to the supply voltage, which can also be calculated as:

$$
\frac{V_{\text {DIV }}}{V^{+}}=\frac{\text { DIVCODE }+0.5}{16} \pm 1.5 \%
$$

For example, if the supply is 3.3 V and the desired DIVCODE is $4, V_{\text {DIV }}=0.281 \cdot 3.3 \mathrm{~V}=928 \mathrm{mV} \pm 50 \mathrm{mV}$.

Figure 2 illustrates the information in Table 1, showing that $N_{\text {DIV }}$ is symmetric around the DIVCODE midpoint.

LTC6995-1/LTC6995-2

operation

Table 1. DIVCODE Programming

DIVCODE	POL	$\mathrm{N}_{\text {DIV }}$	RECOMMENDED $\mathrm{t}_{\text {OUT }}$	R1 (kS)	R2 (k)	$\mathrm{V}_{\text {DIV }} / \mathrm{N}^{+}$
0	0	1	1.024 ms to 16.384 ms	Open	Short	$\leq 0.03125 \pm 0.015$
1	0	8	8.192 ms to 131 ms	976	102	0.09375 ± 0.015
2	0	64	65.5 ms to 1.05 sec	976	182	0.15625 ± 0.015
3	0	512	524 ms to 8.39 sec	1000	280	0.21875 ± 0.015
4	0	4,096	4.19 sec to 67.1 sec	1000	392	0.28125 ± 0.015
5	0	32,768	33.6 sec to 537 sec	1000	523	0.34375 ± 0.015
6	0	262,144	268 sec to 4,295sec	1000	681	0.40625 ± 0.015
7	0	2,097,152	2,147sec to 34,360sec	1000	887	0.46875 ± 0.015
8	1	2,097,152	2,147sec to 34,360sec	887	1000	0.53125 ± 0.015
9	1	262,144	268 sec to 4,295sec	681	1000	0.59375 ± 0.015
10	1	32,768	33.6 sec to 537 sec	523	1000	0.65625 ± 0.015
11	1	4,096	4.19 sec to 67.1 sec	392	1000	0.71875 ± 0.015
12	1	512	524 ms to 8.39 sec	280	1000	0.78125 ± 0.015
13	1	64	65.5 ms to 1.05 sec	182	976	0.84375 ± 0.015
14	1	8	8.192 ms to 131 ms	102	976	0.90625 ± 0.015
15	1	1	1.024 ms to 16.384 ms	Short	Open	$\geq 0.96875 \pm 0.015$

Figure 2. Frequency Range and POL Bit vs DIVCODE

LTC6995-1/LTC6995-2

OPERATION

Reset and Polarity Bit Functions

The Reset input, RST for the LTC6995-1 and $\overline{\text { RST }}$ for the LTC6995-2, forces the output to a fixed state and resets the internal clock dividers. The output state when reset is determined by the polarity bit as selected by through the DIVCODE setting.

		OUTPUT (0SCILLATOR START STATE)	
RST/(RST	POLARITY	LTC6995-1	LTC6995-2
0	0	Oscillating (Low)	0 (Reset)
1	0	0 (Reset)	Oscillating (Low)
0	1	0scillating (High)	1 (Reset)
1	1	1 (Reset)	0scillating (High)

With the POL bit programmed to be 0 , the output will be forced low when reset. When reset is released by changing state, the oscillator starts. The next rising edge at the output follows a precise half cycle delay.

With the POL bit programmed to be 1, the output will be forced high when reset. When reset is released by changing state, the oscillator starts. The next falling edge at the output follows a precise half cycle delay.

Figure 3. Reset Timing Diagram (POL Bit $=\mathbf{0}$)

Figure 4. Reset Timing Diagram (POL Bit $=1$)

LTC6995-1/LTC6995-2

OPERATION

Changing DIVCODE After Start-Up

Following start-up, the A/D converter will continue monitoring V ${ }_{\text {DIV }}$ for changes. The LTC6995 will respond to DIVCODE changes in less than one cycle.

$$
t_{\text {DIVCODE }}<500 \bullet t_{\text {MASTER }}<t_{\text {OUT }}
$$

The output may have an inaccurate pulse width during the frequency transition. But the transition will be glitch-free and no high or low pulse can be shorter than the master clock period. A digital filter is used to guarantee the DIVCODE has settled to a new value before making changes to the output.

