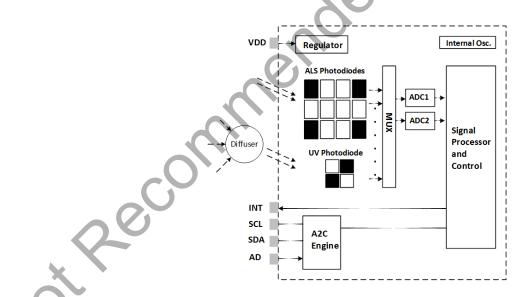


Si1133 Data Sheet

UV Index/Ambient Light Sensor IC with I²C Interface


The Si1133 is a UV Index Sensor and Ambient Light Sensor with I^2C digital interface and programmable-event interrupt output. This sensor IC includes dual 23-bit analog-to-digital converters, integrated high-sensitivity array of UV, visible and infrared photodiodes, and digital signal processor. The Si1133 is provided in a 10-lead 2x2 mm DFN package and capable of operation from 1.62 to 3.6 V over the -40 to +85 °C temperature range.

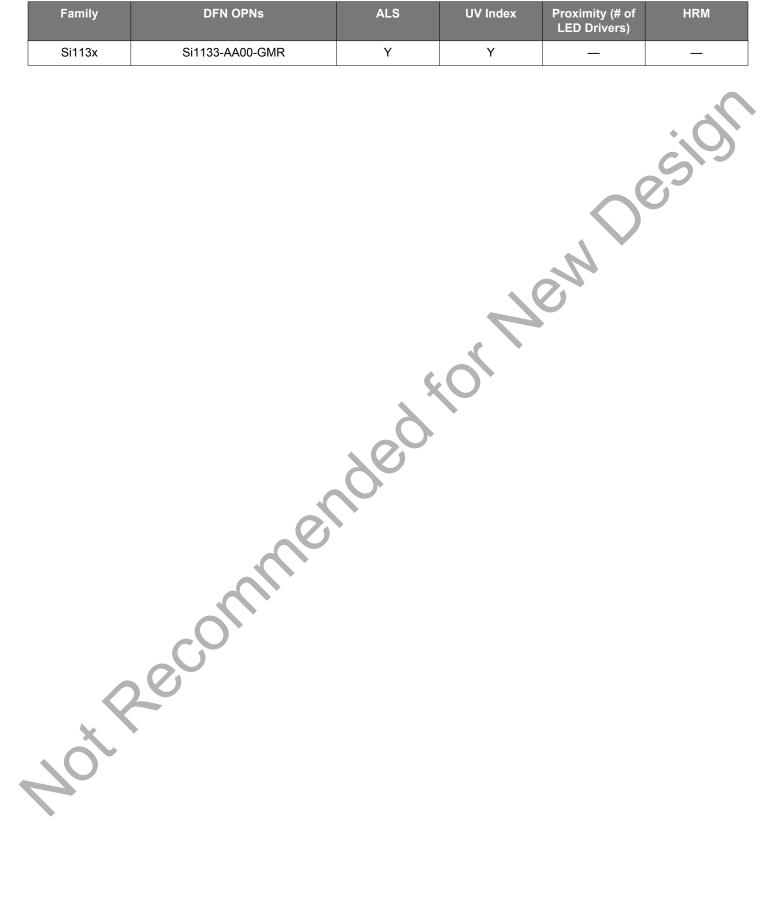
Applications

- Wearables
- Handsets
- · Display backlighting control
- · Consumer electronics

KEY FEATURES

- High accuracy UV index sensor (0 to > 20 uV)
 - · Matches erythermal curve
- · Ambient light sensor
 - <100 mlx resolution possible, allowing operation under dark glass
 - Up to 128 klx dynamic range possible across two ADC range settings
- Industry's lowest power consumption
- 1.62 to 3.6 V supply voltage
- <500 nA standby current
- · Internal and external wake support
- Built-in voltage supply monitor and power-on reset controller

1. Feature List


- · High accuracy UV index sensor
 - · Matches erythermal curve
- · Ambient light sensor
 - <100 mlx resolution possible, allowing operation under dark glass<100 mlx resolution possible, allowing operation under dark glass
 - Up to 128 klx dynamic range possible across two ADC range settings
- · Industry's lowest power consumption
 - 1.62 to 3.6 V supply voltage
 - · <500 nA standby current

 - ot Recommended for New

- · Trimmable internal oscillator with typical 1% accuracy
- · I2C Serial communications
 - · Up to 3.4 Mbps data rate
 - · Slave mode hardware address decoding
- · Small package options
 - 10-lead 2 x 2 x 0.65 mm QFN
- Temperature Range: -40 to +85 °C

2. 2 x 2 mm DFN Ordering Guide

Family	DFN OPNs	ALS	UV Index	Proximity (# of LED Drivers)	HRM
Si113x	Si1133-AA00-GMR	Y	Y	_	_

3. Functional Description

The Si1133 is a UV and Ambient Light sensor whose operational state is controlled through registers accessible through the I²C interface. The host can command the Si1133 to initiate on-demand UV or Ambient Light measurement. The host can also place the Si1133 in an autonomous operational state where it performs measurements at set intervals and interrupts the host either after each measurement is completed or whenever a set threshold has been crossed. This results in an overall system power saving allowing the host controller to operate longer in its sleep state instead of polling the Si1133.

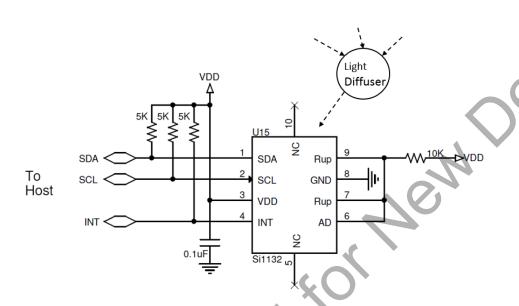


Figure 3.1. Si1133 Basic Application

3.1 Ambient Light Sensing

The Si1133 has photodiodes capable of measuring visible and infrared light. However, the visible photodiode is also influenced by infrared light. The measurement of illuminance requires the same spectral response as the human eye. If an accurate lux measurement is desired, the extra IR response of the visible-light photodiode must be compensated. Therefore, to allow the host to make corrections to the infrared light's influence, the Si1133 reports the infrared light measurement on a separate channel. The separate visible and IR photodiodes lend themselves to a variety of algorithmic solutions. The host can then take these two measurements and run an algorithm to derive an equivalent lux level as perceived by a human eye. Having the IR correction algorithm running in the host allows for the most flexibility in adjusting for system-dependent variables. For example, if the glass used in the system blocks visible light more than infrared light, the IR correction needs to be adjusted.

If the host is not making any infrared corrections, the infrared measurement can be turned off in the CHAN LIST parameter.

By default, the measurement parameters are optimized for indoor ambient light levels, where it is possible to detect low light levels. For operation under direct sunlight, the ADC can be programmed to operate in a high signal operation so that it is possible to measure direct sunlight without overflowing.

For low-light applications, it is possible to increase the ADC integration time. Normally, the integration time is 24.4 µs. By increasing this integration time, the ADC can detect light levels as low as 100 mlx. The ADC integration time for the Visible Light Ambient measurement can be programmed independently of the ADC integration time of the Infrared Light Ambient measurement. The independent ADC parameters allow operation under glass covers having a higher transmittance to Infrared Light than Visible Light.

