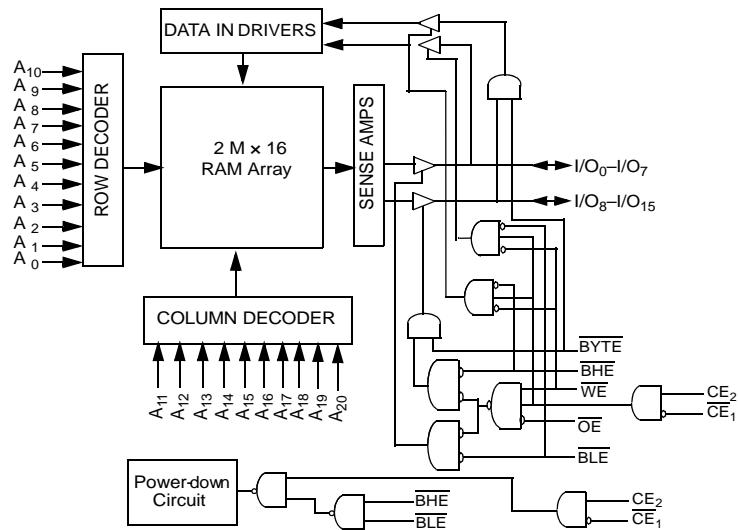


Features

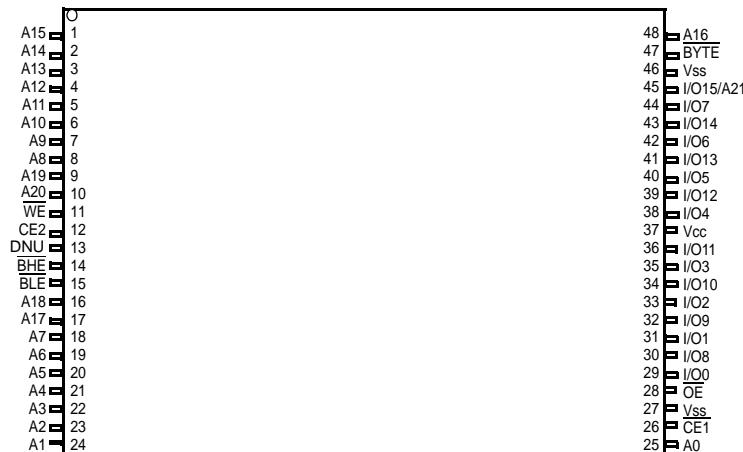

- Thin small outline package-I (TSOP-I) configurable as 2 M × 16 or as 4 M × 8 static RAM (SRAM)
- High-speed up to 55 ns
- Wide voltage range: 2.2 V to 3.6 V and 4.5 V to 5.5 V
- Ultra low standby power
 - Typical standby current: 3 μ A
 - Maximum standby current: 25 μ A
- Ultra low active power
 - Typical active current: 4.5 mA at $f = 1$ MHz
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} Features
- Automatic power-down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Available in Pb-free 48-ball TSOP-I package

Functional Description

The CY62177ESL is a high performance CMOS static RAM organized as 2 M words by 16 bits and 4 M words by 8 bits. This device features advanced circuit design to provide ultra low active current. It is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99 percent when addresses are not toggling. The device can also be put into standby mode when deselected (CE_1 HIGH or CE_2 LOW or both BHE and BLE are HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a high impedance state when: deselected (CE_1 HIGH or CE_2 LOW), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (CE_1 LOW, CE_2 HIGH and WE LOW).

To write to the device, take Chip Enables (CE_1 LOW and CE_2 HIGH) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₂₀). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written to the location specified on the address pins (A₀ through A₂₀). To read from the device, take Chip Enables (CE_1 LOW and CE_2 HIGH) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See the [Truth Table](#) on page 10 for a complete description of read and write modes.

Logic Block Diagram



Contents

Pin Configuration	3
Product Portfolio	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	4
Thermal Resistance	5
Data Retention Characteristics	5
Switching Characteristics	6
Switching Waveforms	7
Truth Table	10
Ordering Information	11
Ordering Code Definitions	11
Package Diagrams	12
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	13
Worldwide Sales and Design Support	13
Products	13
PSoC Solutions	13

Pin Configuration

Figure 1. 48-Pin TSOPI (Forward) (2 M × 16/4 M × 8)^[2, 3]

Product Portfolio

Product	V _{CC} Range (V) ^[4]	Speed (ns)	Power Dissipation					
			Operating I _{CC} (mA)				Standby I _{SB2} (µA)	
			f = 1 MHz		f = f _{Max}			
CY62177ESL	2.2 V to 3.6 V and 4.5 V to 5.5 V	55	4.5	5.5	35	45	3	25

Notes

1. NC pins are not connected on the die.
2. The BYTE pin in the 48-TSOP-I package has to be tied to V_{CC} to use the device as a 2 M × 16 SRAM. The 48-TSOP-I package can also be used as a 4 M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 4 M × 8 configuration, Pin 45 is A21, while BHE, BLE, and I/O₈ to I/O₁₄ pins are not used.
3. Datasheet Specifications are not guaranteed in the range of 3.6 V to 4.5 V.
4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V, and V_{CC} = 5 V, T_A = 25 °C

