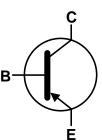


45V PNP SMALL SIGNAL TRANSISTOR IN SOT323

Description

AC857CWQ Bipolar Junction Transistor (BJT) is designed to meet the stringent requirements of Automotive Applications.

Features

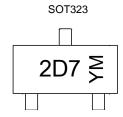

- Ideally Suited for Automatic Insertion
- Complementary NPN Types Available (AC847CWQ)
- For switching and AF Amplifier Applications
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- PPAP Capable (Note 4)

Mechanical Data


- Case: SOT323
- Case Material: Molded Plastic, "Green" Molding compound
- UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.006 grams (Approximate)

Device Symbol

Top View Pin-Out


Ordering Information (Notes 4 & 5)

Ì	Product	Compliance	Marking	Reel Size (inches)	Quantity per Reel
	AC857CWQ-7	Automotive	2D7	7	3,000

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. Automotive products are AEC-Q101 qualified and are PPAP capable. Refer to http://www.diodes.com/quality/product_compliance_definitions/.
- 5. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

2D7 = Product Type Marking Code (See Ordering Information) YM = Date Code Marking Y or \overline{Y} = Year (ex: A = 2013)

M or \overline{M} = Month (ex: 9 = September)

Date Code Key

Year	2017		2018	2019		2020	2021		2022	2023		2024
Code	Е		F	G		Н			J	K		L
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

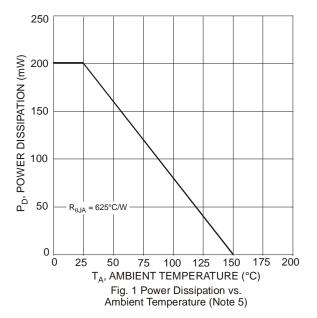
Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	-50	V
Collector-Emitter Voltage	V _{CEO}	-45	V
Emitter-Base Voltage	V_{EBO}	-5.0	V
Continuous Collector Current	Ic	-100	mA
Peak Collector Current	Ісм	-200	mA
Peak Emitter Current	I _{EM}	-200	mA

Thermal Characteristics ($@T_A = +25^{\circ}C$, unless otherwise specified.)

Characteristic		Symbol	Value	Unit
Power Dissipation	(Note 6)	P_{D}	200	mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	625	°C/W	
Operating and Storage Temperature Range		T _J , T _{STG}	-65 to +150	°C

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	BV _{CBO}	-50	-	-	V	I _C = -100nA
Collector-Emitter Breakdown Voltage (Note 7)	BV _{CEO}	-45	-	1	V	$I_C = -10mA$
Emitter-Base Breakdown Voltage	BV _{EBO}	-5	ı	ı	V	I _E = -100nA
DC Current Gain (Note 7)	h _{FE}	420	520	800	-	$V_{CE} = -5.0V, I_{C} = -2.0mA$
Collector Cutoff Current	1	-	-	-15	nA	V _{CB} = -30V
Collector Cuton Current	I _{CBO}			-4	μΑ	V _{CB} = -30V, T _A = +150°C
Collector-Emitter Saturation Voltage (Note 7)	V _{CE(sat)}	-	-75	-300	mV	$I_C = -10 \text{mA}, I_B = -0.5 \text{mA}$
Collector-Emitter Saturation Voltage (Note 7)			-250	-650		$I_C = -100 \text{mA}, I_B = -5.0 \text{mA}$
Base-Emitter Turn-On Voltage (Note 7)	V _{BE(on)}	-600	-650	-750	mV	$I_C = -2mA$, $V_{CE} = -5V$
Base-Emiller Fulli-On Voltage (Note 1)		ı	-	-820		$I_C = -10 \text{mA}, V_{CE} = -5 \text{V}$
Base-Emitter Saturation Voltage (Note 7)	V _{BE(sat)}	-	-700	ı	mV	$I_C = -10mA$, $I_B = -0.5mA$
Base-Emilier Saturation Voltage (Note 1)			-850	-950		$I_C = -100 \text{mA}, I_B = -5 \text{mA}$
Output Capacitance	C _{obo}	ı	3	4.5	pF	$V_{CB} = -10V, f = 1.0MHz$
Transition Frequency	f⊤	100	200	ı	MHz	$V_{CE} = -5V, I_{C} = -10mA,$ f = 100MHz
Noise Figure	NF	-	-	10	dB	$\begin{split} &V_{CE}=\text{-}5V,\ I_{C}=\text{-}200\mu\text{A}\\ &R_{S}=2k\Omega,\ f=1k\text{Hz}\\ &\Delta f=200\text{Hz} \end{split}$


Notes:

^{6.} For a device mounted on minimum recommended pad layout 1oz copper that is on a single-sided FR4 PCB; device is measured under still air conditions whilst operating in a steady-state.

^{7.} Measured under pulsed conditions. Pulse width ≤ 300µs. Duty cycle ≤ 2%

Typical Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

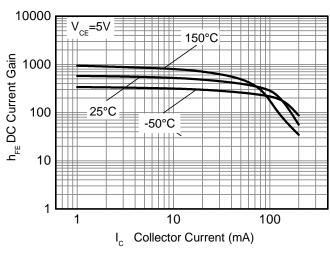


Fig. 3 Typical DC Current Gain (Group C) vs Collector Current (mA)

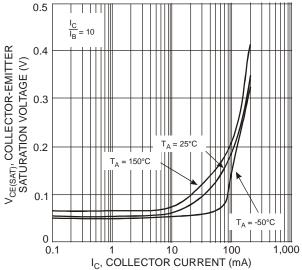


Fig. 2 Typical Collector-Emitter Saturation Voltage vs. Collector Current

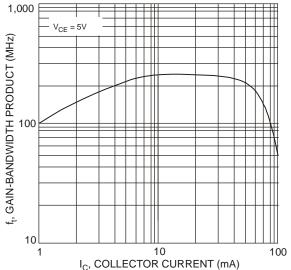
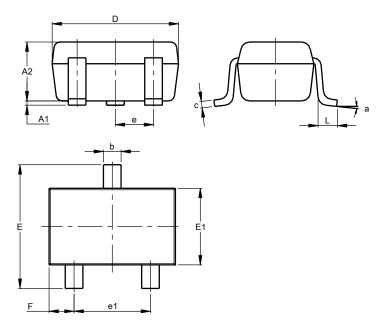
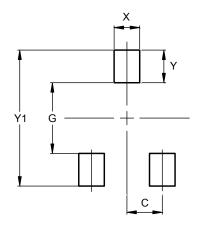



Fig. 4 Typical Gain-Bandwidth Product vs. Collector Current

Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT323							
Dim	Min	Max	Тур				
A1	0.00	0.10	0.05				
A2	0.90	1.00	0.95				
b	0.25	0.40	0.30				
С	0.10	0.18	0.11				
D	1.80	2.20	2.15				
Е	2.00	2.20	2.10				
E1	1.15	1.35	1.30				
е	0.650 BSC						
e1	1.20	1.40	1.30				
F	0.375	0.475	0.425				
L	0.25	0.40	0.30				
а	0°	8°					
All Dimensions in mm							

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)			
С	0.650			
G	1.300			
Х	0.470			
Y	0.600			
Y1	2.500			

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9