When operating in the lower signal range, or when the integration time is increased, it is possible to saturate the ADC when the ambient light suddenly increases. Any overflow condition will have the corresponding data registers report a value of 0xFFddFF for 16-bit mode and 0x7FFFFF for 24-bit mode. The host can adjust the ADC sensitivity to avoid an overflow condition. If the light levels return to a range within the capabilities of the ADC, the corresponding data registers begin to operate normally.

The Si1133 can initiate ALS measurements either when explicitly commanded by the host or periodically through an autonomous process. Refer to Section 4. Operational Modes for additional details.

Two ADCs can be used for simultaneous readings of the visible or UV photodiode and black dark current reference photodiode. When subtracted, these differential measurements remove dark current, reducing noise that enables lower light sensitivity.

3.2 Ultraviolet (UV) Index Sensing

The UV Index is a number linearly related to the intensity of sunlight reaching the earth and is weighted according to the CIE erythema Action Spectrum as shown in Figure 4. This weighting is a standardized measure of human skin's response to different wavelengths of sunlight from UVB to UVA. The UV Index has been standardized by the World Health Organization as shown in the figure below.

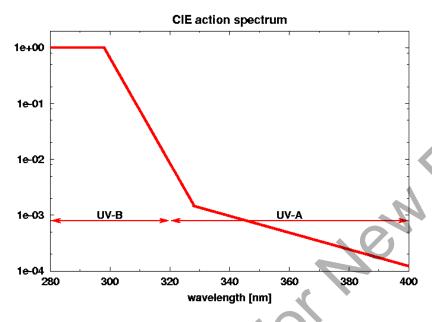


Figure 3.2. CIE Erythemal Action Spectrum

Figure 3.3. UV Index Scale

Isolated UV photodiodes that closely match the erythema curve for accurate UV Index measurements. Matching dark current reference photodiodes are also provided to cancel UV photodiode noise. The typical calibrated UV Index sensor response vs. calculated ideal UV Index is shown below for several cloudy and sunny days and at various angles of the sun/time of day.

Given the possible variation of the overlay materials above the Si1133, it is generally recommended that outgoing factory calibration be performed at the outgoing test to decrease system-to-system variation.

The performance of the Si1133 is best when under a Teflon diffuser while diffuser is within +/- 30 degrees of the sensor view angle. See the plot below.

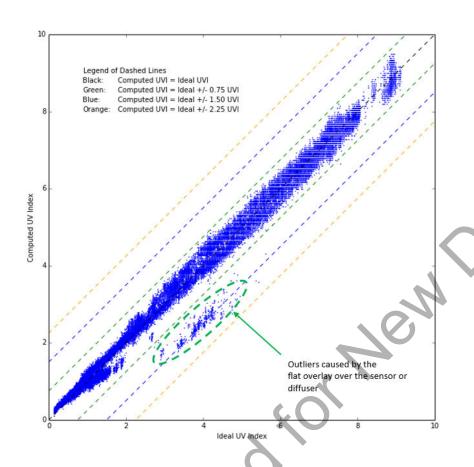


Figure 3.4. Typical UV Index Scatter Plot (+/- 30 ° Angular View of a Teflon Diffuser)

The test setup is as follows:

Overlay	Corning Gorilla © Glass (0.7 mm thick)
Diffuser	0.8 mm dia. diffuser, 0.25 mm above QFN package, under glass
ADC Gain	9
Decimation Filter Setting	3
Samples Averaged / Reading	1
Formula	UV index = 0.0187(0.00391 Input ² + Input)

3.3 Power Consumption

The Si1133 alternates between three power consumption states: Active, Suspend, and Sleep. (See the diagram below for an illustratation of each of these states.) The total power consumed by the part depends heavily on the measurement rate, measurement mode, and measurement gain for the various channels enabled. The power levels for the three modes, as well as the Active Power time per reading, are provided in this document. The Suspend time (where the A/D and PD are operating) has two parts. One is determined by the user setup and can be determined by the DECIM_RATE and HW_GAIN setup information, while the other (A/D Startup time) is determined by tadstart, shown in Table 8.2 Performance Characteristics¹ on page 35.

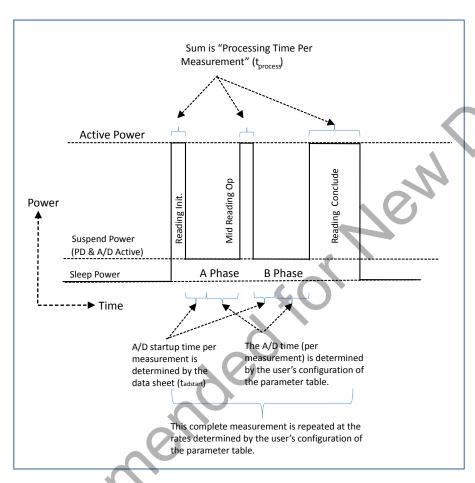


Figure 3.5. Power Consumption States During a Reading

Every A/D conversion has three periods:

155 µs at 4.5 mA (setup time by internal controller)

48.8 μs at 525 μA (setup time by A/D)

48.8 µs * (2 ** gain) at 525 µA (Actual A/D time that will vary with integration time)

3.4 Host Interface

The host interface to the Si1133 consists of three pins:

- SCL
- SDA
- INT

SCL and SDA are standard open-drain pins as required for I^2C operation. The Si1133 asserts the INT pin to interrupt the host processor. The INT pin is an open-drain output. A pull-up resistor is needed for proper operation. As an open-drain output, it can be shared with other open-drain interrupt sources in the system.

For proper operation, the Si1133 is expected to fully complete its Initialization Mode prior to any activity on the I²C.

The INT, SCL, and SDA pins are designed so that it is possible for the Si1133 to enter the Off Mode by software command without interfering with normal operation of other I²C devices on the bus.

The I²C interface allows access to the Si1133 internal registers.

An I²C write access always begins with a start (or restart) condition. The first byte after the start condition is the I2C address and a read-write bit. The second byte specifies the starting address of the Si1133 internal register. Subsequent bytes are written to the Si1133 internal register sequentially until a stop condition is encountered. An I²C write access with only two bytes is typically used to set up the Si1133 internal address in preparation for an I²C read.

The I²C read access, like the I²C write access, begins with a start or restart condition. In an I²C read, the I²C master then continues to clock SCK to allow the Si1133 to drive the I²C with the internal register contents. The Si1133 also supports burst reads and burst writes. The burst read is useful in collecting contiguous, sequential registers. The Si1133 register map was designed to optimize for burst reads for interrupt handlers, and the burst writes are designed to facilitate rapid programming of commonly used fields, such as thresholds registers.

The internal register address is a six-bit (bit 5 to bit 0) plus an Auto increment Disable (on bit 6). The Auto increment Disable is turned off by default. Disabling the auto incrementing feature allows the host to poll any single internal register repeatedly without having to keep updating the Si1133 internal address every time the register is read.

It is recommended that the host should read performance measurements (in the I²C Register Map) when the Si1133 asserts INT. Although the host can read any of the Si1133's I²C registers at any time, care must be taken when reading 2-byte measurements outside the context of an interrupt handler. The host could be reading part of the 2-byte measurement when the internal sequencer is updating that same measurement coincidentally. When this happens, the host could be reading a hybrid 2-byte quantity whose high byte and low byte are parts of different samples. If the host must read these 2-byte registers outside the context of an interrupt handler, the host should "double-check" a measurement if the measurement deviates significantly from a previous reading.