Start-Up Time

When power is first applied, the power-on reset (POR) circuit will initiate the start-up time, tstart. A supply voltage of typically 1.4 V (1.2 V to 1.5 V over temperature) initiates the start-up sequence. The OUT pin is held low during this time. The typical value for tsTART ranges from 0.5 ms to 8 ms depending on the master oscillatorfrequency (independent of $\mathrm{N}_{\mathrm{DIV}}$):

$$
\mathrm{t}_{\text {START(TYP) }}=500 \bullet \mathrm{t}_{\text {MASTER }}
$$

During start-up, the DIV pin A/D converter must determine the correct DIVCODE before the output is enabled. The start-up time may increase if the supply or DIV pin

Figure 5. DIVCODE Change from 1 to 0
voltages are not stable. For this reason, it is recommended to minimize the capacitance on the DIV pin so it will properly track V^{+}. Less than 100 pF will not affect performance.

Start-Up Behavior

When first powered up, the output is held low. If the polarity is setfor non-inversion ($\mathrm{POL}=0$) and the output is enabled at the end of the start-up time, OUT will begin oscillating. If the output is being reset (RST $=1$ for LTC6995-1 and $\overline{\mathrm{RST}}=0$ for LTC6995-2) at the end of the start-up time, it will remain low due to the POL bit $=0$. When reset is released the oscillator starts and the output remains low for precisely one half cycle of the programmed period.

In inverted operation (POL = 1), the start-up sequence is similar. However, the LTC6995 does not know the correct DIVCODE setting when first powered up, so the output defaults low. At the end of tsTART, the value of DIVCODE is recognized and OUT goes high (inactive) because POL = 1 . If the output is being reset (RST $=1$ for LTC6995-1 and $\overline{\mathrm{RST}}=0$ for LTC6995-2) at the end of the start-up time, it will remain high due to the POL bit $=1$. When reset is released the oscillator starts and the output remains high for precisely one half cycle of the programmed period.
Figures 7 to 10 detail the possible start-up sequences.

Figure 6. Typical Start-Up LTC6995-1 with RST = OV

operation

Figure 7. Start-Up Timing Diagram $($ Reset $=\mathbf{0}$, POL Bit $=0)$

Figure 8. Start-Up Timing Diagram (Reset $=1$, POL Bit $=0$)

Figure 9. Start-Up Timing Diagram $($ Reset $=0$, POL Bit $=1)$

Figure 10. Start-Up Timing Diagram (Reset $=1$, POL Bit $=1$)

LTC6995-1/LTC6995-2

APPLICATIONS INFORMATION

Basic Operation

The simplest and most accurate method to program the LTC6995 is to use a single resistor, $\mathrm{R}_{\mathrm{SET}}$, between the SET and GND pins. The design procedure is a 3-step process. First select the POL bit setting and NDIV value, then calculate the value for the $\mathrm{R}_{\text {SET }}$ resistor.

Step 1: Select the LTC6995 Version and POL Bit Setting

Determine if the application requires an active-high, LTC6995-1 or active-low, LTC6995-2 reset function. Otherwise the two versions share identical functionality.
The OUT pin polarity depends on the setting of the POL bit. To force OUT $=0$ during reset, choose POL bit $=0$. To force OUT = 1 during reset, choose POL bit = 1 .