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature -65°C to $+150^{\circ}\text{C}$

Ambient temperature with power applied -55°C to $+125^{\circ}\text{C}$

Supply voltage to ground potential -0.3 V to $V_{\text{CC(max)}} + 0.3\text{ V}$

DC voltage applied to outputs in high Z state^[5, 6] -0.3 V to $V_{\text{CC(max)}} + 0.3\text{ V}$

DC input voltage^[5, 6] -0.3 V to $V_{\text{CC(max)}} + 0.3\text{ V}$

Output current into outputs (LOW) 20 mA

Static discharge voltage $\geq 2001\text{ V}$ (per MIL-STD-883, method 3015)

Latch-up current $\geq 200\text{ mA}$

Operating Range

Device	Range	Ambient Temperature	$V_{\text{CC}}^{[7]}$
CY62177ESL	Industrial	-40°C to $+85^{\circ}\text{C}$	2.2 V to 3.6 V and 4.5 V to 5.5 V

Electrical Characteristics

Over the operating range

Parameter	Description	Test Conditions		55 ns			Unit
		Min	Typ ^[8]	Max			
V_{OH}	Output HIGH voltage	$2.2\text{ V} \leq V_{\text{CC}} \leq 2.7\text{ V}$	$I_{\text{OH}} = -0.1\text{ mA}$	2.0	—	—	V
		$2.7\text{ V} \leq V_{\text{CC}} \leq 3.6\text{ V}$	$I_{\text{OH}} = -1.0\text{ mA}$	2.4	—	—	V
		$4.5\text{ V} \leq V_{\text{CC}} \leq 5.5\text{ V}$	$I_{\text{OH}} = -1.0\text{ mA}$	2.4	—	—	V
V_{OL}	Output LOW voltage	$2.2\text{ V} \leq V_{\text{CC}} \leq 2.7\text{ V}$	$I_{\text{OL}} = 0.1\text{ mA}$	—	—	0.4	V
		$2.7\text{ V} \leq V_{\text{CC}} \leq 3.6\text{ V}$	$I_{\text{OL}} = 2.1\text{ mA}$	—	—	0.4	V
		$4.5\text{ V} \leq V_{\text{CC}} \leq 5.5\text{ V}$	$I_{\text{OL}} = 2.1\text{ mA}$	—	—	0.4	V
V_{IH}	Input HIGH voltage	$2.2\text{ V} \leq V_{\text{CC}} \leq 2.7\text{ V}$		1.8	—	$V_{\text{CC}} + 0.3\text{ V}$	V
		$2.7\text{ V} \leq V_{\text{CC}} \leq 3.6\text{ V}$		2.2	—	$V_{\text{CC}} + 0.3\text{ V}$	V
		$4.5\text{ V} \leq V_{\text{CC}} \leq 5.5\text{ V}$		2.2	—	$V_{\text{CC}} + 0.3\text{ V}$	V
V_{IL}	Input LOW voltage	$2.2\text{ V} \leq V_{\text{CC}} \leq 2.7\text{ V}$		-0.3	—	0.6	V
		$2.7\text{ V} \leq V_{\text{CC}} \leq 3.6\text{ V}$		-0.3	—	0.7 ^[9]	V
		$4.5\text{ V} \leq V_{\text{CC}} \leq 5.5\text{ V}$		-0.3	—	0.7 ^[9]	V
I_{IX}	Input leakage current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$		-1	—	+1	μA
I_{OZ}	Output leakage current	$\text{GND} \leq V_{\text{O}} \leq V_{\text{CC}}$, Output disabled		-1	—	+1	μA
I_{CC}	V_{CC} operating supply current	$f = f_{\text{Max}} = 1/t_{\text{RC}}$	$V_{\text{CC}} = V_{\text{CC(max)}}$	—	35	45	mA
		$f = 1\text{ MHz}$	$I_{\text{OUT}} = 0\text{ mA}$ CMOS levels	—	4.5	5.5	mA
$I_{\text{SB2}}^{[10]}$	Automatic power-down current—CMOS inputs	$\text{CE}_1 \geq V_{\text{CC}} - 0.2\text{ V}$ or $\text{CE}_2 \leq 0.2\text{ V}$ or (BHE and BLE) $\geq V_{\text{CC}} - 0.2\text{ V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.2\text{ V}$ or $V_{\text{IN}} \leq 0.2\text{ V}$, $f = 0$, $V_{\text{CC}} = 3.6\text{ V}$		—	3	25	μA

Capacitance

Parameter ^[11]	Description	Test Conditions	Max	Unit
C_{IN}	Input capacitance	$T_A = 25^{\circ}\text{C}$, $f = 1\text{ MHz}$, $V_{\text{CC}} = V_{\text{CC(typ)}}$	15	pF
C_{OUT}	Output capacitance		15	pF

Notes

5. $V_{\text{IL(min)}} = -2.0\text{ V}$ for pulse durations less than 20 ns.

6. $V_{\text{IH(max)}} = V_{\text{CC}} + 0.75\text{ V}$ for pulse durations less than 20 ns.

