_General Description

The MAX4670 is an integrated T1/E1/J1 analog protection switch for 1+1 and N+1 line-card redundancy applications. It protects two T1/E1/J1 ports by combining eight SPDT switches in a single package. The switch is optimized for high-return loss and pulse-template performance in T1/E1/J1 long-haul and short-haul applications. The part offers built-in chip-side surge protection capability for short-haul intrabuilding applications.

The MAX4670 replaces two diode arrays or two transient voltage suppressors (TVSs) and four dual-SPDT relays, significantly reducing board space and simplifying PC board routing. The MAX4670 pinout is targeted for T1/E1/J1 applications, resulting in a simplified layout when interfacing with standard line transformers and line interface units (LIUs).

The MAX4670 has four 1.0Ω (max) on-resistance switches with 60pF/40pF on-/off-capacitances for interfacing to the LIU transmitter outputs. The MAX4670 also includes four 10Ω (max) on-resistance switches with low 24pF/12pF on-/off-capacitances for interfacing to the LIU receiver inputs. Four logic inputs control the receive/ transmit pairs, in addition to a SWITCH input that connects all switches to the system's protection bus.

The MAX4670 operates from a single +2.7V to +3.6V supply and is available in 32-pin thermally enhanced TQFN package. The MAX4670 is specified over the -40°C to +85°C operating temperature range.

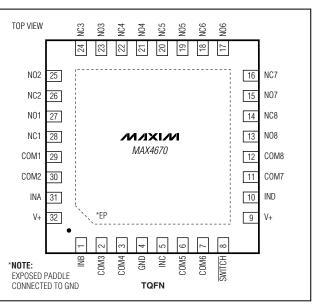
Applications

Optical Multiplexers (ADMs, M13s, etc.)

- Edge Routers
- Multiservice Switches
- Base Station Controllers (Wireless Infrastructure Equipment)
- Media Gateways (VoIP)

Functional Diagram/Truth Table appears at end of data sheet.

Features


- Single +3.3V Supply Voltage
- Quad-DPDT/Octal-SPDT Switches Support Two T1/E1/J1 Ports
- Low R_{ON}
- 0.7Ω (typ) in Transmit Path; 5Ω (typ) in Receive Path
- Low C_{ON}/C_{OFF}
 60pF/40pF (typ) in Transmit Path
 24pF/12pF (typ) in Receive Path
- Chip Surge Protection IEC 61000-4-5 (8µs to 20µs Surge) Class 2 (±1kV)
- -70dB (typ) Crosstalk/Off-Isolation (3MHz)
- Small, 32-Pin TQFN Package

_Ordering Information

PART*	PIN-	SURGE	PKG
	PACKAGE	PROTECTION	CODE
MAX4670ETJ	32 TQFN (5mm x 5mm)	YES	T3255-4

*This part operates at a -40°C to +85°C temperature range.

Pin Configuration

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

() in venagee referenced to artel)	
V+, IN_, <u>SWITCH</u>	0.3V to +4V
COM_, NO_, NC_ (Note 1)	0.3V to (V+ + 0.3V)
Continuous Current	
NO_, NC_, COM_ (Tx interface)	±150mA
NO_, NC_, COM_ (Rx interface)	±100mA
Peak Currents	
NO_, NC_, COM_ (Tx interface)	
(pulsed at 1ms, 10% duty cycle)	±300mA
NO_, NC_, COM_ (Rx interface)	
(pulsed at 1ms, 10% duty cycle)	±200mA

Peak Surge Currents	
Poised at 8µs21.4A	
Poised at 20µs11.9A	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
32-Pin TQFN (derate 21.3mW/°C above +70°C)1702mW	
38-Pin TSSOP (derate 13.7mW/°C above +70°C)1096mW	
Operating Temperature Range40°C to +85°C	
Storage Temperature Range65°C to +150°C	
Junction Temperature+150°C	
Lead Temperature (soldering, 10s)+300°C	

Note 1: Signals on NO_, NC_, COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V+ = +2.7V to +3.6V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIO	ONS	MIN	ТҮР	MAX	UNITS
Rx INTERFACE							
On-Resistance	R _{ON}	$V + = 3V, I_{COM} = 10mA,$	$T_A = +25^{\circ}C$		5	9	Ω
On-mesistance	NON	V_{NO} or V_{NC} = 1.5V	$T_A = T_{MIN}$ to T_{MAX}			10	52
On-Resistance Match Between	ΔRon	$V + = 3V, I_{COM} = 10mA,$	$T_A = +25^{\circ}C$			1.0	Ω
Channels (Note 4)	ANON	V_{NO} or V_{NC} = 1.5V	$T_A = T_{MIN}$ to T_{MAX}			1.3	52
On-Resistance Flatness (Note 4)		$V_{+} = 3V; I_{COM} = 10mA;$	$T_A = +25^{\circ}C$		2.0	3.0	Ω
On-nesistance Flathess (Note 4)	RFLAT(ON)	V _{NO} _or V _{NC} _ = 1.0V, 1.5V, 2.0V	$T_A = T_{MIN}$ to T_{MAX}			3.4	52
NO_ or NC_ Off-Leakage	INO(OFF)	$V + = 3.6V; V_{COM} = 0.3V, 3$	3.3V;	-1		+1	μA
Current	INC (OFF)	V_{NO} or V_{NC} = 3.3V, 0.3V		- 1		ΤI	μΛ
COM_ On-Leakage Current	ICOM(ON)	$V_{+} = 3.6V; V_{COM} = 0.3V, V_{NO} \text{ or } V_{NC} = 3.3V, 0.3V$		-1		+1	μA
Tx INTERFACE							
	D	$V + = 3V, I_{COM} = 100 mA,$	$T_A = +25^{\circ}C$		0.7	0.9	0
On-Resistance (Note 5)	RON	V_{NO} or V_{NC} = 1.5V	$T_A = T_{MIN}$ to T_{MAX}			1.0	Ω
On-Resistance Match Between	ADest	$V + = 3V, I_{COM} = 100 mA,$	$T_A = +25^{\circ}C$		0.03	0.150	0
Channels (Notes 3, 5)	ΔR_{ON}	V_{NO} or V_{NC} = 1.5V	$T_A = T_{MIN}$ to T_{MAX}			0.175	Ω
On-Resistance Flatness		V+ = 3V; I _{COM} _ = 100mA;	$T_A = +25^{\circ}C$		0.1	0.18	Ω
(Notes 5, 6)	Rflat(on)	V _{NO} _ or V _{NC} _ = 1.0V, 1.5V, 2.0V	$T_A = T_{MIN}$ to T_{MAX}			0.2	52

ELECTRICAL CHARACTERISTICS (continued)

 $(V + = +2.7V \text{ to } +3.6V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}. Typical values are at T_A = +25°C, unless otherwise noted.) (Notes 2, 3)$