Step 2: Select the $\mathrm{N}_{\text {DII }}$ Frequency Divider Value

As explained earlier, the voltage on the DIV pin sets the DIVCODE which determines both the POL bit and the NDIV value. For a given output clock period, N Niv should be selected to be within the following range.

$$
\begin{equation*}
\frac{\mathrm{t}_{\text {OUT }}}{16.384 \mathrm{~ms}} \leq \mathrm{N}_{\mathrm{DIV}} \leq \frac{\mathrm{t}_{\text {OUT }}}{1.024 \mathrm{~ms}} \tag{1}
\end{equation*}
$$

To minimize supply current, choose the lowest $N_{\text {DIV }}$ value (generally recommended). Alternatively, use Table 1 as a guide to select the best $N_{\text {DIV }}$ value for the given application.
With POL already chosen, this completes the selection of DIVCODE. Use Table 1 to select the proper resistor divider or $\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}$ratio to apply to the DIV pin.

Step 3: Calculate and Select RSET

The final step is to calculate the correct value for $\mathrm{R}_{\text {SET }}$ using the following equation.

$$
\begin{equation*}
\mathrm{R}_{\text {SET }}=\frac{50 \mathrm{k}}{1.024 \mathrm{~ms}} \cdot \frac{\mathrm{t}_{\text {OUT }}}{\mathrm{N}_{\mathrm{DIV}}} 1 \tag{2}
\end{equation*}
$$

Select the standard resistor value closest to the calculated value.

Example: Design a 1 Hz oscillator with minimum power consumption, an active-high reset input, and the OUT pin low during reset.
Step 1: Select the LTC6995 Version and POL Bit Setting For active-high reset select the LTC6995-1. For OUT Iow during reset choose POL bit $=0$.

Step 2: Select the $\mathrm{N}_{\text {DIV }}$ Frequency Divider Value

Choose an $N_{\text {DIV }}$ value that meets the requirements of Equation (1), using tout $=1000 \mathrm{~ms}$:

$$
61.04 \leq \mathrm{N}_{\text {DIV }} \leq 976.6
$$

Potential settings for $N_{\text {DIV }}$ include 64 and 512. NDIV $=64$ is the best choice, as it minimizes supply current by using a large $\mathrm{R}_{\text {SET }}$ resistor. $\mathrm{POL}=0$ and $\mathrm{N}_{\text {DIV }}=64$ requires DIVCODE = 2. Using Table 1, choose R1 $=976 \mathrm{k}$ and R2 $=182 \mathrm{k}$ values to program DIVCODE $=2$.

Step 3: Select Ret

Calculate the correct value for $\mathrm{R}_{\text {SET }}$ using Equation (2).

$$
\mathrm{R}_{\mathrm{SET}}=\frac{50 \mathrm{k}}{1.024 \mathrm{~ms}} \cdot \frac{1000 \mathrm{~ms}}{64}=763 \mathrm{k}
$$

Since 763 k is not available as a standard 1% resistor, substitute 768 k if a -0.7% frequency shift is acceptable. Otherwise, select a parallel or series pair of resistors such as $576 \mathrm{k}+187 \mathrm{k}$ to attain a more precise resistance.

The completed design is shown in Figure 11.

Figure 11. 1Hz Oscillator

LTC6995-1/LTC6995-2

APPLICATIONS INFORMATION

Power-On Reset (POR) Function

When power is applied to the LTC6995 the output is held low for Startart , then takes on the value of the POL bit as the clock cycle begins. If POL $=0$ (DIVCODE < 8) the output will remain low for a programmable interval of tSTART + $1 / 2 \mathrm{t}_{\text {OUT }}$, assuming the RST pin is inactive. This makes the LTC6995 useful as a programmable long-time power-on reset (POR), with the low output used to hold a system in reset for a fixed period after power is applied. Timing begins when the V^{+}supply exceeds approximately 1.4 V .
To preventadditional outputtransitions afterthe initial POR time, the oscillator can be disabled by removing the SET pin current. This prevents the internal master oscillator output from clocking the frequency dividers or output, while keeping it biased so it can resume operation quickly. The easiest way to implement this feature is to connect $\mathrm{R}_{\text {SET }}$ between the SET and OUT pins.

Figure 12 shows the basic power-on reset function. When the half cycle times out, the output goes high, eliminates the SET pin current, and stops additional OUT pin transitions. The output remains high until the device is reset by driving the RST input or power is cycled off then back on.