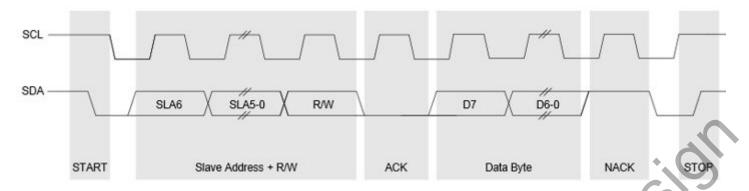


Figure 3.6. I²C Bit Timing Diagram

Figure 3.7. Host Interface Single Write

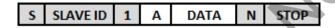


Figure 3.8. Host Interface Single Read

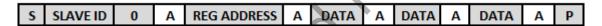


Figure 3.9. Host Interface Burst Write

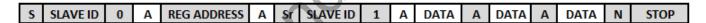


Figure 3.10. Host Interface Burst Read

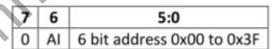


Figure 3.11. Si1133 REG ADDRESS Format

The following notes apply for the figures above:

- 1. Gray boxes are driven by the host to the Si1133.
- 2. White boxes are driven by the Si1133.
- 3. A = ACK or "acknowledge".
- 4. N = NACK or "no acknowledge".
- 5. S = START condition.
- 6. Sr = repeat START condition.
- 7. P = STOP condition.
- 8. AI = Disable Auto Increment when set.

4. Operational Modes

The Si1133 can be in one of many operational modes at any time. It is important to consider the operation mode, since the mode has an impact on the overall power consumption of the Si1133. The various modes are:

- · Off Mode
- · Initialization Mode
- · Standby Mode
- · Forced Conversion Mode
- · Autonomous Mode

4.1 Off Mode

The Si1133 is in the Off Mode when V_{DD} is either not connected to a power supply or if the V_{DD} voltage is below the stated VDD_OFF voltage described in the electrical specifications. As long as the parameters stated in are not violated, no current will flow through the Si1133. In the Off Mode, the Si1133 SCL and SDA pins do not interfere with other I^2C devices on the bus. Keeping V_{DD} less than VDD_OFF is not intended as a method of achieving lowest system current draw. The reason is that the ESD protection devices on the SCL, SDA, and INT pins also draw from a current path through V_{DD} . If V_{DD} is grounded, for example, then current flows from system power to system ground through the SCL, SDA, and INT pull-up resistors and the ESD protection devices. Allowing V_{DD} to be less than VDD OFF is intended to serve as a hardware method of resetting the Si1133 without a dedicated reset pin.

The Si1133 can also re-enter the Off Mode upon receipt of a software reset sequence. Upon entering Off Mode, the Si1133 proceeds directly from the Off Mode to the Initialization Mode.

4.2 Initialization Mode

When power is applied to V_{DD} and is greater than the minimum V_{DD} Supply Voltage stated in the electrical specification table, the Si1133 enters its Initialization Mode. In the Initialization Mode, the Si1133 performs its initial startup sequence. Since the I^2C may not yet be active, it is recommended that no I^2C activity occur during this brief Initialization Mode period. The "Start-up time" specification in the electrical specification table is the minimum recommended time the host needs to wait before sending any I^2C accesses following a power-up sequence. After Initialization Mode has completed, the Si1133 enters Standby Mode. During the Initialization mode, the I^2C address selection is made according to whether LED2 is pulled up or down.

4.3 Standby Mode

The Si1133 spends most of its time in Standby Mode. After the Si1133 completes the Initialization Mode sequence, it enters Standby Mode. While in Standby Mode, the Si1133 does not perform any Ambient Light or UV measurements. However, the I²C interface is active and ready to accept reads and writes to the Si1133 registers. The internal Digital Sequence Controller is in its sleep state and does not draw much power. In addition, the INT output retains its state until it is cleared by the host.

 I^2C accesses do not necessarily cause the Si1133 to exit the Standby Mode. For example, reading Si1133 registers is accomplished without needing the Digital Sequence Controller to wake from its sleep state.

4.4 Forced Conversion Mode

The Si1133 can operate in Forced Conversion Mode under the specific command of the host processor. The Forced Conversion Mode is entered when the FORCE command is sent. Upon completion of the conversion, the Si1133 can generate an interrupt to the host if the corresponding interrupt is enabled. It is possible to initiate both a UV and ALS measurement.

4.5 Automated Operation Mode

The Si1133 can be placed in the Autonomous Operation Mode where measurements are performed automatically without requiring an explicit host command for every measurement. The START command is used to place the Si1133 in the Autonomous Operation Mode.

The Si1133 updates the I²C registers for UV and ALS automatically. The host can also choose to be notified when these new measurements are available by enabling interrupts. The conversion frequency for autonomous operation is set up by the host prior to the START command.

The Si1133 can also interrupt the host when the UV or ALS measurement reach a pre-set threshold. To assist in the handling of interrupts the registers are arranged so that the interrupt handler can perform an I²C burst read operation to read the necessary registers, beginning with the interrupt status register, and cycle through the various output registers.

5. User to Sensor Communication

5.1 Basic I²C Operation

I²C operation is dependent on serial I²C reads and writes to an addressable bank of memory referred to as I²C space. The diagram below outlines the registers used, some functionality and the direction of data flow. The I²C address is initially fixed but can be programmed to a new value. This new value is volatile and reverts to the old value on hardware or software reset. Only 7-bit I²C addressing is supported; 10-bit I²C addressing is not supported. The Si1133 responds to the I²C address of 0x55 or to an alternate address of 0x52.

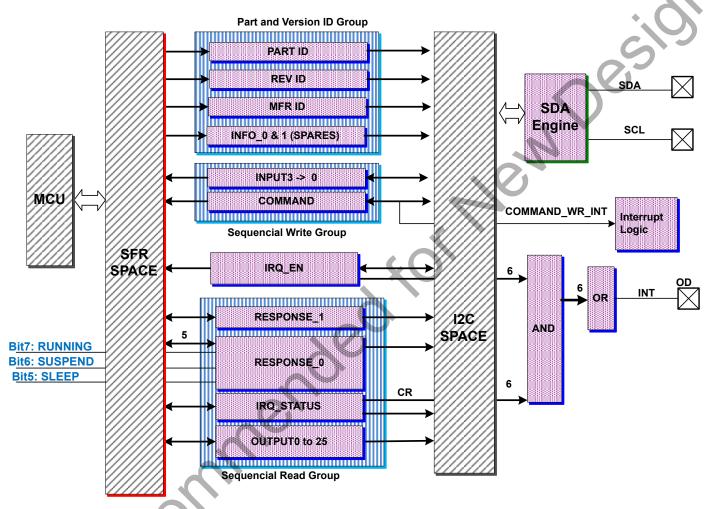


Figure 5.1. I²C Interface Block Diagram

5.2 Relationship Between I²C Registers and Parameter Table

Note that most of the Si1133 configuration is accomplished through 'Parameters'. The Si1133 has an internal MCU with SRAM. The Parameters are stored in the Si1133 Internal MCU SRAM. The I²C Registers can be viewed as mailbox registers that form an interface between the host and the internal MCU. The figure below shows the relationship between some of the key interface registers to the internal Parameters managed by the internal MCU.

