Power MOSFET for 1-Cell Lithium-ion Battery Protection

12 V, 5.8 m Ω , 17 A, Dual N-Channel

This Power MOSFET features a low on-state resistance. This device is suitable for applications such as power switches of portable machines. Best suited for 1-cell lithium-ion battery applications.

Features

- 2.5 V Drive
- 2 kV ESD HBM
- Common-Drain Type
- ESD Diode-Protected Gate
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

• 1-Cell Lithium-ion Battery Charging and Discharging Switch

Specifications

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

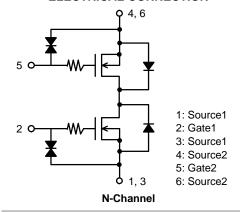
Parameter	Symbol	Value	Unit
Source to Source Voltage	V _{SSS}	12	V
Gate to Source Voltage	V_{GSS}	±8	V
Source Current (DC)	Is	17	Α
Source Current (Pulse) PW ≤ 10 μs, duty cycle ≤ 1%	I _{SP}	68	А
Total Dissipation (Note 1)	P _T	1.8	W
Junction Temperature	Tj	150	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction to Ambient (Note 1)	$R_{\theta JA}$	69.4	°C/W

1. Surface mounted on ceramic substrate (5000 mm² × 0.8 mm).



ON Semiconductor®

www.onsemi.com

V _{SSS}	R _{SS(ON)} MAX	I _S MAX
12 V	5.8 mΩ @ 4.5 V	17 A
	6.2 mΩ @ 3.8 V	
	7.5 mΩ @ 3.1 V	
	9.0 mΩ @ 2.5 V	

ELECTRICAL CONNECTION

PIN ASSIGNMENT

MARKING DIAGRAM

NT = Specific Device Code A = Assembly Location

′ = Year

W = Work Week
ZZ = Assembly Lot

■ = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{(BR)SSS}	Source to Source Breakdown Voltage	I _S = 1 mA, V _{GS} = 0 V, V _{SSS} Test Circuit	12			V
I _{SSS}	Zero-Gate Voltage Source Current	V _{SS} = 10 V, V _{GS} = 0 V			1	μΑ
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{SS} = 0 \text{ V}$			±1	μΑ
V _{GS} (th)	Gate Threshold Voltage	V _{SS} = 6 V, I _S = 1 mA	0.4		1.3	V
R _{SS} (on) Static Source to Source On-State Resistance		I _S = 5 A, V _{GS} = 4.5 V	3.0	4.35	5.8	mΩ
	Resistance	I _S = 5 A, V _{GS} = 3.8 V	3.2	4.6	6.2	mΩ
		I _S = 5 A, V _{GS} = 3.1 V	3.4	5.0	7.5	mΩ
		I _S = 5 A, V _{GS} = 2.5 V	3.8	5.6	9.0	mΩ
t _d (on)	Turn-ON Delay Time	V _{SS} = 5 V, V _{GS} = 3.8 V, I _S = 5 A		11		μS
t _r	Rise Time	Rg = 10 kΩ Switching Test Circuit		26		μS
t _d (off)	Turn-OFF Delay Time]		130		μS
t _f	Fall Time]		73		μS
Qg	Total Gate Charge	V _{SS} = 5 V, V _{GS} = 4.5 V, I _S = 5 A		37		nC
V _{F(S-S)}	Forward Source to Source Voltage	I _S = 3 A, V _{GS} = 0 V		0.76	1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

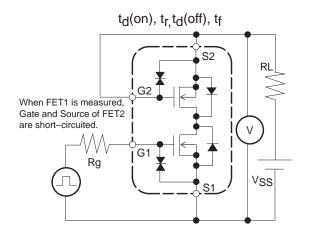


Figure 1. Switching Test Circuit

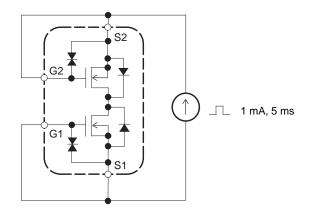


Figure 2. $V_{\rm SSS}$ Test Circuit

ORDERING INFORMATION

Device	Marking	Package	Shipping [†] (Qty / Packing)
EFC2J013NUZTDG	NT	WLCSP6, 2.00 x 1.49 x 0.10 (Pb-Free / Halogen Free)	5,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

TYPICAL CHARACTERISTICS

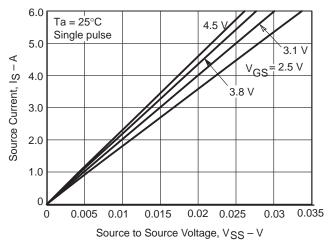


Figure 3. On-Region Characteristics

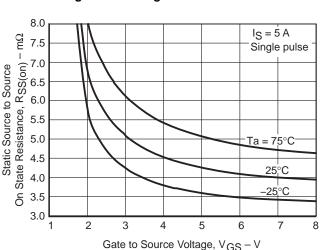


Figure 5. On-Resistance vs. Gate-to-Source Voltage

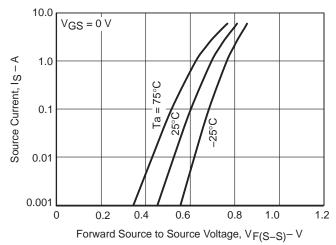


Figure 7. Forward Source-to-Source Voltage vs. Current

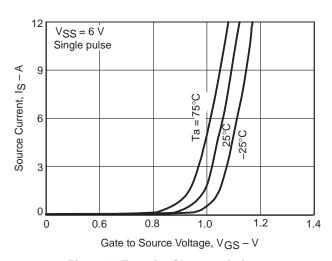


Figure 4. Transfer Characteristics

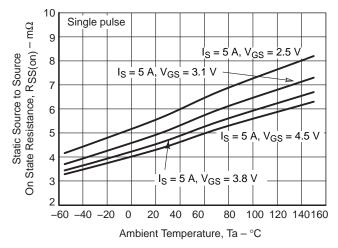


Figure 6. On-Resistance vs. Temperature

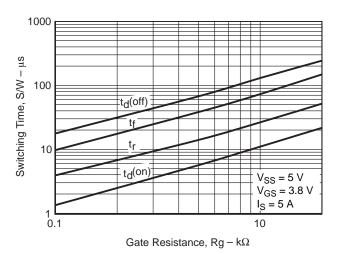


Figure 8. Switching Time vs. Gate Resistance

TYPICAL CHARACTERISTICS

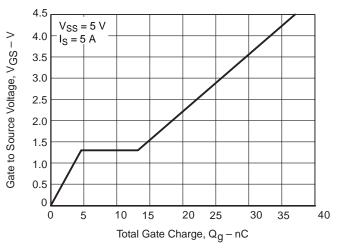


Figure 9. Gate-to-Source Voltage vs. Total Charge

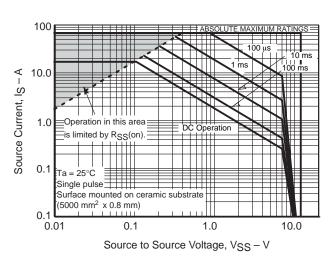


Figure 10. Safe Operating Area

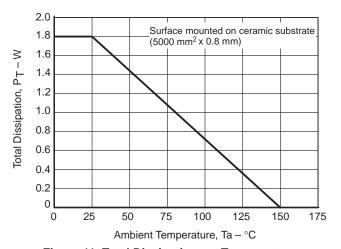
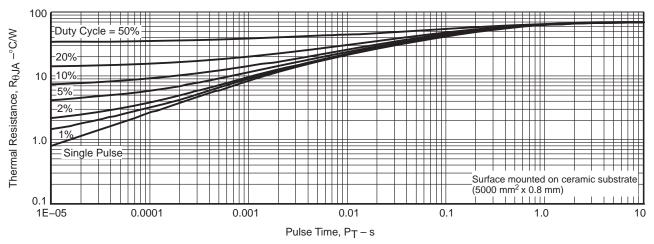
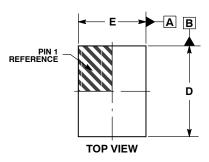
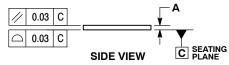
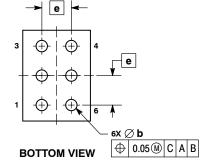


Figure 11. Total Dissipation vs. Temperature




Figure 12. Thermal Response


Note on Usage: Since the EFC2J013NUZ is a MOSFET product, please avoid using this device in the vicinity of highly charged objects. Please contact sales for use except the designated application.



WLCSP6 2.00x1.49x0.10 CASE 567UF **ISSUE O**

DATE 21 APR 2017

NOTES:

- ANTES.

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

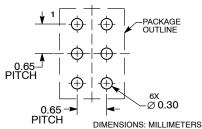
	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.08	0.10	0.12	
b	0.27	0.30	0.33	
D	1.95	2.00	2.05	
Е	1.44	1.49	1.54	
е	0.65 BSC			

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Assembly Location

= Year


W = Work Week

ZZ = Assembly Lot

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■" may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30589G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WLCSP6 2.00x1.49x0.10		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor datas sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9