PARAMETER	SYMBOL	CONI	DITIONS	MIN	ТҮР	MAX	UNITS
NO_ or NC_ Off-Leakage Current	I _{NO(OFF),} I _{NC(OFF)}	$V_{+} = 3.6V; V_{COM} = 0.000$ V_{NO} or $V_{NC} = 0.3V, 0000$		-1		+1	μA
COM_ On-Leakage Current	ICOM(ON)	$V_{+} = 3.6V; V_{COM} = 0.000$ V_{NO} or $V_{NC} = 0.3V$,		-1		+1	μA
DYNAMIC CHARACTERISTICS	;			-			-
Turn-On Time	ton	V_{NO} or V_{NC} = 1.5V, R _L = 50 Ω , C _L = 35pF,	T _A = +25°C			400	ns
	-011	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			750	110
Turn-Off Time	toff	$V_{NO} \text{ or } V_{NC} = 1.5V,$ $R_{I} = 50\Omega,$	$T_A = +25^{\circ}C$			200	ns
	UFF	$C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			750	115
Break-Before-Make Delay	t _D	$R_{L} = 50\Omega, C_{L} = 35pF,$	Figure 3		80		ns
Charge Injection	Q	V _{GEN} = 1.5V, R _{GEN} =	Rx interface		8		рС
	Ğ	0Ω , $C_L = 1$ nF, Figure 4	Tx interface		20		po
On-Channel	BW		Rx interface		300		MHz
3dB Bandwidth	BW		Tx interface		300		
	VISO1		$\label{eq:RL} \begin{split} R_L &= 50\Omega \text{, } C_L = 35 pF \text{,} \\ f &< 3MHz \end{split}$		-65		
0((1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	V _{ISO2}	Rx interface	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ C_L = 35pF,\\ 3MHz &< f < 30MHz \end{split}$		-58		
Off-Isolation (Note 7)	VISO1	T · · · <i>(</i>	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ C_L = 35pF, \\ f &< 3MHz \end{split}$		-60		dB
	V _{ISO2}	Tx interface	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ C_L = 35pF,\\ 3MHz &< f < 30MHz \end{split}$		-40		
	V _{CT1}	Rx interface,	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ C_L = 35pF, \\ f &< 3MHz \end{split}$		-65		
	V _{CT2}	Figure 5	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ C_L = 35pF,\\ 3MHz &< f < 30MHz \end{split}$		-50		
Crosstalk (Note 8)	V _{CT1}	Tx interface,	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ C_L = 35pF, \\ f &< 3MHz \end{split}$		-78		dB
	V _{CT2}	Figure 5	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ C_L = 35pF, \\ 3MHz &< f < 30MHz \end{split}$		-30		
NC or NO Off Coppositors	COFFRX	Rx interface f = 1MHz	, Figure 6		12		
NC_ or NO_ Off-Capacitance	COFFTX	Tx interface f = 1MHz	, Figure 6		40		рF
COM On Conceitance	CCOM(ON)TX		Rx interface		24		pF
COM_ On-Capacitance	CCOM(ON)RX	f = 1MHz	Tx interface		60		pi.

ELECTRICAL CHARACTERISTICS (continued)

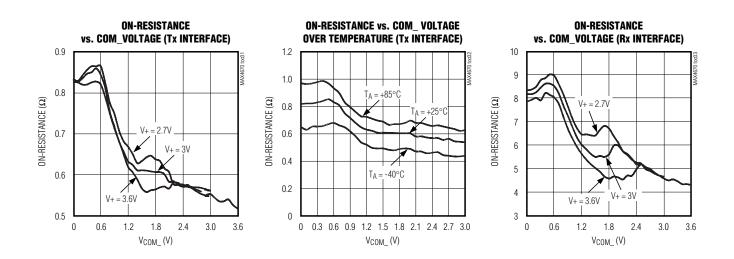
 $(V + = +2.7V \text{ to } +3.6V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.} Typical values are at T_A = +25°C, unless otherwise noted.) (Notes 2, 3)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DIGITAL I/O (IN_, SWITCH)						
Input-Low Voltage	VIL	V+ = 2.7V			0.5	V
Input-High Voltage	VIH	V + = 3.6V	1.4			V
Input Leakage Current	١L	$V_{IN} = 0 \text{ or } V+, V_{\overline{SWITCH}} = 0 \text{ or } V+$	-1		+1	μA
SUPPLY						
Operating Voltage Range	V+		2.7		3.6	V
Supply Current	l+	V + = 3.6V, V_{IN} = $V_{\overline{SWITCH}}$ = 0 or V+			10	μΑ

Note 2: The algebraic convention is used in this data sheet. The most negative value is shown in the minimum column.

Note 3: Devices are 100% tested at hot and room and guaranteed by design at cold.

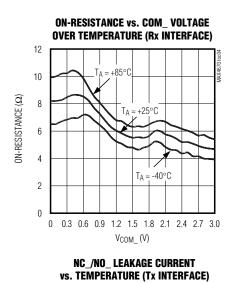
Note 4: $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$.

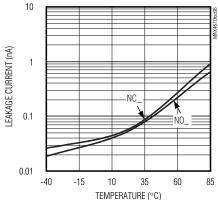

Note 5: Guaranteed by design.

Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

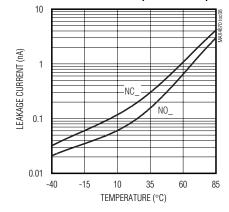
Note 7: Off-isolation = $20\log_{10} [V_{COM_{-}} / (V_{NO_{-}} \text{ or } V_{NC_{-}})], V_{COM_{-}} = \text{output}, V_{NO_{-}} \text{ or } V_{NC_{-}} = \text{input to off switch}.$

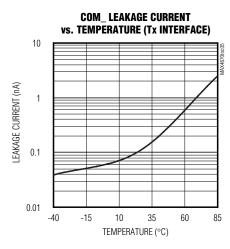
Note 8: Crosstalk between any two switches.