The POR interval is only one half of an oscillator period so component selection is slightly different. Table 2 provides the component values required for one half cycle time intervals. Timing starts after a short startup delay time following the application of the V^{+}supply.

tPOR = 1 SECOND FOR VALUES SHOWN
$\mathrm{POL}=0$
DIVCODE $=3$
NDIV = 512

Figure 12. Active Low Power-On Reset (1 Second Interval Example)

Table 2. Power-On Reset (POR). One Shot, One Half Cycle Delay Programming
Output Low During Time Interval, POL = 0

DIVCODE	$\mathrm{t}_{\text {DELAY }}$ TIME INTERVAL ($1 / 2 \mathrm{t}_{\text {OUT }}$)	R1 (k)	R2 (kS)	$\sim \mathbf{R}_{\text {SET }}(\mathrm{k} \Omega$)
0	$512 \mu \mathrm{~s}$ to 8.2 ms	Open	Short	$\mathrm{t}_{\text {DELAY(MS) }} \bullet 97.6$
1	4.1 ms to 65.5 ms	976	102	$\mathrm{t}_{\text {DELAY(MS) }}$ • 12.2
2	32.8 ms to 524.3 ms	976	182	$\mathrm{t}_{\text {DELAY(MS) }} \bullet 1.5$
3	262.1 ms to 4.2 sec	1000	280	$\mathrm{t}_{\text {DELAY }}(\mathrm{SEC}) \bullet 190.7$
4	2.1 sec to 33.6 sec	1000	392	$\mathrm{t}_{\text {DELAY }}(\mathrm{SEC}) \bullet 23.8$
5	16.8 sec to 4.5 min	1000	523	$\mathrm{t}_{\text {DELAY(MIN) }}$ • 178.6
6	2.2 min to 35.8 min	1000	681	$\mathrm{t}_{\text {DELAY(MIN) }}$ • 22.7
7	17.9 min to 4.8hrs	1000	887	$t_{\text {DELAY(HR) }}$ • 167.6

[^0]
LTC6995-1/LTC6995-2

APPLICATIONS InFORMATION

For shorter power-on reset times (1ms to 73ms) the timer startup delay becomes a significant part of the total POR time. To take this delay into account the value for $\mathrm{R}_{\text {SET }}$ can be modified from the values shown in Table 2. For a POR time in the range from 1 ms to 16 ms (DIVCODE $=0$), R RET should be $t_{P O R}(\mathrm{~ms}) \bullet 49.5$. For a POR time in the range from 4.5 ms to 73 ms (DIVCODE $=1$), $\mathrm{R}_{\text {SET }}$ is $\mathrm{t}_{\text {POR }}(\mathrm{ms}) \cdot$ 10.9. For longer POR times (DIVCODE 2 through 7) the startup time is insignificant. After power on, the delay following a reset condition will be in the same range as shown for $t_{\text {DELAY }}$ in Table 2 for these two DIVCODE selections.

For short POR times, a more precise estimation of the startup time can be found from the following:

$$
\begin{aligned}
& \mathrm{t}_{\text {START }}(\mu \mathrm{S})=(256+16 \cdot(12-\text { DIVCODE })) \frac{\mathrm{R}_{\text {SET }}(\mathrm{k} \Omega)}{50} \\
& +80
\end{aligned}
$$

Supply bounce resets the internal timer so the POR circuit automatically debounces supply noise. POR timing starts fromthe time thatthe V^{+}supply has reached approximately 1.4 volts.

Long Timer One Shots and Delay Generators

The POR circuit of Figure 12 is also useful when the reset inputs are driven. This creates edge triggered timing events that are active low and can either be re-triggered or can stop after one programmed interval. The programmed time interval can range from only 500μ s to over 4 hours with just resistor value changes.

The circuits in Figure 13 show how a POR or active low interval can be re-started to provide a full system reset time. The Figure 14 circuit requires an indication from the system being reset that it is ready before timing out. The LTC6995-2 can accommodate an active high OK signal.

By forcing a reset condition at power on the LTC6995 can be used to create a long time delayed rising edge triggered by either a falling edge signal (LTC6995-1) or a rising edge signal (LTC6995-2) as show in Figure 15.