7. Full Device AC operation assumes a 100 μs ramp time from 0 to V_{CC} (min) and 200 μs wait time after V_{CC} stabilization.

8. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{\text{CC}} = 3\text{ V}$, and $V_{\text{CC}} = 5\text{ V}$, $T_A = 25^{\circ}\text{C}$

9. Under DC conditions the device meets a V_{IL} of 0.8 V. However, in dynamic conditions Input LOW voltage applied to the device must not be higher than 0.7 V.

10. Chip enables (CE1 and CE2), byte enables (BHE and BLE) and BYTE must be tied to CMOS levels to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

11. Tested initially and after any design or process changes that may effect these parameters.

Thermal Resistance

Parameter ^[12]	Description	Test Conditions	TSOPI	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	44.66	°C / W
Θ_{JC}	Thermal resistance (junction to case)		12.12	°C / W

Figure 2. AC Test Loads and Waveforms

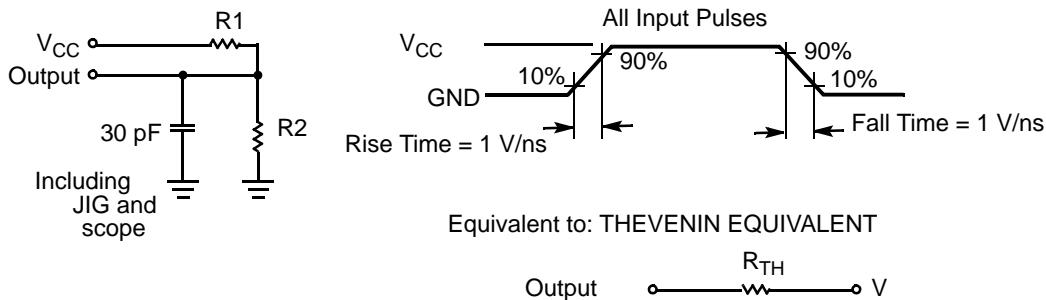
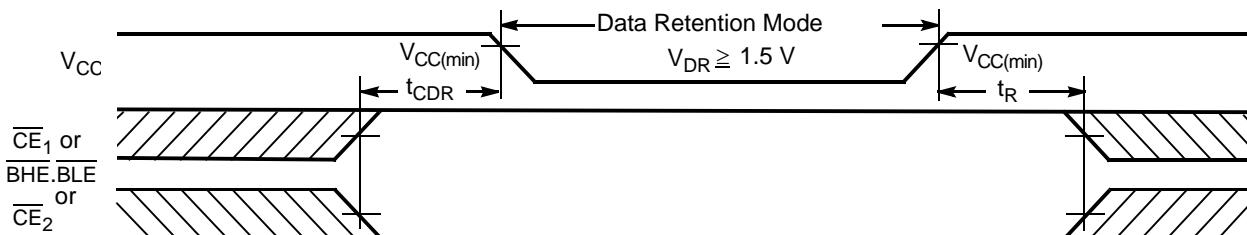


Table 1. AC Test Loads


Parameter	2.5 V	3.0 V	5.0 V	Unit
R1	16667	1103	1800	Ω
R2	15385	1554	990	Ω
R_{TH}	8000	645	639	Ω
V_{TH}	1.20	1.75	1.77	V

Data Retention Characteristics

Over the operating range

Parameter	Description	Conditions	Min	Typ ^[13]	Max	Unit
V_{DR}	V_{CC} for data retention		1.5	—	—	V
I_{CCDR} ^[14]	Data retention current	$V_{CC} = 1.5 \text{ V}$, $CE_1 \geq V_{CC} - 0.2 \text{ V}$ or $CE_2 \leq 0.2 \text{ V}$ or (BHE and BLE) $\geq V_{CC} - 0.2 \text{ V}$, $V_{IN} \geq V_{CC} - 0.2 \text{ V}$ or $V_{IN} \leq 0.2 \text{ V}$	—	—	17	μA
t_{CDR} ^[12]	Chip deselect to data retention time	—	0	—	—	ns
t_R ^[15]	Operation recovery time	—	55	—	—	ns

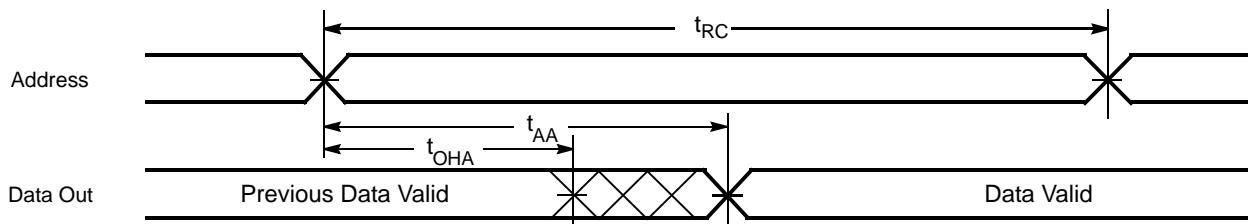
Figure 3. Data Retention Waveform^[16]