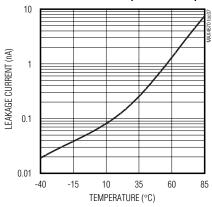

 $(V + = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$



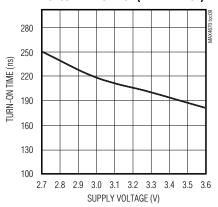
Typical Operating Characteristics

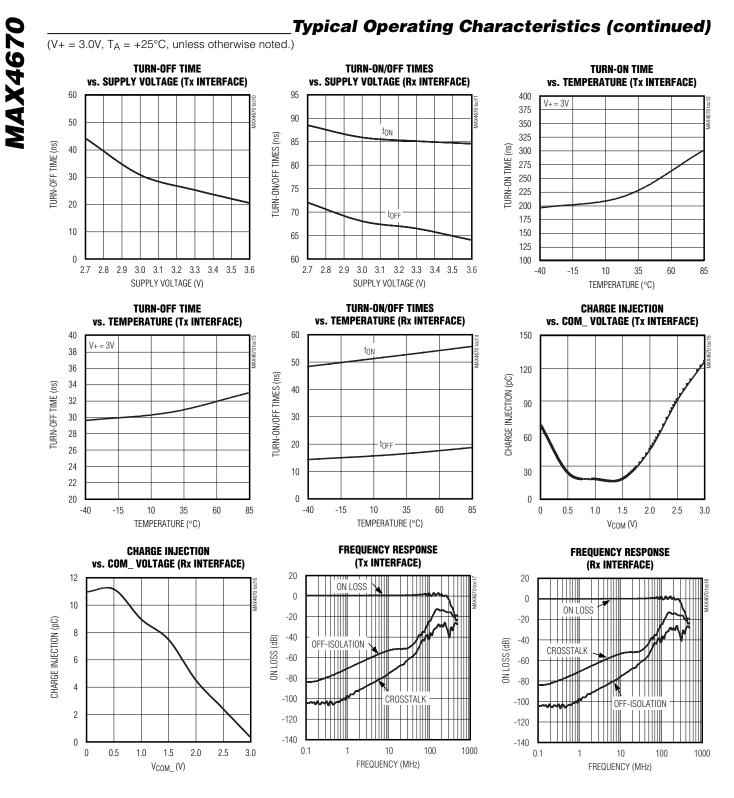

Typical Operating Characteristics (continued)


(V+ = 3.0V, T_A = $+25^{\circ}C$, unless otherwise noted.)



NC_/NO_ LEAKAGE CURRENT vs. temperature (rx interface)





COM_ LEAKAGE CURRENT vs. temperature (rx interface)

TURN-ON TIME vs. supply voltage (tx interface)

_

6

_Pin Description

PIN	NAME	FUNCTION
	N.C.	No Connection. Not internally connected.
1	INB	Transmitter 1 Logic Control. Drive INB high to connect NC3 and NC4. INB logic is ignored when SWITCH asserts low.
2	COM3	Common Terminal 3. Transmitter 1 positive differential terminal. Connect COM3 to the transmit interface transformer.
3	COM4	Common Terminal 4. Transmitter 1 negative differential terminal. Connect COM4 to the transmit interface transformer.
4	GND	Ground
5	INC	Transmitter 2 Logic Control. Drive INC high to connect NC5 and NC6. INC logic is ignored when SWITCH asserts low.
6	COM5	Common Terminal 5. Transmitter 2 positive differential terminal. Connect COM5 to the transmit interface transformer.
7	COM6	Common Terminal 6. Transmitter 2 negative differential terminal. Connect COM6 to the transmit interface transformer.
8	SWITCH	Protection Switch Control. Assert SWITCH low to connect all switches to protection bus. When SWITCH asserts low, SWITCH overrides all IN_ inputs. Assert SWITCH high to enable all switches and let the respective IN control the switches.
9, 32	V+	Positive Supply Voltage. Bypass V+ to ground with a 0.1µF ceramic capacitor.
10	IND	Receiver 2 Logic Control. Drive IND high to connect NC7 and NC8. IND logic is ignored when SWITCH asserts low.
11	COM7	Common Terminal 7. Receiver 2 positive differential terminal. Connect COM7 to the receive interface transformer.
12	COM8	Common Terminal 8. Receiver 2 negative differential terminal. Connect COM8 to the receive interface transformer.
13	NO8	Normally Open Terminal 8. Receiver 2 differential protection terminal. Connect NO8 to the protection bus.
14	NC8	Normally Closed Terminal 8. Receiver 2 differential terminal. Connect NC8 to LIU receiver.
15	NO7	Normally Open Terminal 7. Receiver 2 differential protection terminal. Connect NO7 to the protection bus.
16	NC7	Normally Closed Terminal 7. Receiver 2 differential terminal. Connect NC7 to LIU receiver.
17	NO6	Normally Open Terminal 6. Transmitter 2 differential protection terminal. Connect NO6 to the protection bus.
18	NC6	Normally Closed Terminal 6. Transmitter 2 differential terminal. Connect NC6 to LIU receiver.
19	NO5	Normally Open Terminal 5. Transmitter 2 differential protection terminal. Connect NO5 to the protection bus.
20	NC5	Normally Closed Terminal 5. Transmitter 2 differential terminal. Connect NC5 to LIU receiver.
21	NO4	Normally Open Terminal 4. Transmitter 1 differential protection terminal. Connect NO4 to the protection bus.

Pin Description (continued)

PIN	NAME	FUNCTION
22	NC4	Normally Closed Terminal 4. Transmitter 1 differential terminal. Connect NC4 to LIU receiver.
23	NO3	Normally Open Terminal 3. Transmitter 1 differential protection terminal. Connect NO3 to the protection bus.
24	NC3	Normally Closed Terminal 3. Transmitter 1 differential terminal. Connect NC3 to LIU receiver.
25	NO2	Normally Open Terminal 2. Receiver 2 differential protection terminal. Connect NO2 to the protection bus.
26	NC2	Normally Closed Terminal 2. Receiver 1 differential terminal. Connect NC2 to LIU receiver.
27	NO1	Normally Open Terminal 1. Receiver 1 differential protection terminal. Connect NO1 to the protection bus.
28	NC1	Normally Closed Terminal 1. Receiver 1 differential terminal. Connect NC1 to LIU receiver.
29	COM1	Common Terminal 1. Receiver 1 positive differential terminal. Connect COM1 to the receive interface transformer.
30	COM2	Common Terminal 2. Receiver 1 negative differential terminal. Connect COM2 to the receive interface transformer.
31	INA	Receiver 1 Logic Control. Drive INA low to connect receiver 1 to the LIU. INA logic is ignored when SWITCH asserts low.
EP	EP	Exposed Paddle. Connect EP to GND or leave unconnected.

Detailed Description

The MAX4670 is a quad-DPDT/octal-SPDT analog switch optimized for T1/E1/J1 line-card redundancy protection applications. This analog switch is configurable as two differential transmitter and receiver pairs utilized in T1/E1/J1 redundancy architecture.

The MAX4670 has four low 0.7 Ω on-resistance switches with 60pF and 40pF on- and off-capacitances, respectively, for interfacing to the LIU transmitter inputs. The MAX4670 also includes four 5 Ω on-resistance switches with low 24pF and 12pF on- and off-capacitances, respectively, for interfacing to the LIU receiver inputs.

The MAX4670 replaces two diode arrays or two transient voltage suppressors and four dual-SPDT relays, significantly reducing board space and simplifying PC board routing. The MAX4670 pinouts are targeted for T1/E1/J1 applications, resulting in a simplified layout when interfacing with standard line transformers and LIUs. Figure 1 is the functional diagram.

