

Voidless Hermetically Sealed Unidirectional Transient Voltage Suppressors

Qualified per MIL-PRF-19500/434

Qualified Levels:
JAN, JANTX, and
JANTXV

DESCRIPTION

This series of industry recognized voidless hermetically sealed unidirectional Transient Voltage Suppressor (TVS) designs is military qualified and are ideal for high-reliability applications where a failure cannot be tolerated. They provide a Working Peak "Standoff" Voltage selection from 30.5 to 175 volts with 1500 watt ratings. They are very robust in hard-glass construction and also use an internal metallurgical bond identified as "Category 1" for high reliability applications. These devices are also available in a surface mount MELF package configuration as a special order. Microsemi also offers numerous other TVS products to meet higher and lower peak pulse power and voltage ratings in both through-hole and surface-mount packages.

Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- High surge current and peak pulse power provides transient voltage protection for sensitive circuits.
- Triple-layer passivation.
- Internal "Category 1" metallurgical bonds.
- Voidless hermetically sealed glass package.
- JAN, JANTX, and JANTXV military qualifications available per MIL-PRF-19500/434.
- Further options for screening in accordance with MIL-PRF-19500 for JANS equivalent level by using a "SP" prefix.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Military and other high reliability transient protection.
- Extremely robust construction.
- Working Peak "Standoff" Voltage (V_{WM}) from 30.5 to 175 V.
- Available as 1500 watt Peak Pulse Power (P_{PP}).
- ESD and EFT protection per IEC61000-4-2 and IEC61000-4-4 respectively.
- Secondary lightning protection per select levels in IEC61000-4-5.
- Flexible axial-leaded mounting terminals.
- Non-sensitive to ESD per MIL-STD-750 method 1020.
- Inherently radiation hard as described in Microsemi "[MicroNote 050](#)".

MAXIMUM RATINGS @ $T_A = 25^\circ\text{C}$ unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-55 to +175	°C
Peak Pulse Power @ $t_p = 1.0$ ms	P_{PP}	1500	W
Rated Forward Surge Current @ $t_p = 8.33$ ms	I_{FSM}	150	A (pk)
Impulse repetition rate (duty factor)	I_{PP}	0.01	%
Steady-State Power ⁽¹⁾ (Figure 4)	P_D	3.0	W
Solder Temperature @ 10 s	T_{SP}	260	°C

Notes: 1. Derate at 20 mW/°C above $T_A = +25^\circ\text{C}$. Steady-state power ratings with reference to ambient are for PC boards where thermal resistance from mounting point to ambient is sufficiently controlled where $T_{J(MAX)}$ is not exceeded.