- The I²C registers are directly accessible by the host.
- · The parameter table is:
 - · Accessible indirectly via the command register (and others).
 - Used during setup to fix the operating modes of the Si1133.
 - 0x2C bytes long and is read and written indirectly, one bye at a time, via the command register.

The data stored in the parameter table is volatile and is lost when the part is powered down or software reset command is sent to the part via the I²C part.

I2C Registers Directly Accessible by Host Sensor Parameter Table. Indirectly Accessible by Host gister Name Parameter PART ID 0 IN Address REV ID IN 0x00 I2C_ADDR MFR_ID 2 IN 0x01 CHAN LIST INFO0 3 IN 0x02 ADCCONFIG0 HOSTIN3 IN/OUT ADCS ENSO 0x031 Fields used to HOSTIN2 8 IN/OUT 0x04 ADCPOST0 write to HOSTIN1 IN/OUT 9 Parameter Table 0x05 MEASCONFIGO HOSTINO 0A IN/OUT ADCCONFIG1 0x06 COMMAND 0B IN/OUT 0x07 ADCSENS1 0F 0x08 ADCPOST1 RESPONSE1 10 IN 0x09 MEASCONFIG1 RESPONSE0 IN 11 $0x0\Delta$ ADCCONFIG2 IRQ STATUS 12 IN HOSTOUT0 13 IN 0x0B ADCSENS2 HOSTOUT1 14 IN 0x00 ADCPOST2 HOSTOUT2 15 IN MEASCONFIG2 0x0D 16 IN HOSTOUT3 0x0E ADCCONFIG3 IN 0x0F ADCSENS3 HOSTOUT5 18 IN 0x10 ADCPOST3 19 HOSTOUT8 IN MEASCONFIG3 0x11 HOSTOUT7 1A IN HOSTOUT8 1B IN. 0x12 ADCCONFIG4 1C IN HOSTOUT9 0x13 ADCSENS4 0x14 ADCPOST4 HOSTOUT11 1E ΙŇ 0x15 MEASCONFIG4 HOSTOUT12 IN 1E 0x16 ADCCONFIG5 HOSTOUT13 IN 0x17 ADCSENS5 21 HOSTOUT14 IN 0x18 ADCP OSTS HOSTOUT15 22 IN HOSTOUT18 IN 0x19 MEASCONFIG5 HOSTOUT17 IN 0x1A MEASRATE H HOSTOUT18 25 IN MEASRATE I 0x1B HOSTOUT19 26 IN 0x1C MEASCOUNTO 27 HOSTOUT20 IN MEASCOUNT1 0x1D HOSTOUT21 28 IN 0x1E MEASCOUNT2 HOSTOUT22 29 IN 0x1F Unused IN HOSTOUT23 2A HOSTOUT24 28 IN 0x20 Unused HOSTOUT25 IN 0x21 Unused 0x22 Unused 0x23 Unused Unused 0x24 0x25 THRESHOLDO_H 0x26 THRESHOLDO L 0x27 THRESHOLD1 H THRESHOLD1 L 0x28 0x29 THRESHOLD2_H 0x2A THRESHOLD2 I 0x2B BURST

Figure 5.2. Accessing Parameters through I²C Registers

5.3 I²C Command Register Operation

Writing the codes shown below in the command summary table signals the sensor to undertake one of several complex operations.

These operations take time and all commands should be followed by a read of the RESPONSE0 register to confirm the operation is complete by examining the counter and to check for an error in the error bit. The error bit is set in the RESPONSE0 register's command counter if there is an error in the previous command (e.g., attempt to write to an illegal address beyond the parameter table, or a channel and /or burst configuration that exceeds the size of the output field (26 bytes)). If there is no such error, then the counter portion of the command counter will be incremented.

The RESPONSE_0 register should be read after every command to determine completion and to check for an error. If an error is found, which should not happen except for a host SW bug, the host should clear the error with a RESET command or a RESET_CMD_CTR command.

One operating option is to do a RESET_CMD_CTR command before every command.

Two of the commands imply another I²C register contains an argument.

- STORE_NEW_I2C ADDR command implies a new address has been loaded in the parameter table location I2CID PARAMETER.
- PARAM_SET command implies a byte has been stuffed into INPUT0 register.
- The three CHAN_LIST commands imply the CHAN_LIST location in the parameter table has been configured. A valid CHAN_LIST implies other configuration areas in the parameter table are correctly setup as well.

Two of the commands result in another I²C register containing return arguments (aside from incrementing RESPONSE0).

- PARAM_SET results in the write data being copied in to I2C RESPONSE1 register.
- · PARAM QUERY results in read data in the I2C RESPONSE1 register.

Table 5.1. Command Summary

Command Register Commands	Code	Input to Sensor	Output of Sensor
RESET_CMD_CTR	0x00		
Resets RESPONSE0 CMMND_CTR field to 0.			
RESET_SW	0x01		
Forces a Reset, Resets RESPONSE0 CMMND_CTR field to 0xXXX01111.			(0)
FORCE	0x11		
Initiates a set of measurements specified in CHAN_LIST parameter. A FORCE command will only execute the measurements which do not have a meas counter index configured in MEAS-CONFIGX.			000
PAUSE	0x12		
Pauses autonomous measurements specified in CHAN_LIST.		70	
START	0x13		
Starts autonomous measurements specified in CHAN_LIST. A START autonomous command will only start the measurements which has a counter index selected in MEASCONFIGx.	2 %	0)	
PARAM_QUERY	0b01xxxxxx		RESPONSE1 = result
Reads Parameter xxxxxx and store results in RE-SPONSE1.xxxxxx is a 6 bit Address Field (64 bytes).	96		
PARAM_SET	0b10xxxxxx	INPUT0	RESPONSE1 = INPUT0
Writes INPUT0 to the Parameter xxxxxxxxxxxx is a 6 bit Address Field (64 bytes).			

Notes:

- 1. The successful completion of all commands except RESET_CMD_CTR and RESET_SW causes an increment of the CMD_CTR field of the RESPONSE0 register (bits [3:0].
- 2. Resets RESPONSE0 CMMND_CTR field to 0.
- 3. Forces a Reset, Resets RESPONSE0 CMMND_CTR field to 0xXXX01111.
- 4. Uses CHAN_LIST in Parameter Space.
- 5. "xxxxxx" is a 6-bit Address Field (64 bytes).

5.3.1 Accessing the Parameter Table (PARAM_QUERY & PARAM_SET Commands)

The parameter table is written to by writing the INPUT_0 I2C register and the PARAM_SET command byte to the Command I²C register. The format of the PARAM_SET word is such that the 6 LSBits contain the location of the target byte in the parameter table.

Example: To transfer 0xA5 to parameter table location 0b010101.

Read RESPONSE0 (address 0x11) and store the CMMND CTR field.

Write 0xA5 to INPUT0 (address 0x0A).

Write 0b10010101 to COMMAND (address 0x0B).

Read RESPONSE0 (address 0x11) and check if the CMMND CTR field incremented.

If there is no increment or error, repeat the "read the RESPONSE0" step until the CMMND_CTR has incremented. If there is an error send a RESET or a RESET CMD CTR command.

The two write commands (to INPUT0 and COMMAND) can be in the same I²C transaction.

Example: To read data from the parameter table location 0b010101.

Read the RESPONSE0 (address 0x11) and store the CMMND CTR field.

Write 0b01010101 to the COMMAND (address 0x0B).