Logic Inputs (IN_, SWITCH)

The MAX4670 four logic inputs (IN_) control the switches in pairs and contain a global logic input (SWITCH) that connects all COMs to their respective NO_ inputs. SWITCH overrides all IN_ inputs when asserted low, thus connecting all NO_ to COM_ outputs (transmitter/receiver pairs to the protection bus). When SWITCH asserts high, IN_ controls the switch pairs. See Table 1.

Surge Protection

The MAX4670 includes chip-side, surge-protection capability for short-haul intrabuilding applications. The lowcapacitance diodes suppress surge residuals from the primary, line-side protection devices. It is assumed that adequate primary protection is included on the line die of the transformer, as represented in Figures 7–10. Table 2 lists the applicable surge protection setups for E1 interfaces. The MAX4670 surge test was performed per IEC 61000-4-5 Class 2 specifications and passed at ±1kV with only an in-line transformer and primary surge suppressor. The transformer was a Halo TG83-1505NX transformer and the surge suppressor was a Teccor P0640SC.

Applications Information

Redundancy Architecture

Figures 7 through 10 illustrate the MAX4670 used in two different redundancy architectures. There is one backup card for up to N line cards in the system (in this example, N = 3). In the event one of the line cards fails (memory failure, power supply went down, etc.), a system supervisory card issues a command to the switches to reroute the traffic to and from the problem line card to the backup line card.

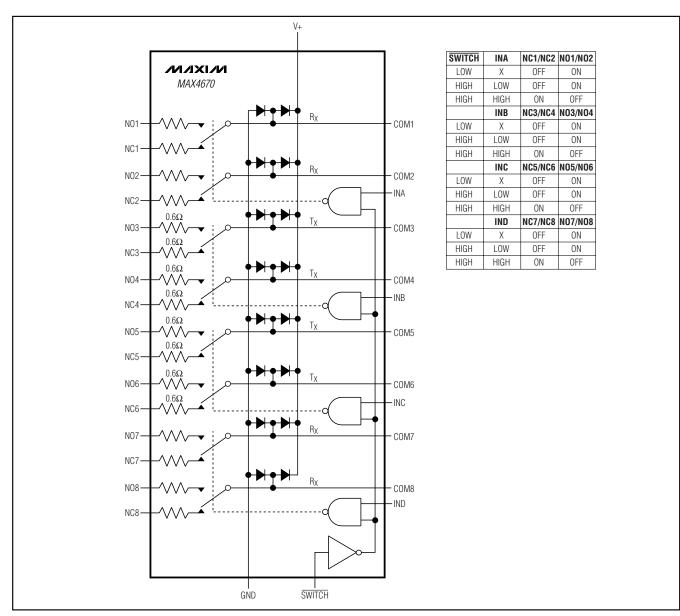


Figure 1. Functional Diagram

In a switching-card architecture, a common switching card contains all the protection switches for the T1/E1/J1 lines entering the system (see Figures 7 and 8).

With an adjacent card architecture, the switches protecting any given line card reside physically in the adjacent line card (see Figures 9 and 10).

Receive and transmit interfaces reside in the same board for each T1/E1/J1 port. The diagrams represent

the typical interface transformers and resistors recommended for Dallas/Maxim LIUs, such as the DS21Q55.

The protection switches are placed in the low-voltage side of the transformer to meet the isolation requirements. Note that there is also a TVS in the line side of the transformers. The receive and transmit resistors provide impedance matching to the T1/E1/J1 transmission cable characteristic impedance. Refer to Application Note 2857 for more information on T1/E1/J1 applications.

SWITCH	INA	NC1/NC2	NO1/NO2
LOW	Х	OFF	ON
HIGH	LOW	OFF	ON
HIGH	HIGH	ON	OFF
—	INB	NC3/NC4	NO3/NO4
LOW	Х	OFF	ON
HIGH	LOW	OFF	ON
HIGH	HIGH	ON	OFF
	INC	NC5/NC6	NO5/NC6
LOW	Х	OFF	ON
HIGH	LOW	OFF	ON
HIGH	HIGH	ON	OFF
—	IND	NC7/NC8	NO7/NO8
LOW	Х	OFF	ON
HIGH	LOW	OFF	ON
HIGH	HIGH	ON	OFF

Table 1. MAX4670 Truth Table

Table 2. IEC 61000-4-5 Test Conditions

TEST CONFIGURATION	TEST CONDITIONS
Differential Surge	500V peak, 12A min current,
(Line to Line)	8µs/20µs surge
Common-Mode Surge	1000V peak, 24A min current,
(Line to GND)	8µs/20µs surge

LIU Interface Recommendations

The MAX4670 low 0.7 Ω (typ) on-resistance is adequate, even in applications where the LIUs require no external series transmit resistors (Rt = 0 in Figures 8 and 10). However, in some instances, increase the LIU output amplitude to compensate for R_{ON} if the LIU supports programmable output amplitude. With LIUs requiring external transmit resistors, it is recommended to reduce Rt by the amount of the typical R_{ON} with LIUs requiring external transmit resistors.

For example, if the LIU vendor recommends $Rt = 9.1\Omega$, the actual value in the application should be:

$$Rt = Rt - R_{ON} = 9.1\Omega - 0.7 = 8.4\Omega$$

The receive interface series resistance is small enough to support LIUs with internal line termination, provided the external 120 Ω parallel resistor combination (Rr) is connected, as shown in Figures 7 and 9.

While in normal operation, the MAX4670 requires the input and output signals to be within the V+ and GND supply rails.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 11 shows the Human Body Model. Figure 12 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5k\Omega$ resistor.

IEC 1000-4-2

The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to ICs. The major difference between tests done using the Human Body Model and IEC 1000-4-2 is a higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD withstands voltage measured to IEC 61000-4-2, and is generally lower than that measured using the Human Body Model. Figure 13 shows the IEC 61000-4-2 model, and Figure 14 shows the current waveform for the \pm 8kV IEC, 61000-4-2 Level 4, ESD Contact Discharge test. The Air-Gap test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.

Machine Model

The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing.