"G" Package

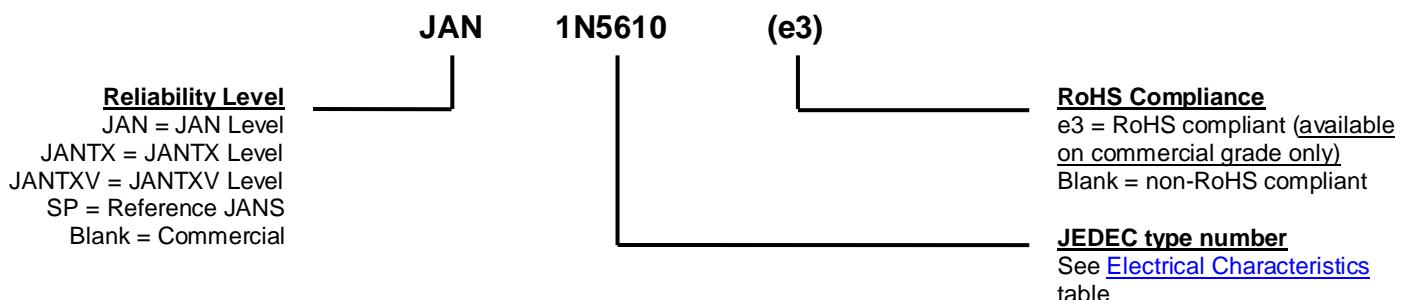
**Also available by
Special order:**

MELF Surface Mount

MSC – Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803

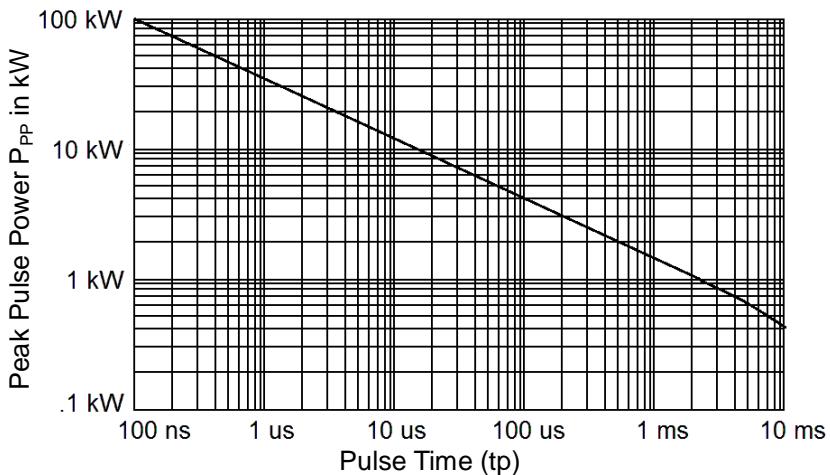
MSC – Ireland


Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298

Website:

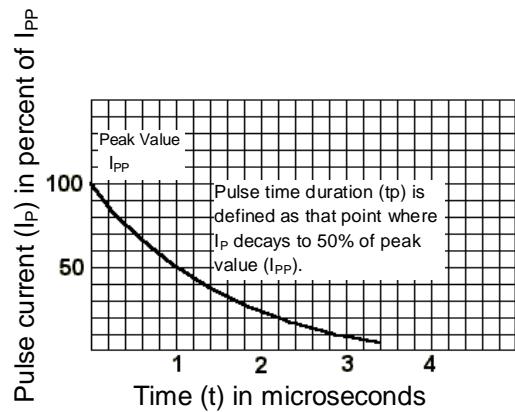
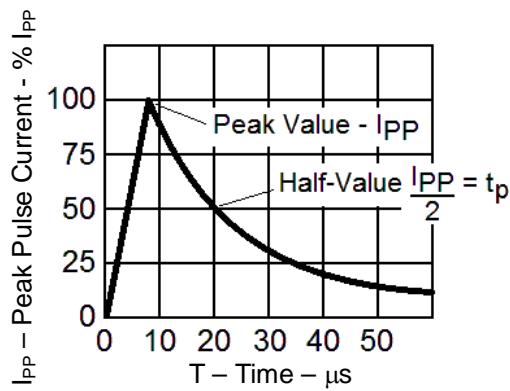
www.microsemi.com

MECHANICAL and PACKAGING

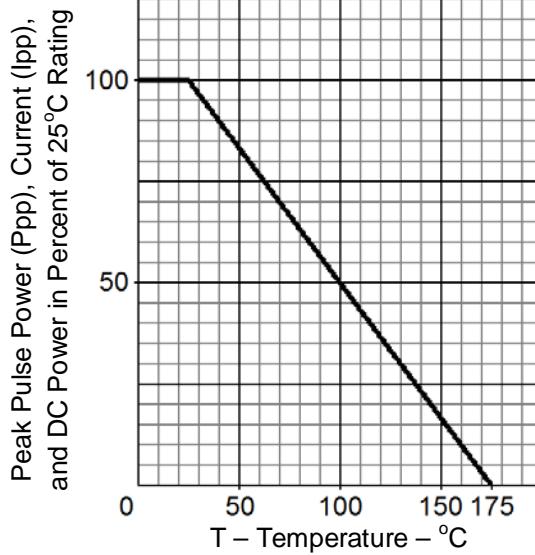

- CASE: Hermetically sealed voidless hard glass with tungsten slugs.
- TERMINATIONS: Axial-leads are tin/lead (Sn/Pb) over copper. RoHS compliant matte-tin available for commercial only.
- MARKING: Body painted and part number.
- POLARITY: Cathode band.
- Tape & Reel option: Standard per EIA-296. Consult factory for quantities.
- Weight: 1270 milligrams.
- See [Package Dimensions](#) on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS



Symbol	Definition
$I_{(BR)}$	Breakdown Current: The current used for measuring Breakdown Voltage $V_{(BR)}$.
I_D	Maximum Standoff Current: The maximum current that will flow at the specified voltage and temperature.
I_{PP}	Peak Pulse Current: The peak current during the impulse.
P_{PP}	Peak Pulse Power: The peak power dissipation resulting from the peak impulse current I_{PP} .
T_{SP}	Temperature Solder Pad: The maximum solder temperature that can be safely applied to the terminal.
$\alpha_{V(BR)}$	Temperature Coefficient of Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current temperature.
$V_{(BR)}$	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.
V_C	Maximum clamping voltage at specified I_{PP} (Peak Pulse Current) at the specified pulse conditions.
V_{WM}	Working Peak Voltage: The maximum peak voltage that can be applied over the operating temperature range. This is also referred to as Standoff Voltage.

ELECTRICAL CHARACTERISTICS


TYPE	MINIMUM BREAK DOWN VOLTAGE $V_{(BR)}$ @ 1.0 mA	BREAKDOWN CURRENT MAXIMUM dc CURRENT $T_A = +25^\circ C$ $I_{(BR)}$	WORKING PEAK REVERSE VOLTAGE V_{WM}	MAX STANOFF CURRENT I_D @ V_{WM}	MAXIMUM CLAMPING VOLTAGE V_C @ 10/1000 μs	MAXIMUM PEAK PULSE CURRENT I_{PP} @ 8/20 μs	MAXIMUM PEAK PULSE CURRENT I_{PP} @ 10/1000 μs	MAXIMUM TEMP. COEF. OF $V_{(BR)}$ $\alpha_{V(BR)}$
	Volts	mA	V (pk)	μA	V (pk)	A (pk)	A (pk)	% / $^\circ C$
1N5610	33.0	75.0	30.5	5	47.6	193	32.0	.093
1N5611	43.7	53.0	40.3	5	63.5	136	24.0	.094
1N5612	54.0	43.0	49.0	5	78.5	116	19.0	.096
1N5613	191	12.5	175	5	265	33	5.7	.100

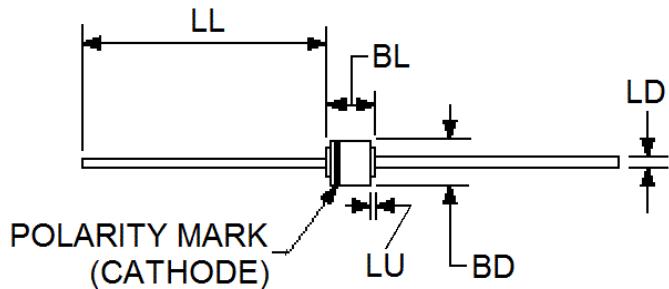

GRAPHS

FIG. 1 – Non-repetitive peak pulse power rating curve

NOTE: Peak power defined as peak voltage times peak current.