Figure 13. System Resets On Command with Full POR Time Interval. Reset Pulse Is Debounced Automatically

APPLICATIONS INFORMATION

Figure 14. Extended POR. Timer Reset During Initial POR Interval. Full POR Interval Provided Once System Signals the OK

Figure 15. Long Time Delayed Rising Edge. Delay Time Can Range from 500 H to 4.8 Hours

LTC6995-1/LTC6995-2

APPLICATIONS INFORMATION

Watchdog Timers

Using the same circuits as shown in Figure 15 with periodic pulsing of the reset input can create an effective watchdog timer. A watchdog pulse is required from a system within each timing interval. The watchdog timeout interval can be programmed from $500 \mu \mathrm{~s}$ to 4.8 hours. If a pulse is missed the output goes high to indicate that the system software may be caught in an infinite loop. This high level can be used to initiate software diagnostic or restart procedures. The LTC6995 internal clock stops and the output remains high until the software recovers and
returns to issuing watchdog pulses. Figure 16 shows the timing for this application.
Watchdog timers are used to detect if a system operating software is diverted from the designed program sequence for any reason. It is always a possibility that the software could get stuck in a way that keeps the watchdog pulse in the state that holds the timer in the reset so it can never time out. In this condition the watchdog timer is ineffective and will never force corrective action. To help to prevent this a second one shot can be used to reset the watchdog timer as shown in Figure 17.

Figure 16. Watchdog Timer. Same Circuits as Shown in Figure 15

Figure 17. Extra-Reliable Watchdog Timer. Allows Timeout if System Watchdog Pulse Gets Stuck in the Timer Reset State. Both Timer Devices Can Share the Same DIVCODE Setting

APPLICATIONS INFORMATION

Gated Oscillators

The reset input (RST) clears all internal dividers so that, when released, the output will start clocking with a full programmed period. This edge can be used to gate the output ON and OFF at a known starting point for the clock. Circuits which count clock cycles for further timing purposes will always have an accurate count of full cycles until reset. The output clock is always at 50% duty cycle and the period of each cycle can range from 1 ms to 9.5 hours. Depending on the polarity bit selection the output clock can start high or low as shown in Figure 18.

Self-Resetting Circuits

The RSTpin has hysteresisto accommodate slow-changing inputvoltages. Furthermore, the trip points are proportional to the supply voltage (see Note 6 and the RST Threshold Voltage vs Supply Voltage curve in Typical Performance Characteristics). This allows an RC time constant at the RST input to generate a delay that is nearly independent of the supply voltage.

A simple application of this technique allows the LTC6995 output to reset itself, producing a well-controlled pulse once each cycle. Figures 19a and 19b show circuits that produce approximately 1μ s pulses once a minute. The only difference is the version of LTC6995 used and the POL bit setting, which controls whether the pulse is positive or negative.

Voltage Controlled Frequency

With one additional resistor, the LTC6995 output frequency can be manipulated by an external voltage. As shown in Figure 20, voltage $\mathrm{V}_{\text {CTRL }}$ sources/sinks a current through $R_{V C O}$ to vary the $I_{\text {SET }}$ current, which in turn modulates the output frequency as described in Equation (3).

$$
\begin{equation*}
f_{\text {OUT }}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k} \Omega}{1024 \bullet \mathrm{~N}_{\mathrm{DIV}} \cdot \mathrm{R}_{\mathrm{VCO}}} \cdot\left(1+\frac{\mathrm{R}_{\mathrm{VCO}}}{\mathrm{R}_{\mathrm{SET}}}-\frac{\mathrm{V}_{\mathrm{CTRL}}}{\mathrm{~V}_{\mathrm{SET}}}\right) \tag{3}
\end{equation*}
$$