Test Circuits/Timing Diagrams

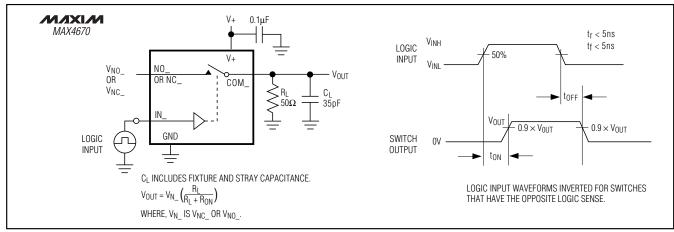


Figure 2. Switching Time

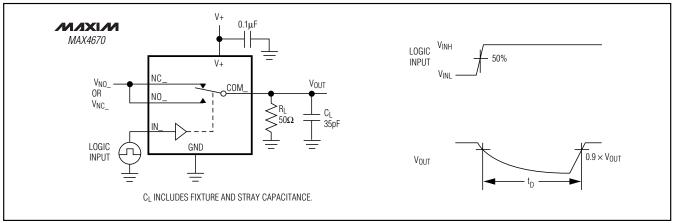


Figure 3. Break-Before-Make Intervals

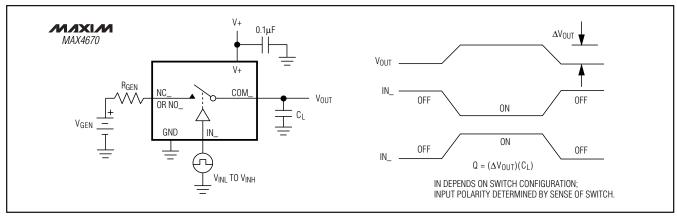


Figure 4. Charge Injection

MAX4670

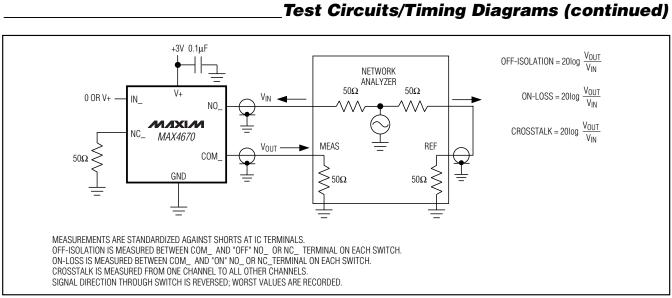


Figure 5. On-Loss, Off-Isolation, and Crosstalk

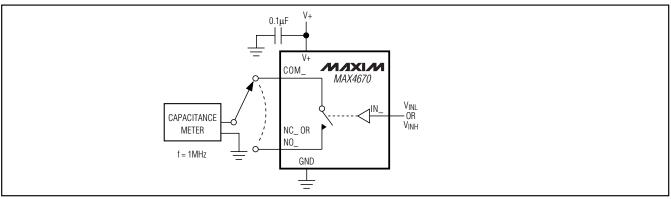


Figure 6. Channel Off-/On-Capacitance

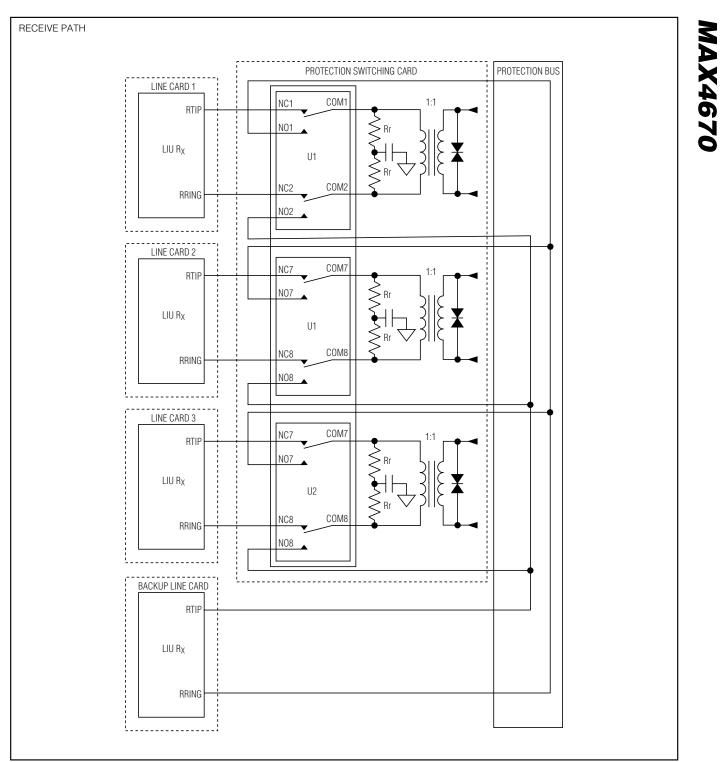


Figure 7. Switching-Card-Architecture Receive Path

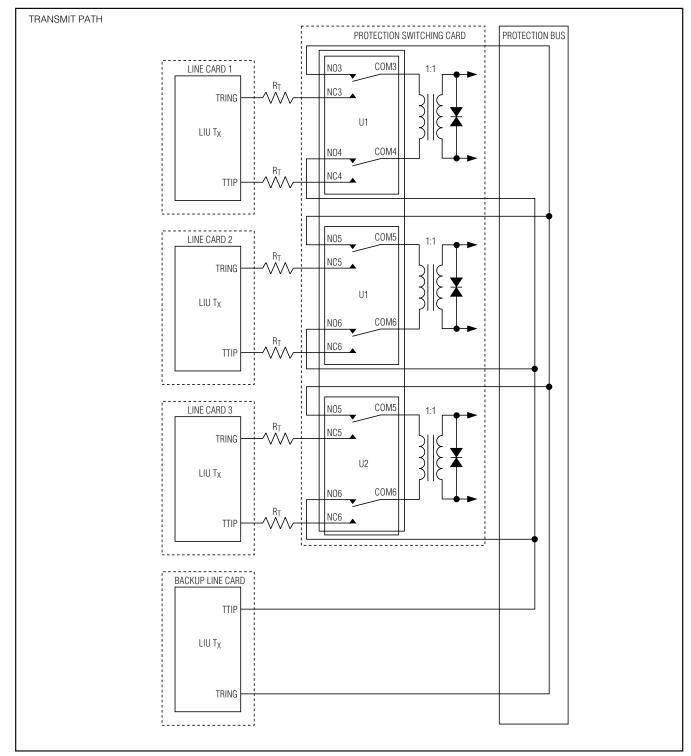


Figure 8. Switching-Card-Architecture Transmit Path

