MJE2955T (PNP) MJE3055T (NPN)

Complementary Silicon Plastic Power Transistors

These devices are designed for use in general-purpose amplifier and switching applications.

Features

- DC Current Gain Specified to 10 A
- High Current Gain Bandwidth Product -

 $f_T = 2.0 \text{ MHz (Min)} @ I_C$ = 500 mAdc

• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	60	Vdc
Collector-Base Voltage	V _{CB}	70	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current	Ic	10	Adc
Base Current	I _B	6.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D (Note 1)	75 0.6	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

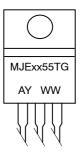
THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	θ_{JC}	1.67	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Safe Area Curves are indicated by Figure 1. Both limits are applicable and must be observed.

ON Semiconductor®


http://onsemi.com

10 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 60 VOLTS – 75 WATTS

TO-220AB CASE 221A-09 STYLE 1

MARKING DIAGRAM

MJExx55T = Device Code

xx = 29 or 30G = Pb-Free Package

A = Assembly Location
Y = Year
WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJE2955T (PNP) MJE3055T (NPN)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	<u> </u>			
Collector–Emitter Sustaining Voltage (Note 2) $(I_C = 200 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	60	_	Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, I _B = 0)	I _{CEO}	-	700	μAdc
Collector Cutoff Current (V_{CE} = 70 Vdc, $V_{EB(off)}$ = 1.5 Vdc) (V_{CE} = 70 Vdc, $V_{EB(off)}$ = 1.5 Vdc, T_{C} = 150°C)	I _{CEX}	_ _	1.0 5.0	mAdc
Collector Cutoff Current $(V_{CB} = 70 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 70 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C})$	Ісво	- -	1.0 10	mAdc
Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	5.0	mAdc
ON CHARACTERISTICS				
DC Current Gain (Note 2) $ (I_C = 4.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}) $ $ (I_C = 10 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}) $	h _{FE}	20 5.0	100 -	-
Collector-Emitter Saturation Voltage (Note 2) (I _C = 4.0 Adc, I _B = 0.4 Adc) (I _C = 10 Adc, I _B = 3.3 Adc)	V _{CE(sat)}	_ _	1.1 8.0	Vdc
Base–Emitter On Voltage (Note 2) (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc)	V _{BE(on)}	-	1.8	Vdc
DYNAMIC CHARACTERISTICS		•	•	
Current–Gain–Bandwidth Product $(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 500 \text{ kHz})$	f _T	2.0	-	MHz

^{2.} Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 20%.

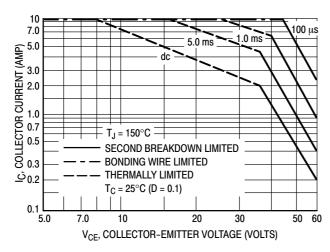
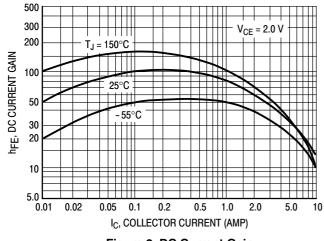
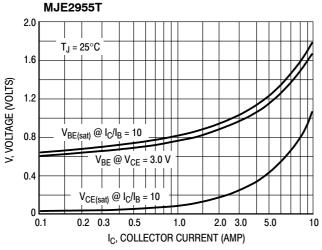



Figure 1. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J(pk)} = 150^{\circ}\text{C}$. T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}\text{C}$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. (See AN415A)


MJE2955T (PNP) MJE3055T (NPN)

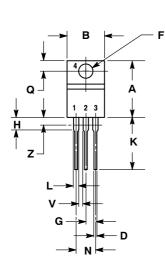
90 80 PD, POWER DISSIPATION (WATTS) 70 60 50 MJE3055T 40 MJE2955T 30 20 10 0 25 75 100 175 T_C, CASE TEMPERATURE (°C)

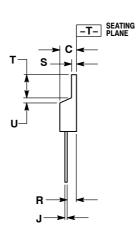
Figure 2. DC Current Gain

Figure 3. Power Derating



Figure 4. "On" Voltages


ORDERING INFORMATION


Device	Package	Shipping	
MJE2955T	TO-220		
MJE2955TG	TO-220 (Pb-Free)		
MJE3055T	TO-220	50 Units / Rail	
MJE3055TG	TO-220 (Pb-Free)		

MJE2955T (PNP) MJE3055T (NPN)

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 ISSUE AG

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.036	0.64	0.91
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
7	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
œ	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 1:

IN 1. BASE

- 2. COLLECTOR
- . EMITTER
- 4. COLLECTOR

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2173 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9