Figure 18. Gated Oscillators. First One-Half Cycle Time Always Accurate

LTC6995-1/LTC6995-2

APPLICATIONS InFORMATION

$t_{\text {PULSE }}=-R_{P W} \cdot C_{P W} \cdot \ln \left(1-\frac{\mathrm{V}_{\mathrm{RST}(\mathrm{RISING})}}{\mathrm{V}^{+}}\right)$
$t_{\text {PULSE }} \approx-2.26 \mathrm{k} \Omega \cdot 470 \mathrm{pF} \cdot \ln (1-0.61)$
tpulse $\approx 1 \mu \mathrm{~S}$

Figure 19a. Self-Resetting Circuit (DIVCODE =5)

Figure 19b. Self-Resetting Circuit (DIVCODE = 10)

Figure 20. Voltage-Controlled Oscillator

Digital Frequency Control

The control voltage can be generated by a DAC (digital-to-analog converter), resulting in a digitally-controlled frequency. Many DACs allow for the use of an external reference. If such a DAC is used to provide the $V_{\text {CTRL }}$ voltage, the $\mathrm{V}_{\text {SET }}$ dependency can be eliminated by buffering $V_{\text {SET }}$ and using it as the DAC's reference voltage, as shown in Figure 21. The DAC's output voltage now tracks any $\mathrm{V}_{\text {SET }}$ variation and eliminates it as an error source. The SET pin cannot be tied directly to the reference input of the DAC because the current drawn by the DAC's REF input would affect the frequency.

$I_{\text {Set }}$ Extremes (Master Oscillator Frequency Extremes)

When operating with $I_{\text {SET }}$ outside of the recommended $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$ range, the master oscillator operates outside of the 62.5 kHz to 1 MHz range in which it is most accurate.

The oscillator can still function with reduced accuracy for $I_{\text {SET }}<1.25 \mu \mathrm{~A}$. At approximately 500 nA , the oscillator output will be frozen in its current state. The output could halt in a high or low state. This avoids introducing short pulses when frequency modulating a very low frequency output.

At the other extreme, it is not recommended to operate the master oscillator beyond 2MHz because the accuracy of the DIV pin ADC will suffer.

APPLICATIONS INFORMATION

Figure 21. Digitally-Controlled Oscillator

Frequency Modulation and Settling Time

The LTC6995 will respond to changes in I IET up to a - 3dB bandwidth of $0.4 \bullet \mathrm{f}_{\text {OUT }}$.
Following a $2 \times$ or $0.5 \times$ step change in $I_{\text {SET }}$, the output frequency takes less than one cycle to settle to within 1% of the final value.

Power Supply Current

The power supply current varies with frequency, supply voltage and output loading. It can be estimated under any condition using the following equation. This equation ignores $\mathrm{C}_{\text {LOAD }}$ (valid for $\mathrm{C}_{\text {LOAD }}<1 \mathrm{nF}$) and assumes the output has 50% duty cycle.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}(\mathrm{TYP})} \approx & \mathrm{V}^{+} \cdot \mathrm{f}_{\mathrm{MASTER}} \cdot 7.8 \mathrm{pF}+\frac{\mathrm{V}^{+}}{420 \mathrm{k} \Omega}+\frac{\mathrm{V}^{+}}{2 \cdot \mathrm{R}_{\mathrm{LOAD}}} \\
& +1.8 \cdot \mathrm{I}_{\mathrm{SET}}+50 \mu \mathrm{~A}
\end{aligned}
$$

Supply Bypassing and PCB Layout Guidelines

The LTC6995 is a 2.2% accurate silicon oscillator when used in the appropriate manner. The part is simple to use
and by following a few rules, the expected performance is easily achieved. Adequate supply bypassing and proper PCB layout are important to ensure this.
Figure 22 shows example PCB layouts for boththeTSOT-23 and DFN packages using 0603 sized passive components. The layouts assume a two layer board with a ground plane layer beneath and around the LTC6995. These layouts are a guide and need not be followed exactly.