MAX4670

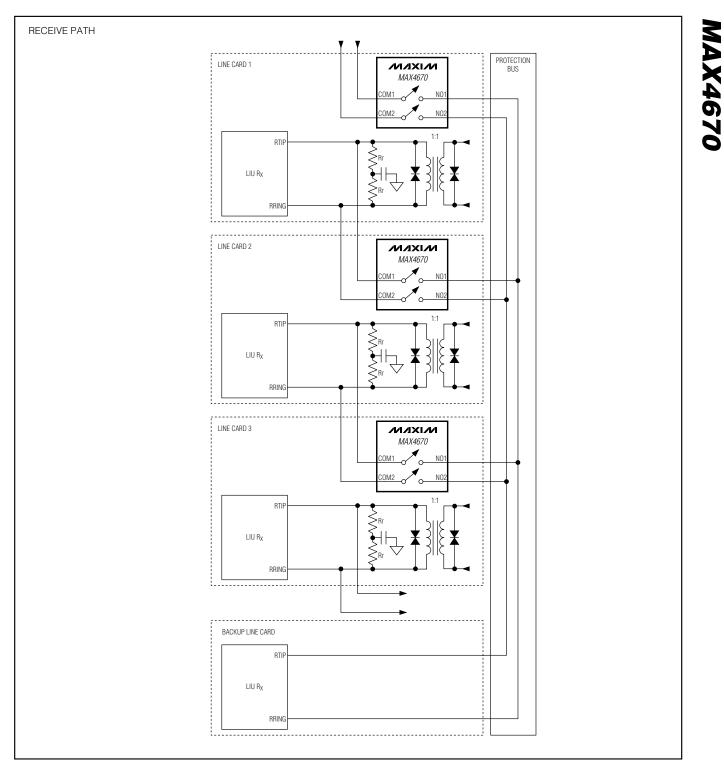


Figure 9. Adjacent-Card-Architecture Receive Path

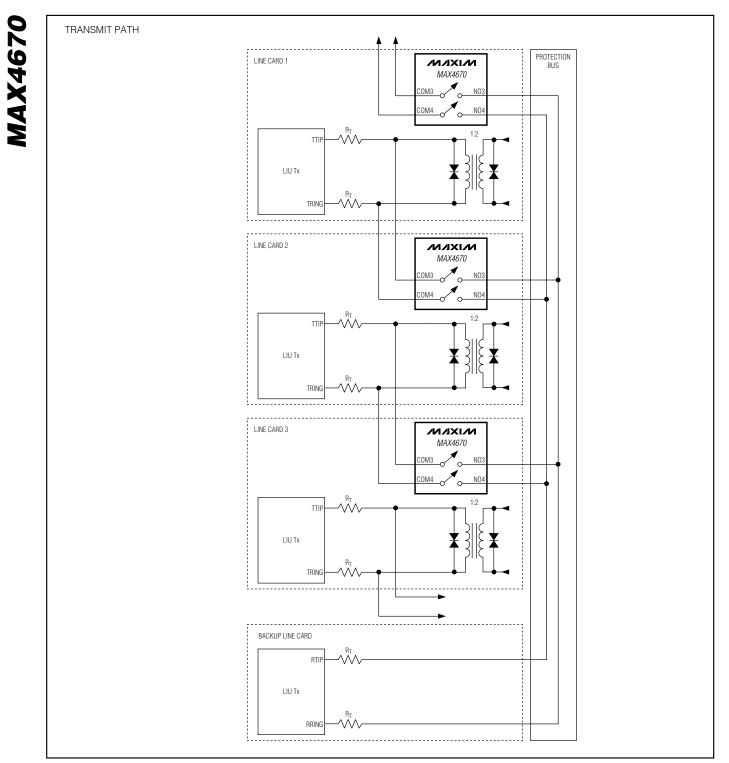


Figure 10. Adjacent-Card-Architecture Transmit Path

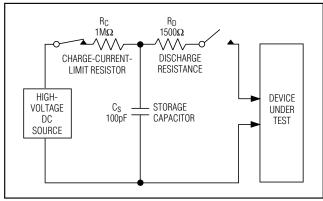


Figure 11. Human Body ESD Test Model

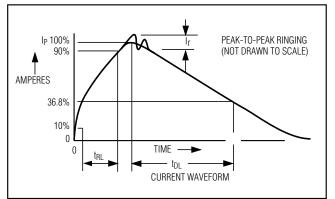


Figure 12. Human Body Model Current Waveform

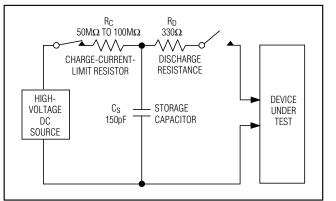


Figure 13. IEC 1000-4-2 ESD Test Model

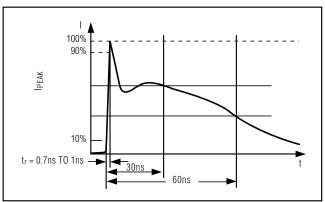
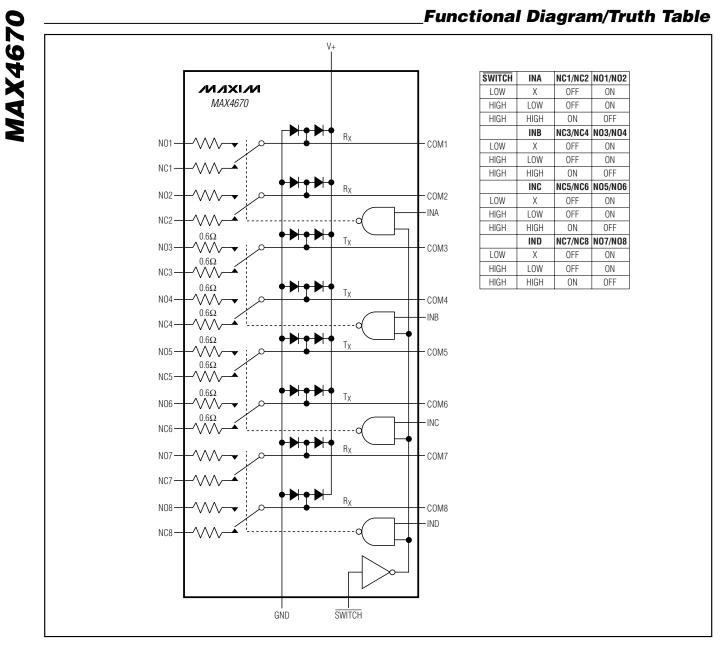
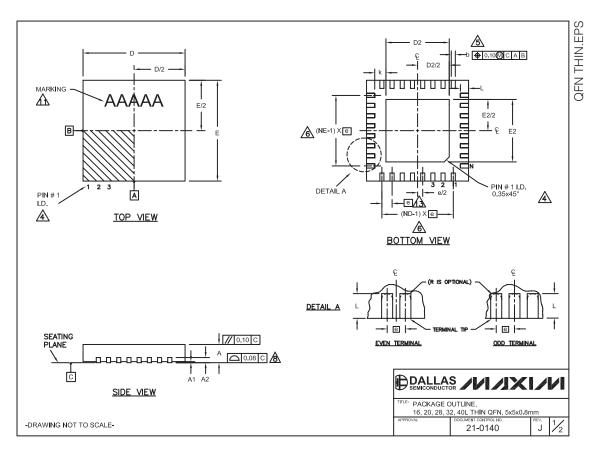