Notes

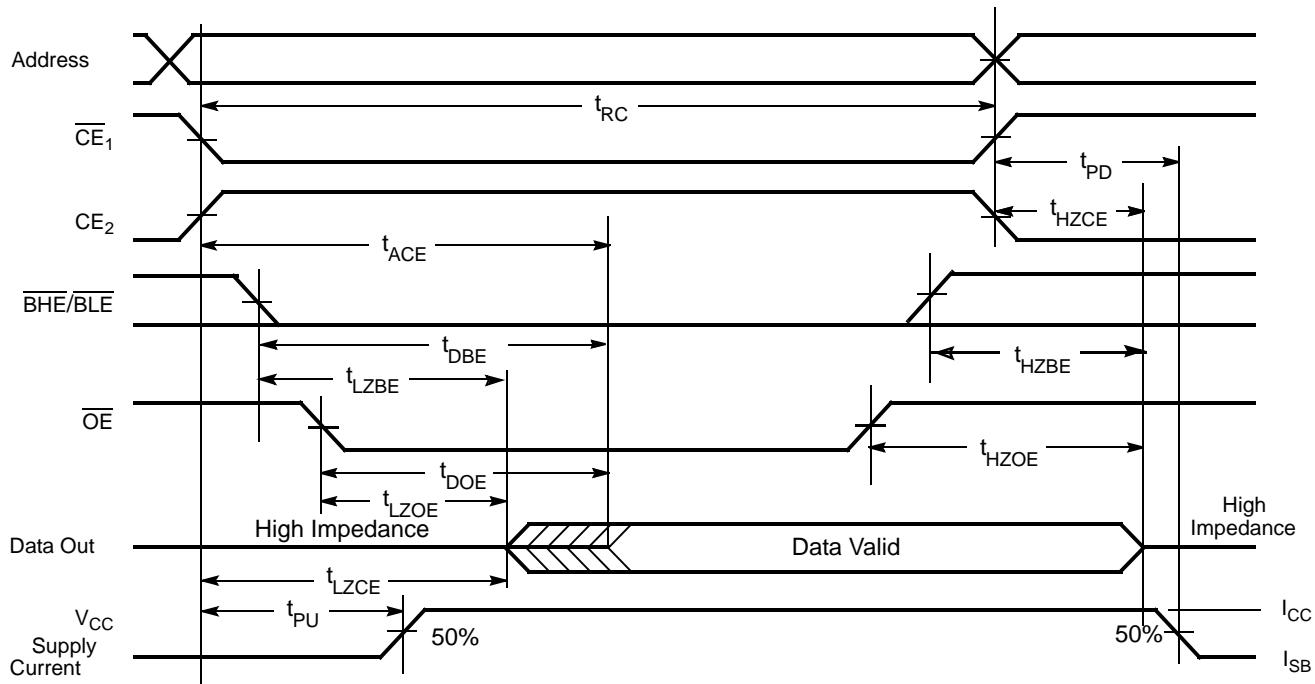
12. Tested initially and after any design or process changes that may affect these parameters.
13. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at $V_{CC} = 3 \text{ V}$, and $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ }^\circ\text{C}$.
14. Chip enables (\overline{CE}_1 and \overline{CE}_2), byte enables (BHE and BLE) and BYTE must be tied to CMOS levels to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
15. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(\min)}$ $\geq 100 \mu\text{s}$ or stable at $V_{CC(\min)} \geq 100 \mu\text{s}$.
16. BHE.BLE is the AND of both BHE and BLE. Chip is deselected by either disabling the chip enable signals or by disabling both \overline{BHE} and \overline{BLE} .

Switching Characteristics

Over the operating range


Parameter ^[17]	Description	55 ns		Unit
		Min	Max	
Read Cycle				
t_{RC}	Read cycle time	55	–	ns
t_{AA}	Address to data valid	–	55	ns
t_{OHA}	Data hold from address change	6	–	ns
t_{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to data valid	–	55	ns
t_{DOE}	\overline{OE} LOW to data valid	–	25	ns
t_{LZOE}	\overline{OE} LOW to low Z ^[18]	5	–	ns
t_{HZOE}	\overline{OE} HIGH to high Z ^[18, 19]	–	18	ns
t_{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to low Z ^[18]	10	–	ns
t_{HZCE}	\overline{CE}_1 HIGH and CE_2 LOW to high Z ^[18, 19]	–	18	ns
t_{PU}	\overline{CE}_1 LOW and CE_2 HIGH to power-up	0	–	ns
t_{PD}	\overline{CE}_1 HIGH and CE_2 LOW to power-down	–	55	ns
t_{DBE}	$\overline{BLE}/\overline{BHE}$ LOW to data valid	–	55	ns
t_{LZBE}	$\overline{BLE}/\overline{BHE}$ LOW to low Z ^[18]	10	–	ns
t_{HZBE}	$\overline{BLE}/\overline{BHE}$ HIGH to high Z ^[18, 19]	–	18	ns
Write Cycle^[20]				
t_{WC}	Write cycle time	55	–	ns
t_{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to write end	40	–	ns
t_{AW}	Address setup to write end	40	–	ns
t_{HA}	Address hold from write end	0	–	ns
t_{SA}	Address setup to write start	0	–	ns
t_{PWE}	\overline{WE} pulse width	40	–	ns
t_{BW}	$\overline{BLE}/\overline{BHE}$ LOW to write end	40	–	ns
t_{SD}	Data setup to write end	25	–	ns
t_{HD}	Data hold from write end	0	–	ns
t_{HZWE}	\overline{WE} LOW to high Z ^[18, 19]	–	20	ns
t_{LZWE}	\overline{WE} HIGH to low Z ^[18]	10	–	ns