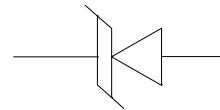


FIG. 2 Pulse wave form for exponential surge for 10/1000 μ s

FIGURE 3

 8/20 μ s CURRENT IMPULSE WAVEFORM

 TEST WAVEFORM PARAMETERS: $t_r = 8 \mu$ sec
 $t_p = 20 \mu$ sec

FIGURE 4
DERATING CURVE

PACKAGE DIMENSIONS

Ltr	Dimensions				Notes	
	Inches		Millimeters			
	Min	Max	Min	Max		
BD	.150	.185	3.81	4.70	3	
BL	.160	.375	4.06	9.53	3	
LD	.037	.042	0.94	1.07		
LL	.900	1.300	22.86	33.02		
LU		.050		1.27	4	

Schematic Symbol
NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Package contour optional within BD and length BL.
4. Within this zone lead diameter may vary to allow for lead finishes and irregularities other than heat slugs.
5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

[MPT-12C](#) [MPT-36](#) [MPT-12](#) [MPT-8C](#) [MPT-45C](#) [MPT-45](#) [MPT-8](#) [MPT-36C](#) [MPT-5](#) [1N5610e3](#) [MXP5KE120CAe3](#)
[MXP5KE14CA](#) [M15KP58A](#) [MSMCJ85CAe3](#) [MXLP5KE40CA](#) [MXLP5KE110Ae3](#) [M15KP85CAe3](#) [MSMCJ36CAe3](#)
[MXP5KE20A](#) [MSMCJ15CA](#) [MXLP5KE8.5A](#) [MXP5KE5.0Ae3](#) [MXP5KE11A](#) [MXLP5KE9.0CA](#) [MXP5KE18CA](#)
[M15KP64CAe3](#) [MXLSMBJSAC36](#) [MXP5KE13CA](#) [MXLP5KE17CA](#) [MXLP5KE58Ae3](#) [EPS24](#) [MXLP5KE54CA](#)
[SM1624/TR13](#) [MSMCJ110CAe3](#) [MSMCJ15Ae3](#) [M15KP100A](#) [MXLP5KE58CA](#) [MXLSMBJSAC26](#) [MXP5KE120A](#)
[MXLSMBJSAC22](#) [M15KP28Ae3](#) [MXLP5KE22CAe3](#) [MPT-18C](#) [MXLP5KE43CA](#) [MXP5KE45A](#) [MXLP5KE11Ae3](#)
[MSMCJ78Ae3](#) [MXLP5KE54CAe3](#) [EPS28](#) [MSMCJ33Ae3](#) [MXLP5KE6.5Ae3](#) [MXLSMBJSAC50](#) [MXLP5KE5.0A](#)
[MXLP5KE12A](#) [MXP5KE8.5CA](#) [MXP5KE90CA](#) [M15KP48A](#) [EPS24SM](#) [MXLP5KE100CA](#) [MSMCJ6.0Ae3](#)
[MASMCJ18Ae3](#) [MXLP5KE14Ae3](#) [MXLP5KE64CA](#) [MXLP5KE10Ae3](#) [MSMCJ5.0CAe3](#) [MSMCJ7.0CAe3](#)
[MXLSMBJSAC18e3](#) [MXP5KE13CAe3](#) [MSMCJ36Ae3](#) [MASMCJ20CAe3](#) [M15KP45Ae3](#) [MXP5KE58A](#)
[MXP5KE11CAe3](#) [MXP5KE5.0A](#) [MXLP5KE160CAe3](#) [MXP5KE17CAe3](#) [MXLP5KE54Ae3](#) [MXLP5KE6.0A](#)
[MXLP5KE40CAe3](#) [MXLP5KE28A](#) [MPT-15](#) [MXLP5KE9.0A](#) [MXLP5KE11A](#) [MXLSMCJ8.0CAe3](#) [MXLSMCJ9.0CAe3](#)
[M15KP200A](#) [MXLP5KE17A](#) [M15KP48CAe3](#) [MXP5KE30CA](#) [MXP5KE15CA](#) [MXP5KE170A](#) [MXLSMBJSAC75](#)
[MXP5KE26Ae3](#) [MXLP5KE26CAe3](#) [MSMCG5.0Ae3](#) [MXP5KE8.0Ae3](#) [MXP5KE85CAe3](#) [MASMBJSAC45](#)
[MXLP5KE100CAe3](#) [MSMCJ48CAe3](#)

Данный компонент на территории Российской Федерации**Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

<http://moschip.ru/get-element>

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9