Figure 14. IED 1000-4-2 ESD Generator Current Waveform



Chip Information

PROCESS: CMOS

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

			сомм	on di	MENS	IONS								Γ		EXF	POSE	D PAD	VARI		١S		
PKG.	1	6L 5x5	2	20L 5x	5	28L	5x5		32L 5:	x5	4	0L 5×	(5	ŀ	PKG.		D2			F2		-	
SYMBOL	MIN.	NOM. MAX	MIN.	NOM.	MAX.	MIN. NO	DM. MA	X. MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		CODES	MN.	NOM.	MAX.	MIN.	NOM	. MAX	x.	
А	0.70	0.75 0.8	0.70	0.75	0.80	0.70 0.	75 0.8	30 0.70	0.75	0.80	0.70	0.75	0.80	ŀ	T1655-2	3.00	3.10	3.20	3.00	3.10	3.20	0	
A1	0	0.02 0.0	5 0	0.02	0.05	0 0.	02 0.0	05 0	0.02	0.05	0	0.02	0.05	F	T1655-3	3.00	3.10	3.20	3.00	3.10	3.20	0	
A2	0.	20 REF.	0.	20 RE	F.	0.20	REF.	0	20 RE	EF.	0.	20 RE	F.	F	T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20	0	
b		0.30 0.3						30 0.20		0.30				t	T2055-3	3.00	3.10	3.20	3.00	3.10	3.20	0	
D		5.00 5.1												ŀ	T2055-4	3.00	3.10	3.20	3.00	3.10	3.20	0	
E		5.00 5.1	-		_		_	_		-				ŀ	T2055-5	3.15	3.25		3.15				
e	-	.80 BSC.	-	.65 BS	_		BSC.	_	.50 B	-		.40 BS	SC.	ŀ	T2855-3	3.15	3.25	<u> </u>	3.15				
k	0.25		0.25	-		0.25	_	10120			0.25	-	-	ŀ	T2855-4	2.60	2.70	2.80	2.60	2.70		_	
L	0.30	0.40 0.5	0.45		0.65 (55 0.30		0.50	0.30		0.50	ŀ	T2855-5	2.60	2.70		2.60	_		_	
N ND		16		20 5	\rightarrow	2	-		32 8			40		ŀ	T2855-6	3.15	3.25		3.15			_	
NE		4	+	5	\rightarrow		7	+	8			10		ŀ	T2855-7	2.60	2.70		2.60	_		_	
JEDEC		WHHB	-	WHHC	;	WH	HD-1		VHHC)-2				ŀ	T2855-8	3.15	3.25	<u> </u>	3.15			_	
			-					_						– L		3.15	3.25		3.15			~	
OTE0.															T2855N-1 T3255-3 T3255-4	3.00	3.10	3.20	3.00	3.10	3.20	0	
1. DIM 2. ALL 3. N IS A THE COI OP	DIME THE TERINFORI	DNING & T INSIONS A TOTAL NU MINAL #1 M TO JESI L, BUT MU	RE IN IMBER DENTI 0 95-1 IST BE	MILLIN OF TE FIER / SPP-0 LOCA	NETER	S. ANG ALS. ERMINA TAILS VITHIN	ILES A	RE IN I MBERIN RMINA ONE IN	G CO #1 II	EES. NVEN	FIER	ARE				3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60		3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	0 0 0 0 0 0	
1. DIM 2. ALL 3. N IS A THE COL OP IDE	DIME THE TERINFORI TIONA	NSIONS A TOTAL NU MINAL #1 M TO JESI	RE IN IMBER DENTI 0 95-1 IST BE E EITH	MILLIN OF TE FIER / SPP-0 LOCA ER A N	AND TE AND TE 12. DE TED V AND TE ALLIZE	S. ANG ALS. ERMINA TAILS VITHIN OR MAN	ILES A OF TE THE Z RKED	RE IN I MBERIN RMINA ONE IN FEATUI	G CO _ #1 II DICAT RE.	EES. NVEN DENTI FED. T	FIER J HE TI	ARE ERMIN	NAL #1	- - - -	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	0 0 0 0 0 0	
1. DIM 2. ALL 3. N IS 4. THE COI OP IDE 0.29 0.29 0.29 ND	DIME THE TERI NFORI NFORI NTIFIE ENSIG 5 mm / AND N	INSIONS A TOTAL NU MINAL #1 M TO JESI L, BUT MU ER MAY BI ON 6 APPL AND 0.30 I NE REFER	RE IN IMBER DENTI D 95-1 JST BE E EITH IES TO nm FR TO TH	MILLIN OF TE FIER / SPP-0 LOCA ER A N O MET/ OM TE	AND TE TED V AND TE TED V ALLIZE RMIN/ MBER	S. ANG ALS. ERMINA ETAILS VITHIN OR MAR OD TER AL TIP OF TER	AL NUM OF TE THE Z RKED MINAL	RE IN I MBERIN RMINA ONE IN FEATUI AND IS _S ON I	G CO _ #1 II DICAT RE. 5 MEA	EES. NVEN DENTII TED. T SURE	FIER J HE TI D BET	ARE ERMIN IWEEI	NAL #1	IVEL	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	0 0 0 0 0 0	
1. DIM 2. ALL 3. N IS 4. THE COI OP IDE 0.29 0.29 0.29 ND	DIME THE TERI NFORI NFORI NTIFIE ENSIG 5 mm / AND N	INSIONS A TOTAL NU MINAL #1 M TO JES IL, BUT MU ER MAY B ON 6 APPL AND 0.30	RE IN IMBER DENTI D 95-1 JST BE E EITH IES TO nm FR TO TH	MILLIN OF TE FIER / SPP-0 LOCA ER A N O MET/ OM TE	AND TE TED V AND TE TED V ALLIZE RMIN/ MBER	S. ANG ALS. ERMINA ETAILS VITHIN OR MAR OD TER AL TIP OF TER	AL NUM OF TE THE Z RKED MINAL	RE IN I MBERIN RMINA ONE IN FEATUI AND IS _S ON I	G CO _ #1 II DICAT RE. 5 MEA	EES. NVEN DENTII TED. T SURE	FIER J HE TI D BET	ARE ERMIN IWEEI	NAL #1	IVEL	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	0 0 0 0 0 0	
1. DIM 2. ALL 3. N IS 4. THE COI OP' IDE 5. 0.29 0.	. DIME 5 THE E TERI NFORI TIONA NTIFIE MENSIO 5 mm / AND N POPUL	INSIONS A TOTAL NU MINAL #1 M TO JESI L, BUT MU ER MAY BI ON 6 APPL AND 0.30 I NE REFER	RE IN IMBER DENTI 0 95-1 JST BE E EITH IES TO nm FR TO TH POSS	MILLIN OF TE SPP-0 LOCA ER A N O MET/ OM TE IE NUN IBLE IN	METER ERMIN AND TE 12. DE TED V MOLD (ALLIZE RMIN/ MBER N A SY	S. ANG ALS. ERMINA ETAILS VITHIN OR MAR D TER AL TIP. OF TER MMETR	GLES A OF TE THE Z RKED MINAL	RE IN I MBERIN RMINA ONE IN FEATUI AND IS _S ON I FASHIC	G CO #1 IE DICAT RE. MEA EACH	EES. NVEN DENTII TED. T SURE D ANE	FIER / HE TI D BET	ARE ERMIN IWEEI DE RE	NAL #1 N ESPECT		T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	0 0 0 0 0 0	
1. DIM 2. ALL 3. N IS COI COI COI COI COI COI COI COI	DIME THE TERI NFORI TIONA NTIFIE NTIFIE NON NON POPUL PLANA	INSIONS A TOTAL NU MINAL #1 M TO JESI L, BUT MU ER MAY B ON 5 APPL AND 0.30 NE REFER LATION IS	RE IN IMBER DENTI 0 95-1 JST BE E EITH IES TO nm FR TO TH POSS PLIES T RMS TO	MILLIN OF TE FIER A SPP-0 LOCA ER A N O META OM TE IE NUM IBLE IN O THE	METER ERMIN 12. DE TED V MOLD ALLIZE RMIN MBER N A SY E EXPO	S. ANG ALS. ERMINA TAILS VITHIN OR MAR D TER AL TIP. OF TER MMETF DSED H	AL NUM OF TE THE Z RKED MINAL RINAL RICAL	RE IN I MBERIN RMINA ONE IN FEATUI AND IS _S ON I FASHIC INK SL	G CO _ #1 IE DICAT RE. 5 MEA EACH N. JG AS	EES. NVEN DENTII FED. T SURE D ANE	FIER / HE TI D BET D E SI	ARE ERMIN TWEEI DE RE THE TI	NAL #1 N ESPECT ERMIN#		T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.20 3.60 3.60	0 0 0 0 0 0	
1. DIM 2. ALL 3. N IS THE COL OP IDE DIM 0.23 0.23 0.24	DIME THE TERI NFORI TIONA NTIFIE ENSIG 5 mm / AND N POPUL PLAN/ AWING 855-3 / RPAGI	INSIONS A TOTAL NU MINAL #1 MINAL #1 MI	RE IN IMBER DENTIO 95-1 IST BE E EITH IES TO NOT FR POSS PLIES TO POSS PLIES TO -6.	MILLIN OF TE FIER / SPP-0 LOCA ER A N O MET/ OM TE IE NUN IBLE IN O THE O JEDE	METER ERMIN AND TE 12. DE TED V MOLD (ALLIZE RMIN/ MBER MBER MBER SC MO 0.10 r	IS ANG ALS. ERMINA ETAILS VITHIN OR MAR ID TER AL TIP. OF TER MMETR DSED H 220, EX	AL NUM OF TE THE Z RKED MINAL RICAL REAT S CCEPT	RE IN I MBERIN RMINA ONE IN FEATUI AND IS LS ON I FASHIC INK SL EXPOS	G CO #1 IE DICAT RE. MEA ACH N. JG AS ED P,	EES. NVEN DENTII FED. T SURE D ANE	FIER / HE TI D BET D E SI	ARE ERMIN TWEEI DE RE THE TI	NAL #1 N ESPECT ERMIN#		T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40 *	3.10 3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60 0MMOP	3.00 3.00 3.00 3.40 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	00000 0000 E	
1. DIM 2. ALL 3. N IS A THE COU OP IDE DIM 0.23 0.23 0.24 ND 0.24	DIME THE TERI NFORI TIONA NTIFIE ENSIG 5 mm / AND N POPUL PLAN/ AWING 855-3 / RPAGI	INSIONS A TOTAL NU MINAL #1 MINAL #1 MINAL #1 MINAL #1 ER MAY B ON 6 APPL AND 0.30 I NE REFER LATION IS ARITY APP 3 CONFOF ND T2855	RE IN IMBER DENTIO 95-1 IST BE E EITH IES TO NOT FR POSS PLIES TO POSS PLIES TO -6.	MILLIN OF TE FIER / SPP-0 LOCA ER A N O MET/ OM TE IE NUN IBLE IN O THE O JEDE	METER ERMIN AND TE 12. DE TED V MOLD (ALLIZE RMIN/ MBER MBER MBER SC MO 0.10 r	IS ANG ALS. ERMINA ETAILS VITHIN OR MAR ID TER AL TIP. OF TER MMETR DSED H 220, EX	AL NUM OF TE THE Z RKED MINAL RICAL REAT S CCEPT	RE IN I MBERIN RMINA ONE IN FEATUI AND IS LS ON I FASHIC INK SL EXPOS	G CO #1 IE DICAT RE. MEA ACH N. JG AS ED P,	EES. NVEN DENTII FED. T SURE D ANE	FIER / HE TI D BET D E SI	ARE ERMIN TWEEI DE RE THE TI	NAL #1 N ESPECT ERMIN#		T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40 *	3.10 3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60 0MMOP	3.00 3.00 3.00 3.40 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	0 0 0 0 0 0	
2. ALL 3. N IS COI OP IDE COI OP IDE OP IDE OP OP IDE OP OP IDE OP OP OP IDE OP OP OP IDE OP OP OP OP OP OP OP OP OP OP	DIME THE TERI NFORI TIONA NTIFIE NTIFIE AND N POPUL PLANA AWING 855-3 A RPAGI RKING WBER	INSIONS A TOTAL NU MINAL #1 MINAL #1 MI	RE IN IMBER DENTIO DST BE E EITH IES TO TO TH POSS PLIES TO POSS PLIES TO C-6. IOT EX ACKAO S SHOW	MILLIN OF TE SPP-0 LOCA ER A N O MET/ OM TE IE NUN IBLE IN O THE O JEDE CEED GE ORI	ALLIZE RMIN ALLIZE RMIN ALLIZE RMIN ALLIZE RMIN ABER A SY E EXPO C MO 0.10 r IENTA E FOR	S. ANG ALS. ERMINA ETAILS VITHIN OR MAR D TER AL TIP. OF TER MMETF DSED H 220, EX nm. TION R REFER	AL NUM OF TE THE Z RKED MINAL RICAL REAT S CEPT EFERE RENCE	RE IN I MBERIN RMINA ONE IN FEATUI AND IS S ON I FASHIC INK SL EXPOS ENCE C	G CO _ #1 II DICAT RE. MEA ACH N. JG AS ED P, NLY.	EES. NVEN DENTI FED. T SURE D ANE S WELL	FIER / HE TI D BET D E SI L AS ⁻ MENS	ARE ERMIN DE RE THE TI ION F ⁱ	JAL #1 N ESPECT ERMIN <i>I</i> OR	ALS.	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40 *	3.10 3.10 3.10 3.50 3.50 3.50 SEE C	3.20 3.20 3.20 3.20 3.60 3.60 0MMOP	3.00 3.00 3.00 3.40 3.40 3.40 VDIMEN DIMEN DIMEN SE OUT	3.10 3.10 3.10 3.50 3.50 3.50 SIONS	3.2(3.2(3.2(3.2(3.6(3.6(3.6(3.6(TABLE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2006 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9