Notes


17. Test conditions for all parameters other than tristate parameters assume signal transition time of 1 V/ns, timing reference levels of $V_{CC(\text{typ})}/2$, input pulse levels of 0 to $V_{CC(\text{typ})}$, and output loading of the specified I_{OL}/I_{OH} as shown in [AC Test Loads](#) on page 5.
18. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any device.
19. t_{HZOE} , t_{HZCE} , t_{HZBE} , and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
20. The internal Write time of the memory is defined by the overlap of WE , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Figure 4. Read Cycle 1 (Address Transition Controlled)^[21, 22]

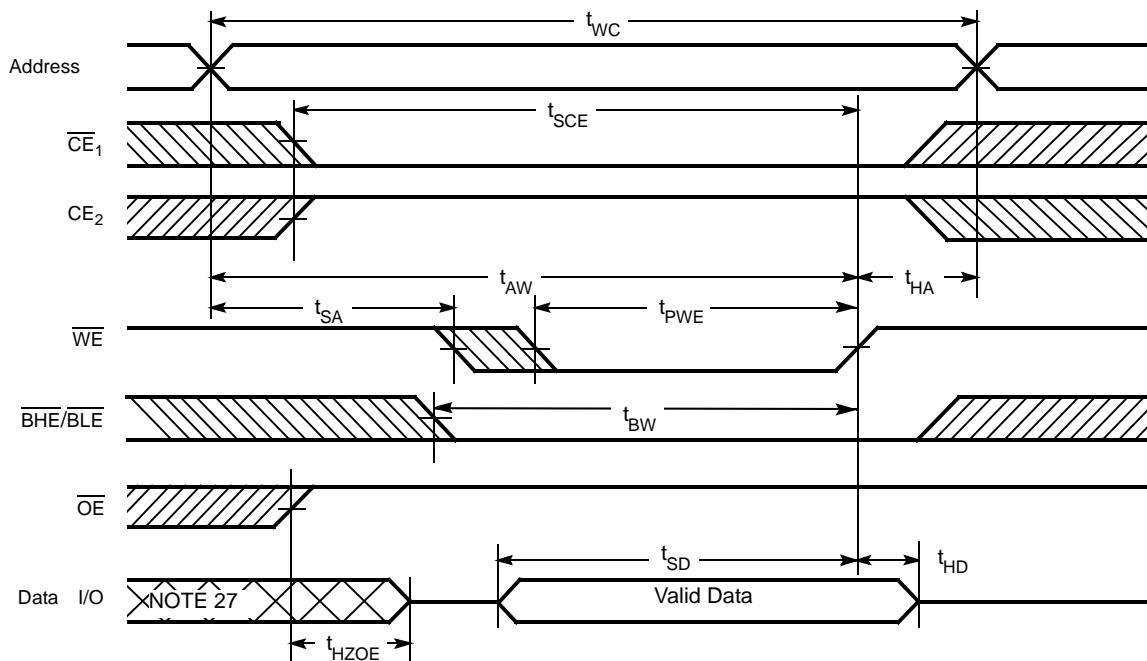
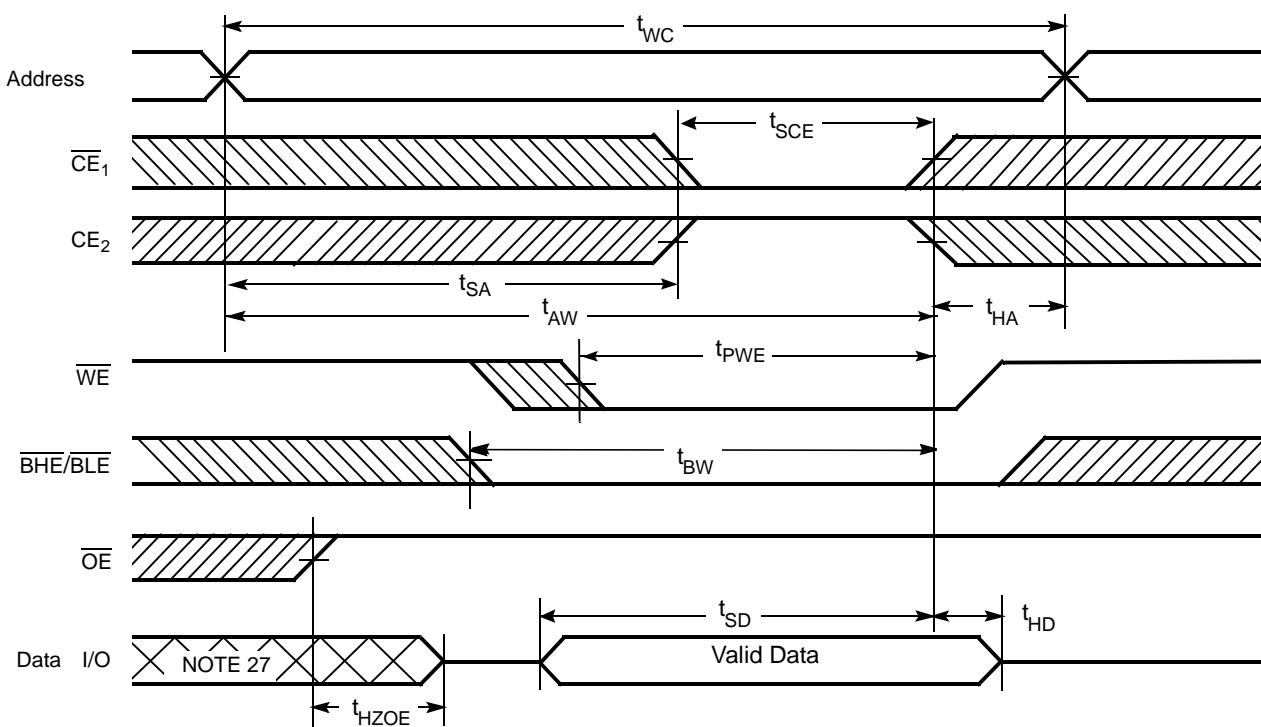
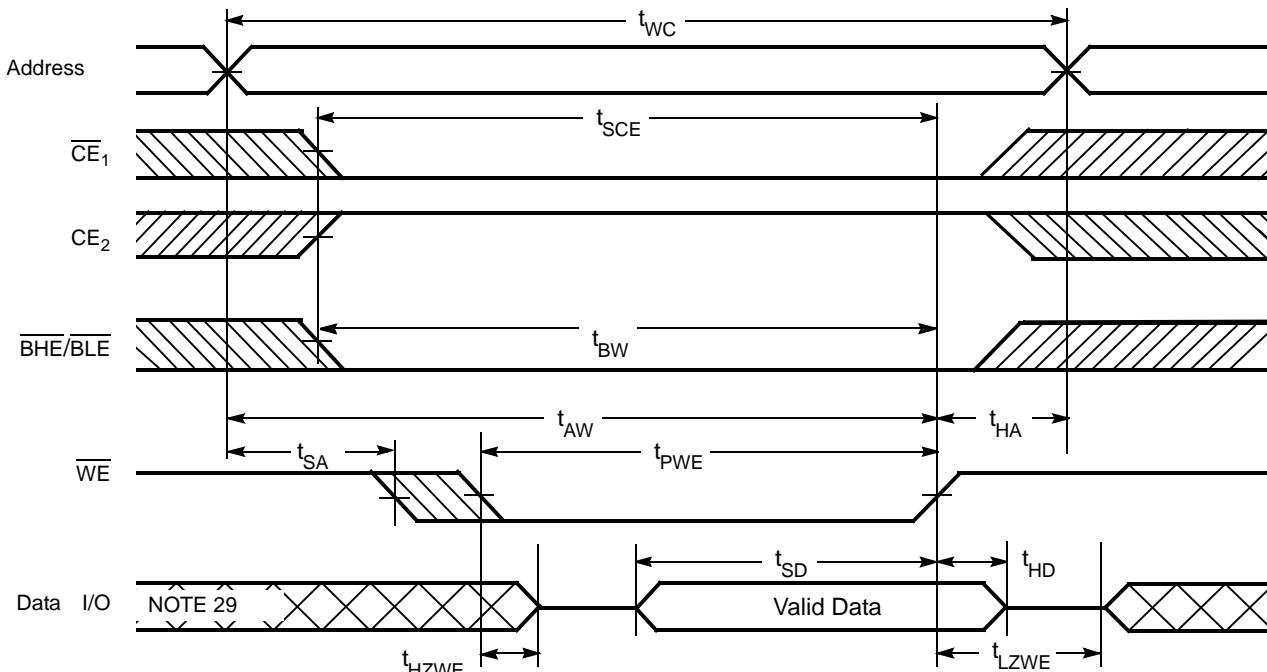
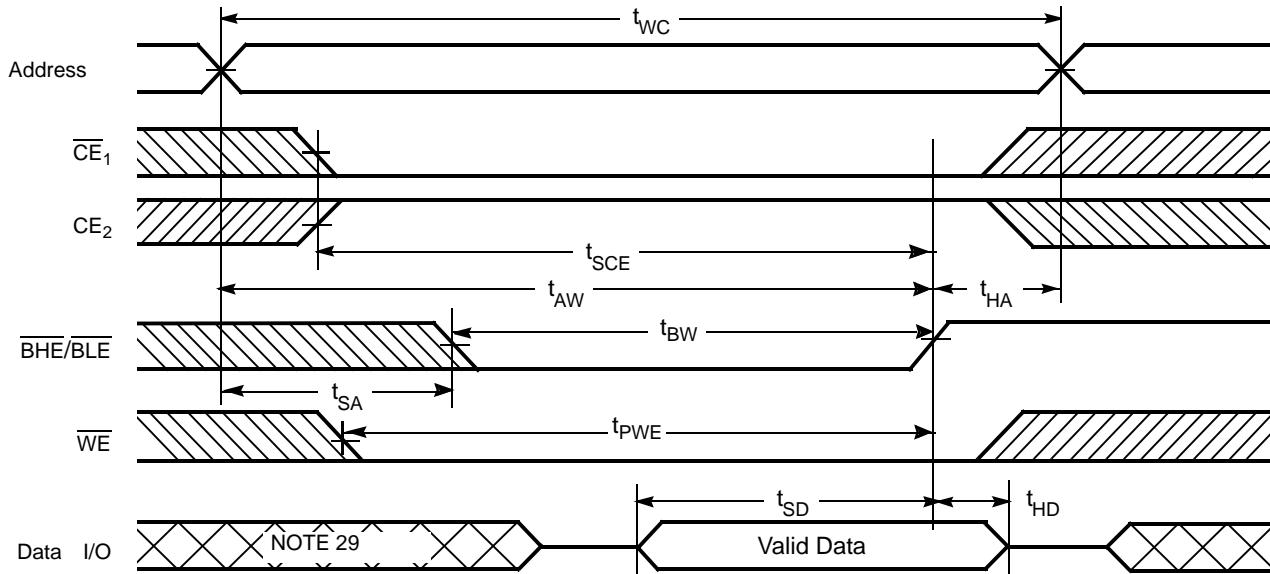