Read RESPONSE0 (address 0x11) and check if the CMMND CTR field incremented.

If there is no increment or error, repeat the "read RESPONSE0" step until the CMMND CTR has incremented.

Read RESPONSE1 (address 0x10) this gives the read result. If there is an error send RESET or a RESET CMD CTR com-

mand.

The last two read commands (from RESPONSE0 and RESPONSE1) should not be in the same I²C transaction.

5.3.2 Sensor Operation Initiation Commands

The FORCE, PAUSE, and START commands make use of the information in CHAN_LIST. Configure CHAN_LIST prior to using any of these commands.

5.3.3 RESET_CMD_CTR Command

Resets RESPONSE0 CMMND_CTR field and does nothing else.

5.3.4 RESET Command

Resets the sensor and puts it into the same state as when powering up. The parameter table and all I²C registers are reset to their default values.

5.4 I²C Register Summary

The content of the three MSBits of Response0 after reset will depend on the running state (see the Response0 write up).

Table 5.2. I2C Registers

Register Name	I2C Address	Direction WRT Host	Function	Value after Reset (Hard or Soft)	Direction WRT Sensor
PART_ID	0x00	IN	Returns DEVID (0x33 for the Si1133).	PART_ID	OUT
HW_ID	0x01	IN	Returns Hardware ID.	HW_ID	OUT
REV_ID	0x02	IN	Hardware Rev (0xMN).	REV_ID	OUT
HOSTIN0	0x0A	IN/OUT	Data for parameter table on PAR-AM_SET write to COMMAND register.	0x00	IN
COMMAND	0x0B	IN/OUT	Initiated action in Sensor when specif- ic codes written here.	0x00	IN
RESET	0x0F	IN/OUT	The six least signifi- cant bits enable In- terrupt Operation.	0x00	IN
RESPONSE1	0x10	IN	Contains the read- back value from a param query or a param set com- mand.	0x00	IN/OUT
RESPONSE0	0x11	IIV	The 5 th MSB of the counter is an error indicator, with the 4 LSBits indicating the error code when the MSB is set.	0xXXXX1111	IN/OUT
IRQ_STATUS	0x12	IN	The six least significant bits show the interrupt status.	0x00	IN/OUT
HOSTOUT0 to	0x13 to	IN	Captured Sensor Data.	0x00	IN/OUT
HOSTOUT25	0x2C				

5.4.1 PART_ID

I2C Address = 0x00;

Contains Part ID, e.g., 0x33 for Si1133.

5.4.2 HW_ID

I2C Address = 0x01;

Contains the Hardware information.

BITS4:0 = Implementation Code

BITS7:5 = Silicon HW rev (Steps with silicon mask change)

Part Number	Features	BITS4:0 code
Si1133-AA00	UV and ALS Sensor	0x03

5.4.3 REV_ID

I2C Address = 0x02;

Contains the product revision, in a 0xMN format where "M" is the major rev and "N" the minor rev.

5.4.4 INFO0

I2C Address = 3;

Contains 0 after a hard reset or a RESET Command.

5.4.5 INFO1

I2C Address = 4;

Contains 0 after a hard reset or a RESET Command.

5.4.6 HOSTIN0

	Ivaille				120 Addie33				
HOSTIN0				プ	0x0A				
Bit	7	6	5	4	3	2	1	0	
Name				HOS	STIN0				
Туре	R/W								
Reset					0	_	_		

Bit	Name	Function
7:0	HOSTIN0	This Register is the Input to the Sensor and Output of the Host.

Contain 0 after a hard reset or a RESET Command.

5.4.7 COMMAND

I2C Address = 0x0B;

Contains 0 after a hard reset or a RESET Command.

5.4.8 IRQENABLE

I2C Address = 0x0F;

Contains 0 after a hard reset or a RESET Command.

5.4.9 RESPONSE1

I2C Address = 0x10;

Bit	7	6	5	4	3	2	1	0	
Name	RESPONSE1[7:0]								
Туре		R							
Reset	0	0	0	0	0	0	0	0	

Bit	Name	Function
7:0	RESPONSE1[7:0]	The sensor mirrors the data byte written to the parameter table here for the user to verify the write was successful. A parameter read command results in the byte read being available here for the host.

5.4.10 RESPONSE0

I2C Address = 0x11;

Bit	7	6	5	4	3	2	1	0
Name	RUNNING	SUSPEND	SLEEP	CMD_ERR	<	CMD_C	TR[4:0]	
Туре	R	R	R	R	R	R	R	R
Reset	N/A	N/A	N/A	0	1	1	1	1

Bit	Name		70	Function					
7	RUNNING	Indicator of MCU state.	ndicator of MCU state.						
6	SUSPEND	Indicator of MCU state.	ndicator of MCU state.						
5	SLEEP	Indicator of MCU state.							
4	CMD_ERR	t is cleared by a hardware reset (power up) or a RESET command or a RESET_CMD_CTR. t is set by a bad command. E.g., an attempt to write beyond the parameter table. f it is set, the CMMND_CTR field is the error code.							
3:0	CMMND_CTR	IF CMD_ERR = 0	I ² C Command R mand). It is reset to 0 by It is set to 0b111	crements on every GOOD command (successful degister write and sensor execution of the com- or the RESET_CMD_CTR command. 1 on Power Up or a RESET command. This is how at a fresh SW reset or a power up event.					
		IF CMD_ERR = 1	Code	Meaning					
			0x10	Invalid command.					
			0x11	Parameter access to an invalid location.					
•		0x12 Saturation of the ADC or overflow of accumula							
			0x13	Output buffer overflow—this can happen when Burst mode is enabled and configured for greater than 26 bytes of output.					

The RESPONSE0 register will show "RUNNING" immediately after reset and then "SLEEP" after initialization is complete.

5.4.11 IRQ_STATUS

I2C Address = 0x12;

Bit	7	6	5	4	3	2	1	0
Name	_		IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Туре	RSVD		CR	CR	CR	CR	CR	CR
Reset			0	0	0	0	0	0

Bit	Name	Function
7:6	UNUSED	Unused. Read = 00b; Write = Don't Care.
5	IRQ5	Enables an IRQ for channel 5 result being ready.
4	IRQ4	Enables an IRQ for channel 4 result being ready.
3	IRQ3	Enables an IRQ for channel 3 result being ready.
2	IRQ2	Enables an IRQ for channel 2 result being ready.
1	IRQ1	Enables an IRQ for channel 1 result being ready
0	IRQ0	Enables an IRQ for channel 0 result being ready.

5.4.12 HOSTOUTx

This section covers the twenty-six I2C Host Output Registers. These registers are the output of the sensor and input to the host.

Name	7 /	I2C Address
HOSTOUT0		0x13
to	20	to
HOSTOUT25	\O \	0x2C

Bit	7	6	5	4	3	2	1	0	
Name	HOSTOUTx								
Туре	R								
Reset	0	0	0	0	0	0	0	0	

Bit	Name	Function
7:0	HOSTOUTX	These registers are the output of the MCU and input to the host. The results of the CHAN_LIST enabled "active channel" readings are located sequentially in this table. Each channel may use 2 or 3 bytes depending on the setup.
lo.		The validity of the various channel outputs located in this table is determined by other factors. Data is valid when an IRQ status says that it is and remains valid until another reading happens. This is why it is imperative to service the interrupt before the next measurement cycle begins (Autonomous Mode), unless forced mode is used.

