SN54153, SN54LS153, SN54S153 SN74153, SN74LS153, SN74S153 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

SDLS055A - DECEMBER 1972 - REVISED MAY 2007

- Permits Multiplexing from N lines to 1 line
- Performs Parallel-to-Serial Conversion
- Strobe (Enable) Line Provided for Cascading (N lines to n lines)
- High-Fan-Out, Low-Impedance, Totem-Pole Outputs
- Fully Compatible with most TTL Circuits

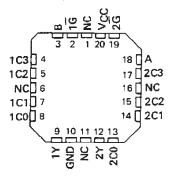
	Т	YPICAL AVERA	AGE	TYPICAL
TYPE	PROPA	GATION DELA	Y TIMES	POWER
	FROM	FROM	FROM	DISSIPATION
	DATA	STROBE	SELECT	
153	14 ns	17 ns	22 ns	180 mW
LS153	14 ns	19 ns	22 ns	31 mW
'S153	6 ns	9.5 ns	12 ns	225 mW

description

Each of these monolithic, data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR gates. Separate strobe inputs are provided for each of the two four-line sections.

FUNCTION TABLE

- F	LECT PUTS		ATA	INPUT:	3	STROBE	OUTPUT
В	Α	CO	C1	C2	C3	Ğ	γ
×	×	X	X	Х	×	Н	L
L	L	L	X	X	x	Ł.	L
L	L	н	Х	X	х	L	н
L	Н	х	L	×	×	L	L
L	н	×	Н	X	×	L	н
н	L	х	х	L	x	L	L
Н	L	x	Х	Н	×	L	н
Н	Н	×	Х	X	ㄴ	Ł	L
Н	H	Х	Х_	Х	н	L	н


Select inputs A and B are common to both sections.

H = high level, L = low level, X = irrelevant

SN54153, SN54LS153, SN54S153...J OR W PACKAGE⁽¹⁾ SN74153...N PACKAGE SN74LS153, SN74S153...D OR N PACKAGE (TOP VIEW)

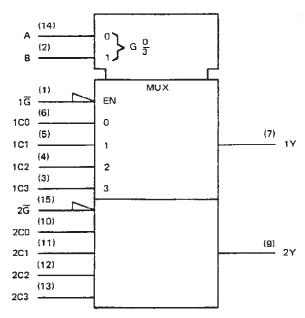
1 <u>G</u> [1	U ₁₆	∐ vcc
вС	2	15	2 G
1C3 🗆	3	14	□ A
1C2	4	13	2C3
1C1 🗆	5	12	2C2
1 CO [6	11	2C1
1Y 🗌	7	10	2C0
GND [8	9	_ 2Y

SN54LS153, SN54S153 . . . FK PACKAGE ⁽¹⁾ (TOP VIEW)

NC - No internal connection

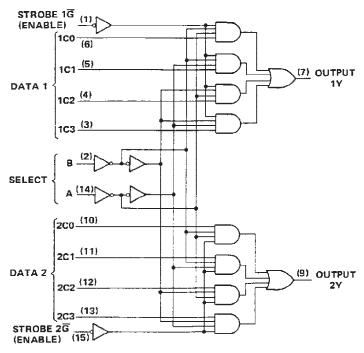
(1) SN54S153, SN74153, and SN74S153 are obsolete.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


Supply voltage, Vo	C (See Note 1)			 	 		 	 	 			7	V
Input voltage: '15	3, ' S153			 	 		 	 	 			5.5	V
'LS'	1 53			 	 		 	 	 			7	V
Operating free-air t	emperature range:	SN541		 	 	<i></i>	 	 	 _	55°	C to	125°0	3
		SN747		 . ,	 		 	 	 	. 0	°C t	o 70°0	2
Storage temperatur	e range		•	 	 		 	 	 _	65 °	C to	150°0	2

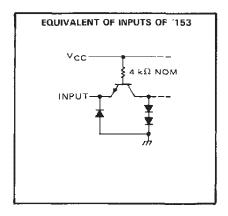
NOTE 1: Voltage values are with respect to network ground terminal.