Figure 5. Read Cycle 2 (\overline{OE} Controlled)^[22, 23]

Notes

21. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, and $CE_2 = V_{IH}$.
22. WE is HIGH for read cycle.
23. Address valid prior to or coincident with \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)
Figure 6. Write Cycle 1 (WE Controlled) [24, 25, 26]

Figure 7. Write Cycle 2 (CE₁ or CE₂ Controlled) [24, 25, 26]

Notes

24. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.
25. Data I/O is high impedance if OE = V_{IH}.
26. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with WE = V_{IH}, the output remains in a high impedance state.
27. During this period the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)
Figure 8. Write Cycle 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[28]

Figure 9. Write Cycle 4 ($\overline{\text{BHE/BLE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[28]

Notes

28. If $\overline{\text{CE}}_1$ goes HIGH and CE_2 goes LOW simultaneously with $\overline{\text{WE}} = V_{IH}$, the output remains in a high impedance state.

29. During this period the I/Os are in output state and input signals should not be applied.

Truth Table

CE₁	CE₂	WE	OE	BHE	BLE	Inputs Outputs	Mode	Power
H	X ^[30]	X	X	X ^[30]	X ^[30]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[30]	L	X	X	X ^[30]	X ^[30]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[30]	X ^[30]	X	X	H	H	High Z	Deselect/Power-down	Standby (I _{SB})
L	H	H	L	L	L	Data out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	H	H	L	H	L	High Z (I/O ₈ –I/O ₁₅); Data out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	H	H	L	L	H	Data out (I/O ₈ –I/O ₁₅); High Z (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	H	L	X	L	L	Data in (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	H	L	X	H	L	High Z (I/O ₈ –I/O ₁₅); Data in (I/O ₀ –I/O ₇)	Write	Active (I _{CC})
L	H	L	X	L	H	Data in (I/O ₈ –I/O ₁₅); High Z (I/O ₀ –I/O ₇)	Write	Active (I _{CC})
L	H	H	H	L	H	High Z	Output disabled	Active (I _{CC})
L	H	H	H	H	L	High Z	Output disabled	Active (I _{CC})
L	H	H	H	L	L	High Z	Output disabled	Active (I _{CC})

Note

30. The 'X' (Don't care) state for the chip enables and byte enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

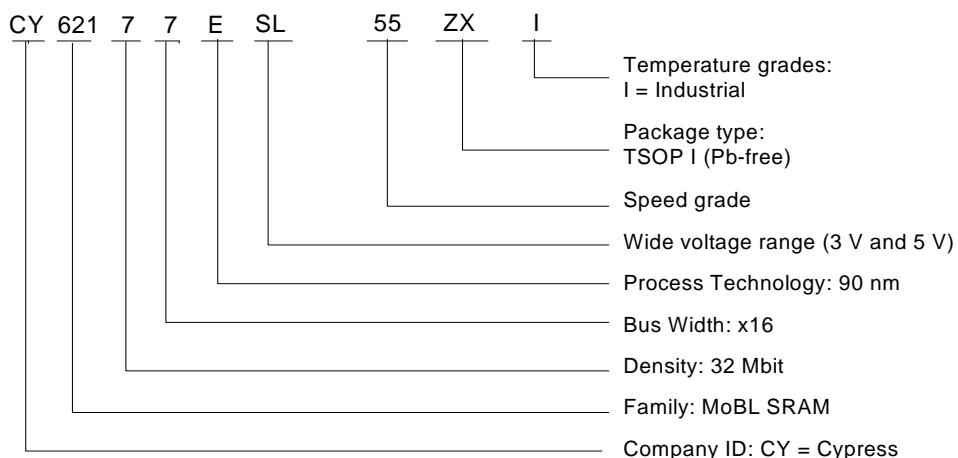
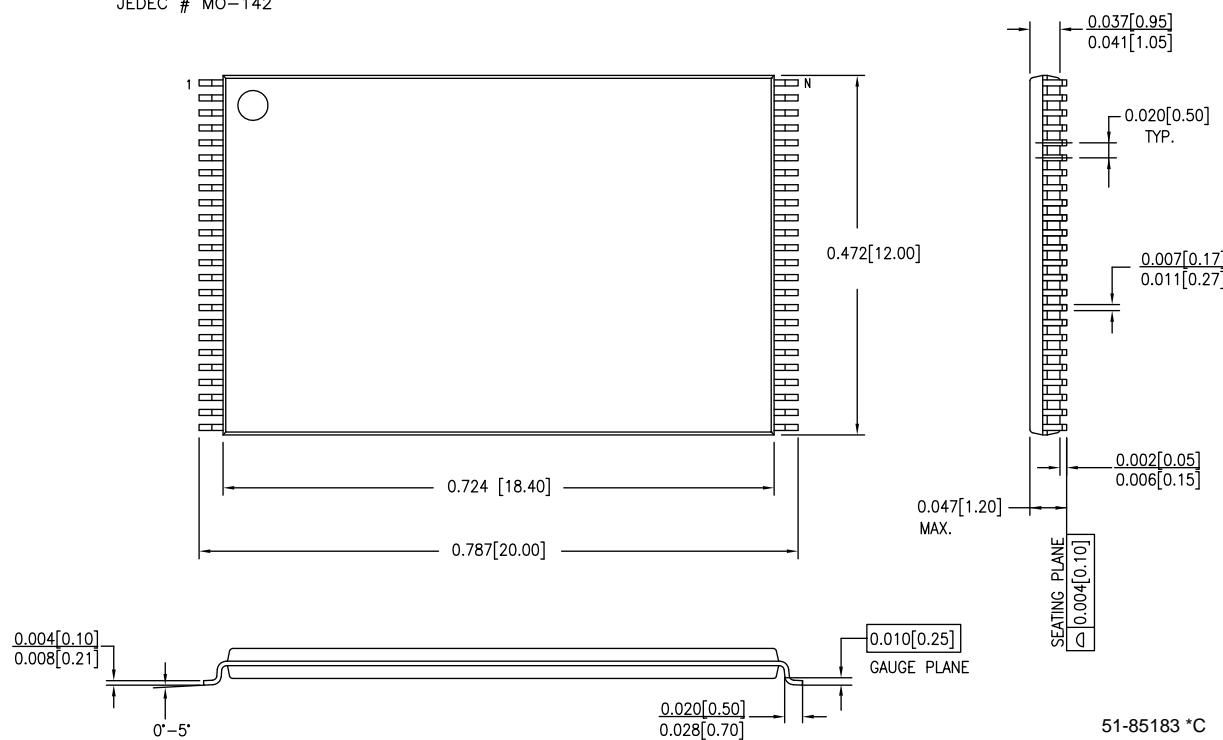

Ordering Information

Table 2 lists the CY62177ESL MoBL® key package features and ordering codes. The table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at <http://www.cypress.com/products>.

Table 2. Key Features and Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62177ESL-55ZXI	51-85183	48-pin TSOP-I (12 x 18.4 x 1 mm) Pb-free	Industrial

Ordering Code Definitions



Package Diagrams

Figure 10. 48-Pin TSOP I (12 x 18.4 x 1 mm), 51-85183

DIMENSIONS IN INCHES[MM] MIN.
MAX.

JEDEC # MO-142

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
I/O	input/output
SRAM	static random access memory
TSOP	thin small outline package

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
µA	microampere
mA	milliampere
MHz	megahertz
ns	nanosecond
pF	picofarad
V	volt
Ω	ohm
W	watt

Document History Page

Document Title: CY62177ESL MoBL® 32-Mbit (2 M × 16/4 M × 8) Static RAM
Document Number: 001-64709

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	3077028	RAME	11/02/10	New Datasheet
*A	3103863	RAME	12/07/2010	The specified part in the ordering information table is moved to production. No change in the datasheet.
*B	3433813	TAVA	11/16/2011	Removed footnote #1. Pin #13 of Figure 1 under Pin Configuration section changed from NC to DNU.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at [Cypress Locations](#).

Products

Automotive	cypress.com/go/automotive	PSoC Solutions
Clocks & Buffers	cypress.com/go/clocks	psoc.cypress.com/solutions
Interface	cypress.com/go/interface	PSoC 1 PSoC 3 PSoC 5
Lighting & Power Control	cypress.com/go/powerpsoc cypress.com/go/plc	
Memory	cypress.com/go/memory	
Optical & Image Sensing	cypress.com/go/image	
PSoC	cypress.com/go/psoc	
Touch Sensing	cypress.com/go/touch	
USB Controllers	cypress.com/go/USB	
Wireless/RF	cypress.com/go/wireless	

© Cypress Semiconductor Corporation, 2010-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and/or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Данный компонент на территории Российской Федерации**Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

<http://moschip.ru/get-element>

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru

moschip.ru_4

moschip.ru_6

moschip.ru_9