1. Connect the bypass capacitor, C 1 , directly to the V^{+}and GND pins using a low inductance path. The connection from C 1 to the V^{+}pin is easily done directly on the top layer. For the DFN package, C1's connection to GND is also simply done on the top layer. For the TSOT-23, OUT can be routed through the C1 pads to allow a good C1 GND connection. If the PCB design rules do not allow that, C1's GND connection can be accomplished through multiple vias to the ground plane. Multiple vias for both the GND pin connection to the ground plane and the C1 connection to the ground plane are recommended to minimize the inductance. Capacitor C1 should be a $0.1 \mu \mathrm{~F}$ ceramic capacitor.

LTC6995-1/LTC6995-2

APPLICATIONS INFORMATION

DFN PACKAGE

TSOT-23 PACKAGE

Figure 22. Supply Bypassing and PCB Layout
2. Place all passive components on the top side of the board. This minimizes trace inductance.
3. Place $R_{\text {SET }}$ as close as possible to the SET pin and make a direct, short connection. The SET pin is a current summing node and currents injected into this pin directly modulate the operating frequency. Having a short connection minimizes the exposure to signal pickup.
4. Connect $\mathrm{R}_{\text {SET }}$ directly to the GND pin. Using a long path or vias to the ground plane will not have a significant affect on accuracy, but a direct, short connection is recommended and easy to apply.
5. Use a ground trace to shield the SET pin. This provides another layer of protection from radiated signals.
6. Place R1 and R2 close to the DIV pin. A direct, short connection to the DIV pin minimizes the external signal coupling.

TYPICAL APPLICATIONS

Timed Power Switches, Auto Shutoff After One Hour

5 Second On/Off Timed Relay Driver

LTC6995-1/LTC6995-2

TYPICAL APPLICATIONS

Cycling (10 Seconds On/Off) Symmetrical Power Supplies

Isolated AC Load Flasher

TYPICAL APPLICATIONS

Interval (Wiper) Timer

Adjustable Time Lapse Photography Intervalometer

LTC6995-1/LTC6995-2

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DCB Package
6-Lead Plastic DFN ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1715 Rev A)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
BOTTOM VIEW-EXPOSED PAD

[^1]
REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$09 / 13$	Grammatical corrections	$1,4,8,16$
		Correction to Master Oscillator, Block Diagram	8
		Divcode changed from 4 to 5, Figure 19a	20
		Divcode changed from 11 to 10, Figure 19b	
	LTC6995 block identified as LTC6995-1, Figure 21 and Figure 22	20	
	Replace V^{+}with 5V, Sentry Time schematic	21,22	

LTC6995-1/LTC6995-2

TYPICAL APPLICATION

Sentry Timer

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1799	1MHz to 33MHz ThinSOT Silicon Oscillator	Wide Frequency Range
LTC6900	1MHz to 20MHz ThinSOT Silicon Oscillator	Low Power, Wide Frequency Range
LTC6906/LTC6907	10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillators	Micropower, IsuPPLY = 35 $\mu \mathrm{A}$ at 400kHz
LTC6930	Fixed Frequency Oscillator, 32.768kHz to 8.192MHz	0.09% Accuracy, 110 $\mu \mathrm{s}$ Start-Up Time, 105 $\mu \mathrm{A}$ at 32kHz
LTC6990	TimerBlox: Voltage-Controlled Silicon Oscillator	Fixed-Frequency or Voltage-Controlled Operation
LTC6991	TimerBlox: Very Low Frequency Oscillator with Reset	Cycle Time from 1ms to 9.5 Hours, No Capacitors, 2.2\% Accurate
LTC6992	TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM)	Simple PWM with Wide Frequency Range
LTC6993	TimerBlox: Monostable Pulse Generator (One Shot)	Resistor Programmable Pulse Width of 1 $1 \mu \mathrm{~s}$ to 34sec
LTC6994	TimerBlox: Delay Block/Debouncer	Delays Rising, Falling or Both Edges 1 $1 \mu \mathrm{~s}$ to 34sec

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

[^0]: Note: Power-On Reset Time $=\mathrm{t}_{\text {DELAY }}+\mathrm{t}_{\text {START }}$

[^1]: NOTE:

 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (TBD)
 2. DRAWING NOT TO SCALE
 3. ALL DIMENSIONS ARE IN MILLIMETERS
 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED
 5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE