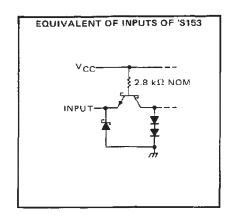
PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



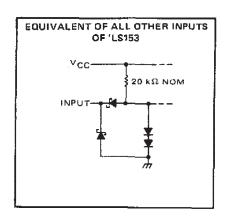
logic symbol[†]

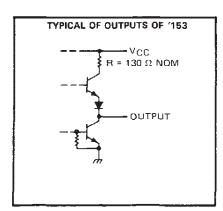
[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

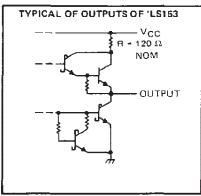

logic diagrams (positive logic)

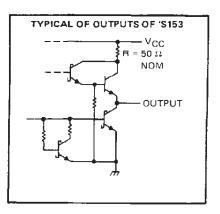


Pin numbers shown are for D, J, N, and W packages.




schematics of inputs and outputs





SN54153, SN74153 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN5415	3		UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	< OIVII
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μА
Low-level output current, IOL		-	16		·	16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST COMPLETIONS!		SN5415	3		UNIT		
	PARAMETER	TEST CONDITIONS [†]	MIN	TYP#	MAX	MIN	ТҮР‡	MAX	UNIT
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				8.0			8.0	V
VIK	Input clamp voltage	V _{CC} = MIN, I ₁ = -12 mA			-1.5			-1.5	V
voн	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 μA	2.4	3.4		2.4	3.4		٧
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
f g	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1	mΑ
ίн	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40			40	μΑ
IIL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX	-20		-55	18		-57	mA
ICCL	Supply current, output low	V _{CC} = MAX, See Note 2		36	52		36	60	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM	то	TEST CONDITIONS	MIN	TYP	MAX	LINIT
FARAWEIGN	(INPUT)	(DUTPUT)	TEST CONDITIONS			10000	0,,,,
tPLH	Data	Y			12	18	ns
tPHL	Data	Y	7		15	23	กร
tPLH	Select	Y	C _L = 30 pF, R _L = 400 Ω,		22	34	ns
tPHL	Select	Y	See Note 3		22	34	П\$
tPLH	Strobe G	Y	7		19	30	กร
tpHL	Strobe G	Y	7		15	23	กร

 $[\]P_{tPLH} = propagation delay time, low-to-high-level output$

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$.

SNot more than one output should be shorted at a time.

NOTE 2: I_{CCL} is measured with the outputs open and all inputs grounded.

tpHL = propagation delay time, high-to-low-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

recommended operating conditions

		S	N54LS1	53	S	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	ONTI
Vcc	Supply voltage	4.5	5	5,5	4.75	5	5.25	٧
VіН	High-level input voltage	2			2			٧
VIL	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current			- 0.4			- 0.4	mΑ
loL	Low-level output current			4			8	mΑ
TA	Operating free-air temperature	55		125	Ö		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDIT	TONE T		S	N54LS1	153	s	UNIT		
PANAIVIETEN	FEST CONDIT	10105 1		MIN	TYP‡	MAX	MIN	TYP‡	MAX	וואטן
Vik	V _{CC} = MIN, I ₁ = - 18 mA					- 1.5		-	- 1.5	V
Voн	V _{CC} = MIN, V _{IH} = 2 V, ! _{OH} = -0.4 mA	VIL = MAX		2.5	3.4		2,7	3.4		٧
Va	V _{CC} = MIN, V _{IH} = 2 V,		IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	VIL = MAX,	Ī	I _{OL} = 8 mA]		·		0.35	0.5	1 '
I4	VCC = MAX, VI = 7 V				-	0.1			0.1	mΑ
IrH	V _{CC} = MAX, V ₁ = 2.7 V		•			20			20	μА
1G, 2G	V _{CC} = MAX, V _J = 0.4 V					- 0.2	1		-0.2	
All other	VCC = WAX, VI = 0.4 V					- 0.4			- 0.4	mA
loss	Vcc = MAX			20		— 100	- 20		- 100	mA
ICCL	V _{CC} = MAX, See Note 2			ŀ	6.2	10		6.2	10	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICCL is measured with the outputs open and all inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH	Data	Y			10	15	ns
tPHL.	Data	Y	C _L = 15 pF,		17	26	п\$
tPLH	Select	Y	$R_{L} = 2 k\Omega$,		19	29	пѕ
tPHL	Select	Y	See Note 3		25	38	ns
tPLH	Strobe G	Y	See Note S		16	24	nş
tPHL	Strabe G	Y			21	32	ns

 $[\]P_{\text{tpLH}}$ = propagation delay time, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V $_{CC}$ = 5 V, T $_{A}$ = 25 $^{\circ}$ C.

[§]Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

SN54S153, SN74S153 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

	S	N54S15	3	SN74S153			דומט
	MIN	NOM	MAX	MIN	NOM	MAX	וואוט
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-1			-1	mΑ
Low-level output current, IQL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	,C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP	MAX	UNIT
VIH	High-level input voltage		2			٧
VIL	Low-level input voltage				8.0	V
VIK	Input clamp voltage	V _{CC} = MIN, I ₁ = -18 mA			-1.2	٧
V	High lavel output valtage	V _{CC} = MIN, V _{IH} = 2 V, Series 54	2.5	3.4		V
VOH	High-level output voltage	V _{IL} = 0.8 V, IOH = -1 mA Series 74	3 2.7	3.4		ľ
	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	- 1	_	0.5	V
OF	Low-level output vortage	V _{IL} = 0.8 V, I _{OL} = 20 mA			0.5	L
T _I	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	mΑ
ЧН	High-level input current	V _{CC} = MAX, V _I = 2.7 V			50	μA
HL	Low-level input current	V _{CC} = MAX, V _I = 0.5 V			-2	mA
los	Short-circuit output current \$	V _{CC} = MAX	-40		-100	mΑ
CCL	Supply current, low-level output	V _{CC} = MAX, See Note 2		45	70	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Data	Y			6	9	ns
tPHL	Data	Y	7		6	9	ns
^t PLH	Select	Y	CL = 15 pF, RL = 280 Ω,		11.5	18	пѕ
tPHL	Select	Y	See Note 3		12	18	ns
tРLН	Strobe G	Y	7		10	15	ns
teht.	Strobe 🛱	Y			9	13.5	ns

 $t_{PLH} = propagation delay time, low-to-high-level output$

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V. T}_{A} = 25^{\circ}\text{C.}$

[§]Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.

NOTE 2: ICCL is measured with the outputs open and all inputs grounded.

tpHL = propagation dalay time, high-to-low-level output

25-Sep-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
76011012A	ACTIVE	LCCC	FK	20	1	(2) TBD	POST-PLATE	(3) N / A for Pkg Type	-55 to 125	(4/5) 76011012A SNJ54LS 153FK	Samples
7601101EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601101EA SNJ54LS153J	Samples
7601101FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601101FA SNJ54LS153W	Samples
JM38510/07902BEA	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
JM38510/07902BFA	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI	-55 to 125		
JM38510/30902B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30902B2A	Samples
JM38510/30902BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30902BEA	Samples
M38510/30902B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30902B2A	Samples
M38510/30902BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30902BEA	Samples
SN54153J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54153J	Samples
SN54LS153J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS153J	Sample
SN54S153J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SN74153N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS153D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS153	Sample
SN74LS153DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS153	Sample
SN74LS153DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS153	Sample
SN74LS153DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS153	Sample
SN74LS153DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS153	Samples

25-Sep-2013

Orderable Device	Status	Package Type		Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
SN74LS153DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS153	Samples
SN74LS153J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	0 to 70		
SN74LS153N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS153N	Samples
SN74LS153N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS153NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS153N	Samples
SN74LS153NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS153	Samples
SN74LS153NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS153	Samples
SN74LS153NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS153	Samples
SN74S153D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		
SN74S153N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74S153N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SNJ54153J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54153J	Samples
SNJ54153W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54153W	Samples
SNJ54LS153FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76011012A SNJ54LS 153FK	Samples
SNJ54LS153J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601101EA SNJ54LS153J	Samples
SNJ54LS153W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601101FA SNJ54LS153W	Samples
SNJ54S153FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
SNJ54S153J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SNJ54S153W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI	-55 to 125		

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

PACKAGE OPTION ADDENDUM

25-Sep-2013

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

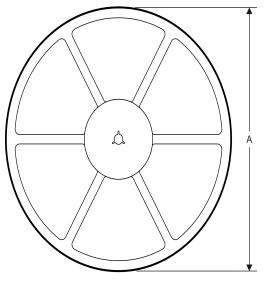
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54153, SN54LS153, SN54S153, SN74LS153, SN74LS153, SN74S153:

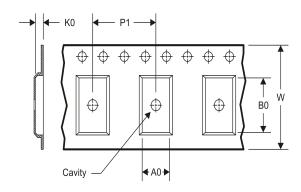
- Catalog: SN74153, SN74LS153, SN74S153
- Military: SN54153, SN54LS153, SN54S153

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

14-Jul-2012 www.ti.com


TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

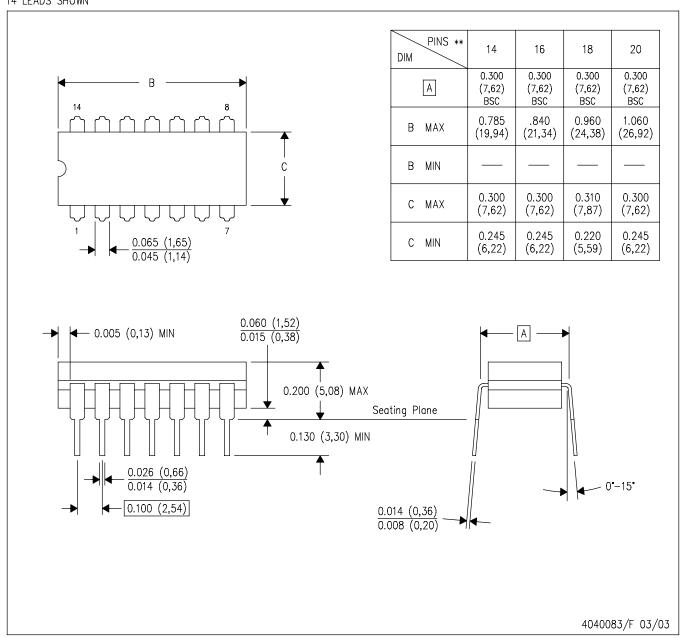
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

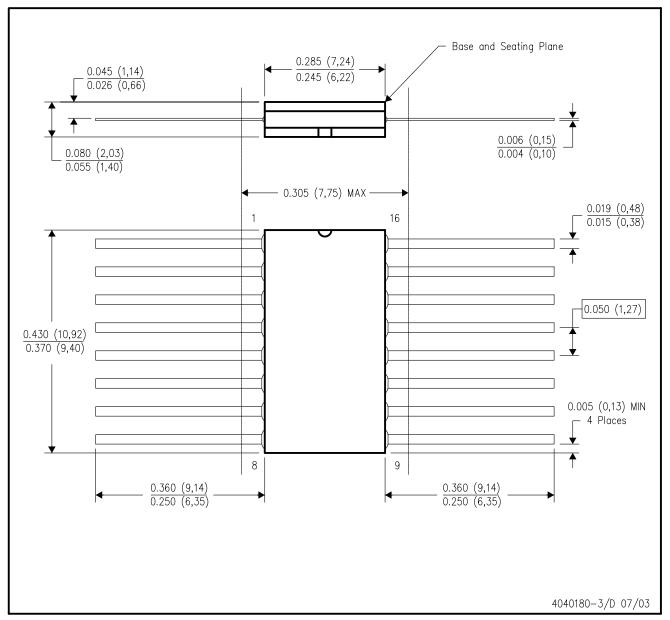
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS153DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS153NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

*All dimensions are nominal

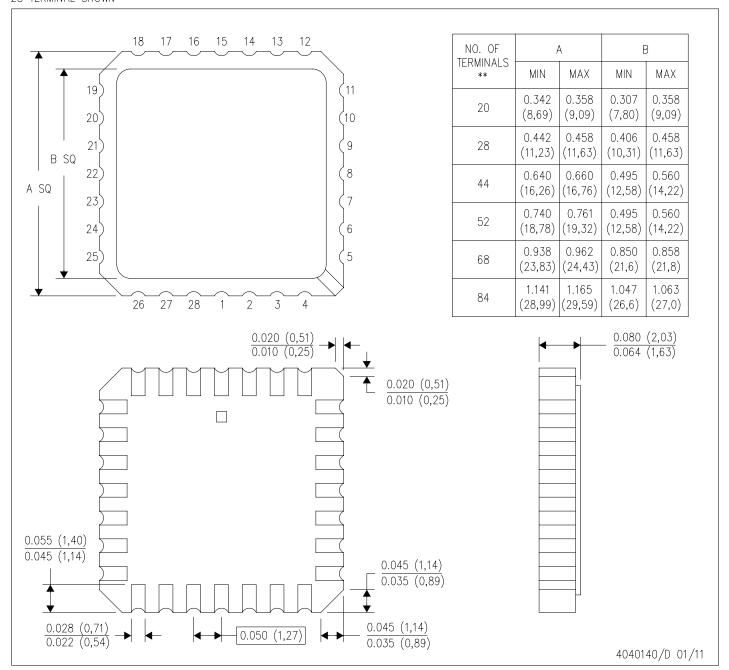
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS153DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS153NSR	SO	NS	16	2000	367.0	367.0	38.0


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

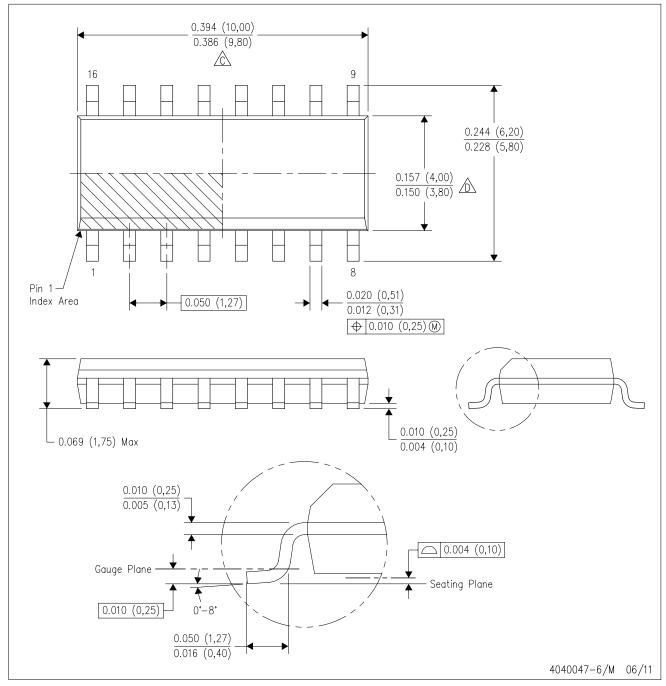
28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9