6. Measurement: Principle of Operation

Operation is based on the concept of channels. Channels are essentially tasks that have been setup by the user.

To setup these channels, the channel specific areas of the parameter table need to be loaded with the correct information as well as the global area of this table.

The channels' specific areas are described below, including:

- · ADC gain
- · The photodiode selected
- · The counter selected to time
- · How often to make a measurement
- . The format of the output (16 vs. 24 bits)
- · And other areas

The global area includes global information that affect all tasks, such as:

- · The list of channels that are enabled.
- The setup of the two counters that can be used by the channels.
- The three light thresholds that can be selected from by the channels.

The list of channels, CHAN_LIST, in the global area determines what operations are run and how the results are packed in the output fields.

The packing of the result data in the output fields is totally determined by the enabled channels as they are packed sequentially from the lowest enabled channel to the highest in the output field (I2C space- HOSTOUT0 to HOSTOUT25). The amount of space used by each channel is determined by the 16 vs. 24 bit selection made in the channel setup.

Although space in the output buffer is reserved by the CHAN_LIST, the data validity is determined by the IRQ_STATUS register in Autonomous Mode and by elapsed time in Forced Mode. In Burst Mode, a subset of Autonomous Mode, all the expected data is valid.

6.1 Output Field Utilization

In all modes, the CHAN_LIST configuration determines how the data is stacked in the 26 byte output field. It is done on a first-come first-served basis, with the enabled lower channels taking up the lower addresses. When burst is enabled, the channel arrangement is just repeated to higher and higher addresses. See the example below.

-	lobal Secti arameter 1	Channel Specific Section of Parameter Table	
	CHAN_LIS	Output mode	
0	Bit 0	Chan 0	16
1	Bit 1	Chan 1	24
0	Bit 2	Chan 2	16
1	Bit 3	Chan 3	16
1	Bit 4	Chan 4	24
1	Bit 5 Chan 5		16
X	Bit 6	X	X
X	Bit 7	X	X

Content		12C	
HOSTOUT1	I2C Register		Content
HOSTOUT2	HOSTOUTO	13	Channel 1 Res ut: Most Signoficant Byte
HOSTOUT3	HOSTOUT1	14	Channel 1 Result: Middle Signoficant Byte
HOSTOUT5	HOSTOUT2	15	Channel 1 Result Least Signoficant Byte
HOSTOUTS	HOSTOUT3	16	Channel 3 Result: Most Signoficant Byte
HOSTOUTR	HOSTOUT4	17	Channel 3 Result Least Signoficant Byte
HOSTOUTS 1A Channel 4 Result Least Signoficant Byte HOSTOUTS 1B Channel 5 Result Least Signoficant Byte HOSTOUTS 1C Channel 5 Result Least Signoficant Byte HOSTOUT10 1D Unus ed HOSTOUT11 1E Unus ed HOSTOUT12 1F Unus ed HOSTOUT13 20 Unus ed HOSTOUT14 21 Unus ed HOSTOUT15 22 Unus ed HOSTOUT15 23 Unus ed HOSTOUT16 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 28 Unus ed HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT23 2A Unus ed	HOSTOUT5	13	Channel 4 Result: Most Signoficant Byte
HOSTOUTS 1B Channel & Res ut; Most Signoficant Byte HOSTOUT9 1C Channel & Result Least Signoficant Byte HOSTOUT10 1D Unus ed HOSTOUT11 1E Unus ed HOSTOUT12 1F Unus ed HOSTOUT13 20 Unus ed HOSTOUT14 21 Unus ed HOSTOUT15 22 Unus ed HOSTOUT16 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 26 Unus ed HOSTOUT19 27 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed HOSTOUT24 Unus ed HOSTOUT25 Unus ed HOSTOUT26 Unus ed HOSTOUT27 Unus ed HOSTOUT28 Unus ed HOSTOUT29 Unus ed HOS	HOSTOUTS	14	Channel 4 Result: Middle Signoficant Byte
HOSTOUT19 1C Channel 6 Result Least Signoficant Byte HOSTOUT10 1D Unus ed HOSTOUT11 1E Unus ed HOSTOUT12 1F Unus ed HOSTOUT13 20 Unus ed HOSTOUT14 21 Unus ed HOSTOUT15 22 Unus ed HOSTOUT16 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 28 Unus ed HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT7	1A	Channel 4 Result Least Signoficant Byte
HOSTOUT10 1D Unus ed HOSTOUT11 1E Unus ed HOSTOUT12 1F Unus ed HOSTOUT13 20 Unus ed HOSTOUT14 21 Unus ed HOSTOUT15 22 Unus ed HOSTOUT16 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUTS	1B	Channel 5 Result: Most Signoficant Byte
HOSTOUT12 1F Unus ed HOSTOUT12 1F Unus ed HOSTOUT13 20 Unus ed HOSTOUT14 21 Unus ed HOSTOUT15 22 Unus ed HOSTOUT18 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 28 Unus ed HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	ноѕтоитэ	1C	Channel 5 Result Least Signoficant Byte
HOSTOUT12 1F Unus ed HOSTOUT14 21 Unus ed HOSTOUT15 22 Unus ed HOSTOUT16 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 28 Unus ed HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT10	1D	Unus ed
HOSTOUT13 20 Unus ed HOSTOUT14 21 Unus ed HOSTOUT15 22 Unus ed HOSTOUT16 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 26 Unus ed HOSTOUT19 27 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT11	1E	Unus ed
HOSTOUT14 21 Unus ed HOSTOUT15 22 Unus ed HOSTOUT16 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT12	1F	Unus ed
HOSTOUT15 22 Unus ed HOSTOUT18 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT13	20	Unus ed
HOSTOUT16 23 Unus ed HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 26 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT14	21	Unus ed
HOSTOUT17 24 Unus ed HOSTOUT18 25 Unus ed HOSTOUT19 26 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT15	22	Unus ed
HOSTOUT18 25 Unus ed HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT16	23	Unus ed
HOSTOUT19 28 Unus ed HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT17	24	Unus ed
HOSTOUT20 27 Unus ed HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT18	25	Unus ed
HOSTOUT21 28 Unus ed HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT19	26	Unus ed
HOSTOUT22 29 Unus ed HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT20	27	Unus ed
HOSTOUT23 2A Unus ed HOSTOUT24 2B Unus ed	HOSTOUT21	28	Unus ed
HOSTOUT24 2B Unus ed	HOSTOUT22	29	Unus ed
	HOSTOUT23	2A	Unus ed
HOSTOUT25 2C Unus ed	HOSTOUT24	2B	Unus ed
	HOSTOUT25	2C	Unus ed

Packing of of these four channels in the output table is determined by the four enabled channels in the CHANNEL list above. This is independent of the IRQ_ENABLE and IRQ_STATUS

Figure 6.1. Output Table Data Packing

6.2 Autonomous and Forced Modes

In Autonomous Mode, the user uses the timer fields in both the global and channels specific areas in order to set up the timing for repeated measurements. The user then sends the command to start these autonomous measurements repeatedly. When each channel's timer is tripped, the measurement for that channel is started. When the channel measurement completes, it is signaled by the IRQ_STATUS bits and by an interrupt (if the interrupt is enabled). After that signal, the sensor restarts the channel timer and waits for it to trip and signal the next measurement. The host must read the data before the next reading is generated, or risk losing the reading or getting garbage data to sample smearing (reading data in the midst of it changing).

In Forced Mode, all measurements enabled in the CHAN_LIST start as a result of a FORCE command and are only done once. If there are multiple channels enabled, then the measurements are done back-to-back starting with the lower number channel. The completion signaling is the same as for autonomous, the IRQ_STATUS and interrupt if it is enabled. The logical difference is that all the enabled channels are always shown as simultaneously ready in the IRQ_STATUS, whereas in Autonomous Mode this is not true. FORCE command only works on measurements which do not have a measurement counter selected in MEASCONFIGx.

	_	Global Section of Parameter Table			Channel Specific Section of I2C SP Parameter Table		I2C S PAC	ΞE		
		CHA	N_UST		Output mode II		IRQ_STATUS			
							Value	Bit	Meaning	
	0	Bit	0 Ch	an 0	16		0	Bit 0	Chan 0	
	1	Bit	1 Ch	an 1	24		0	Bit 1	Chan 1	
	0	Bit	2 Ch	an 2	16		0	Bit 2	Chan 2	. ()
	1	Bit	3 Ch	an 3	16		1	Bit 3	Chan 3	7
	1	Bit	4 Ch	an 4	24		0	Bit 4	Chan 4	C
	1	Bit	5 Ch	an 5	16		1	Bit 5	Chan 5	
	X	Bit	6	Х	X		Х	Bit 6	X	
	X	Bit	7	Х	X		X	Bit 7	X	
	I2C F	egister	I2C Addresss		Content					
	—	TOUTO	13	Chi	annel 1 Result: Most Sig	nofica	nt By te			
	—	TOUT1	14	_	annel 1 Result: Middle Sig				10	
	_	TOUT2	15	_	annel1 Result Least Sig					
	_	TOUT3	16	_	annel 3 Result Most Sig			← – ≥		· – ‡ – i
		TOUT4	17	_	annel3 Result Least Sig		· ·			i
	_	TOUTS	13	_	annel 4 Result: Most Sig			-		!
	_	TOUT6	14 1A	_	annel 4 Result: Middle Sig annel 4 Result: Least Sig			7		
		TOUT8	18	_	annel 5 Result: Most Sig					i
	_	TOUT9	10	_	annel 5 Result Least Sig	_	-	← – –		
		TOUT10	1D	-	Unused		10,10			
	HOST	TOUT11	1E		Unused				IRQ_STATU	
	HOST	TOUT12	1F		Unused	,			al which of sible fields a	the are updated
	HOST	TOUT13	20		Unused			with	new inform	ation. All
	HOST	TOUT14	21		Unused				r fields sho sidered inva	
	HOST	TOUT15	22		Unused			poss	sibly contain	ning wrong
	HOST	TOUT16	23		Unused			trans	sitory inform	nation.
	HOST	TOUT17	24		Unused				is despite t	
	HOST	TOUT18	25		Unused			outp	rved space ut table for	the
	_	TOUT19	_	_	Unused			read	lings that ha	
	_	TOUT20	27		Unused			парр	pened.	
		TOUT21	28	<u> </u>	Unused					
	-	TOUT22	29	<u> </u>	Unused					
	-	TOUT23			Unused					
		TOUT24		_	Unused					
26	,	re 6.	2C 2. IRQ_	L_STA	TUS Shows Wh	ich (Output	Fields	Have Val	id Data

6.3 Burst Mode

Burst Mode is always used in Autonomous Mode.

The Burst Mode is enabled by the BURST register's bit 7. The burst register is in the global area of the parameter table. Bits 6:0 of the register define the number of readings to be made.

All channels set up in the CHAN_LIST operate in this mode and they operate in unison governed by the MEASRATE register in the parameter table. The individual channel MEASCONFIGx.COUNTER_INDEX [1:0] value is ignored.

The burst is started by the START command and may be paused by the PAUSE command. All measurements enabled in the CHAN_LIST are done as a quick set then repeated after the delay determined by the MEASRATE register. The number of repeats are set by the BURST register.

The measurements called for by the enabled channels are done without an intervening delay, starting with the lower number channel and ending with the highest channel number.

The burst will proceed until it is complete or until the output buffer is full, after which an interrupt may be generated if enabled and the IRQ_STATUS bit(s) associated with all the channels in the CHAN_LIST will be set. The user has the time period until the next set of reads are finished to read back the data in the output field.

The output data will be stacked in the 26 bytes output data field and will be sequential. For example, if the CHAN_LIST enables channels X, Y, and Z, then the data will be found in the output buffer as multiple sets: X1, Y1, Z1, X2, Y2, Z2... The fields X, Y, and Z are packed efficiently and are not necessarily the same length since they can be a mix of 16 and 24 bit values.

IZC SPACE						
Value	Bit	Meaning				
0	Bit 0	Chan 0				
1	Bit1	Chan 1				
0	Bit 2	Chan 2				
1	Bit3	Chan 3				
1	Bit 4	Chan 4				
1	Bit 5	Chan 5				
X	Bit 6	X				
X	Bit7	X				

-	lobal Secti arameter 1	Channel Specific Section of Parameter Table	
	CHAN_LI	Outputmode	
0	Bit 0	Chan 0	16
1	Bit 1	Chan 1	24
0	Bit 2	Chan 2	16
1	Bit 3	Chan 3	16
1	Bit 4 Chan 4		24
1	Bit 5	Chan 5	16
X	Bit 6	Х	X
X	Bit 7	Х	X

2C 2C Register Content Addresss HOSTOUT Channel 1 Result Most Signoficant Byte HOSTOUT1 14 Channel 1 Result: Middle Signoficant Byte HOSTOUT 2 15 Channel 1 Result: Least Signoficant Byte HOSTOUT3 16 Channel 3 Result Most Signoficant Byte Reading HOSTOUT 4 17 Channel 3 Result: Least Signoficant Byte Set 1 HOSTOUT 5 13 Channel 4 Result Most Signoficant Byte HOSTOUT6 14 Channel 4 Result: Middle Sign oficant Byte 1A Channel 4 Result: Least Signoficant Byte HOSTOUT 7 HOSTOUT8 1B Channel 5 Result Most Signoficant Byte HOSTOUT9 1C Channel 5 Result: Least Signoficant Byte HOSTOUT10 Channel 1 Result Most Signoficant Byte 1D HOSTOUT1 1E Channel 1 Result: Middle Signoficant Byte HOSTOUT12 1F Channel 1 Result: Least Signoficant Byte HOSTOUT1: 20 Channel 3 Result Most Signoficant Byte Reading HOSTOUT14 Channel 3 Result: Least Signoficant Byte 21 Set 1 22 HOSTOUT: Channel 4 Result Most Signoficant Byte HOSTOUT18 23 Channel 4 Result: Middle Sign oficant Byte HOSTOUT 1 24 Channel 4 Result: Least Signoficant Byte HOSTOUT18 25 Channel 5 Result Most Signoficant Byte HOSTOUT1 26 Channel 5 Result: Least Signoficant Byte HOSTOUT2 27 Unused HOSTOUT2 28 Unused HOSTOUT2 29 Unused HOSTOUT2 2A Unused HOSTOUT24 2B Unused HOSTOUT2 Unused

Since The CHAN_LIST shows 4 active channels we see two sets of readings stacked one after another.

In burst mode the I2C HOSTOUT locations are updated simultaneously when the burst is done. Only then will the IRQ_STATUS field be updates and an int generated (if the correct IRQ_ENABLE bit(s) is set).

Figure 6.3. Burst Mode Example of Two Sets of Readings

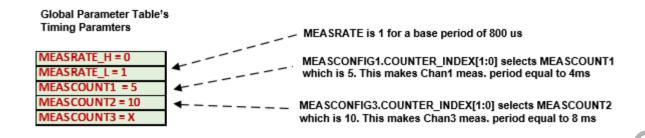
6.4 Interrupt Operation

The INT output pin is asserted by the sensor when an enabled channel in the CHAN_LIST (which has the corresponding bit in the RESET register) has finished. In Burst Mode, the interrupt is delayed until the number of readings is reached or the buffer is full.

When the host reads the IRQ_STATUS register to learn which source generated the interrupt, the IRQ_STATUS register is cleared automatically.

The most efficient method of extracting measurements from the Si1133 is an I²C Burst Read beginning at the IRQ_STATUS register.

6.5 Timing of Channel Measurements


The timing of measurements has two aspects:

- 1. The length of time to take a measurement.
- 2. How frequently the measurement is taken.

The amount of time to take the measurement is controlled by factors like HW_GAIN (which is really the integration time), SW_GAIN, and the decimation rate setting.

Note: Each measurement is composed of two measurement times.

In an ALS measurement, two measurements are always taken and added together.

CHANNEL 1 Setup

	7	6	5	4	3	2	1	0
ADCCONFIGx	RSRVD	DECIM_RATE[1:0] = 0			A	ADCMUX[4	:0]	
ADCSENSx	HSIG	SW_GAIN	SW_GAIN[2:0] = 0			HW_GAIN	I[3:0] = 2	
ADCPOSTx	RSRVD	24BIT_OUT POSTSHIF			T[2:0	UNUSED	THRESH_	_SEL[1:0]
MEASCONFIGx	COUNTER	R_INDEX[1:0] = 1	LED_TR	IM[1:0]	BANK_SEL	LED3 En.	LÉD2 En.	LED1 En.

CHANNEL 3 Setup

	7	6	5	4	3	2	1	0
ADCCONFIGx	RSRVD	DECIM_RATE[1	ADCMUX[4:0]					
ADCSENSx	HSIG	SW_GAIN[2:0] = 0				HW_GAIN	1[3:0] = 3	
ADCPOSTx	RSRVD	24BIT_OUT	OUT POSTSHIF			ŮNUSED	THRESH_	SEL[1:0]
MEASCONFIGx	COUNTER	R_INDEX[1:0] = 2	LED_TR	IM[1:0]	BANK_SEL	LED3 En.	LED2 En.	LED1 En.

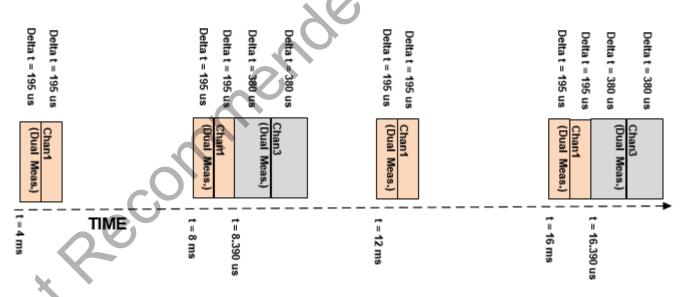


Figure 6.4. Example of Measurement Timing

7. Parameter Table

Table 7.1. Parameter Table

Address	Name	Description					
0x00	I2C_ADDR	I2C Address (Temp)	Global Area: Affects all Channels				
0x01	CHAN_LIST	Channel List					
0x02	ADCCONFIG0	Channel 0 Setup	Channel Areas: Specific Channel Setup				
0x03	ADCSENS0		5				
0x04	ADCPOST0						
0x05	MEASCONFIG0						
0x06	ADCCONFIG1	Channel 1 Setup					
0x07	ADCSENS1		N				
0x08	ADCPOST1						
0x09	MEASCONFIG1						
0x0A	ADCCONFIG2	Channel 2 Setup					
0x0B	ADCSENS2						
0x0C	ADCPOST2	&O'					
0x0D	MEASCONFIG2						
0x0E	ADCCONFIG3	Channel 3 Setup					
0x0F	ADCSENS3	70					
0x10	ADCPOST3						
0x11	MEASCONFIG3						
0x12	ADCCONFIG4	Channel 4 Setup					
0x13	ADCSENS4						
0x14	ADCPOST4						
0x15	MEASCONFIG4						
0x16	ADCCONFIG5	Channel 5 Setup					
0x17	ADCSENS5						
0x18	ADCPOST5						
0x19	MEASCONFIG5						

Address	Name	Desc	cription
0x1A	MEASRATE_H	MEASURE RATE	Global Area: Affects all Channels
0x1B	MEASRATE_L		
0x1C	MEASCOUNT0	MEASCOUNT	
0x1D	MEASCOUNT1		
0x1E	MEASCOUNT2		
0x25	THRESHOLD0_H	THRESHOLD SETUP	
0x26	THRESHOLD0_L		
0x27	THRESHOLD1_H		0.3
0x28	THRESHOLD1_L		
0x29	THRESHOLD2_H		
0x2A	THRESHOLD2_L		
0x2B	BURST	BURST	

7.1 Global Area of the Parameter Table

The Global Area represents resources that are shared among the six channels. See the next section for specific channel properties, and for channel-specific parameter setup.

Table 7.2. Global Area of the Parameter Table

Parameter	Parameter Address				
MEASRATE[1]	0x1A	MEASRATE[15:8]	Main Measurement Rate	Governs how much time be-	
MEASRATE[0]	0x1B	MEASRATE[7:0]	Counter	tween measurement groups. One count represents an 800 µs time period.	
MEASCOUNT0	0x1C	MEASCOUNT0[7:0]	Three Measurement Rate	Each of 6 channel setups se-	
MEASCOUNT1	0x1D	MEASCOUNT1[7:0]	extension counters available for setting the rate.	lected which of these counters to use via the MEAS-	
MEASCOUNT2	0x1E	MEASCOUNT2[7:0]		CONFIG::COUNTER_IN- DEX[1:0] bits:	
THRESHOLD0[1]	0x25	THRESHOLD0[15:8]	THRESHOLD0	One of these three (or none)	
THRESHOLD0[0]	0x26	THRESHOLD0[7:0]		us Chosen by MEASCON- FIGx.THRESH_SEL[1:0]	
THRESHOLD1[1]	0x27	THRESHOLD1[15:8]	THRESHOLD1		
THRESHOLD1[0]	0x28	THRESHOLD1[7:0]			
THRESHOLD2[1]	0x29	THRESHOLD2[15:8]	THRESHOLD2		
THRESHOLD2[0]	0x2A	THRESHOLD2[7:0]			
BURST	0x2B	BURST[7:0]		Bit 7 is Burst Enable while BURST_COUNT[6:0] are the count	
CHAN_LIST	0x01	CHAN_LIST[5:0]		The six least significant bits enable the 6 possible channels.	

7.2 Channel Specific Setup Areas of the Parameter Table

Below is the summary of the four-byte channel-specific area in the parameter table. There are six copies in the table corresponding to up to six tasks/channels assigned to the sensor. They are located between addresses 0x02 and 0x18 hex.

Table 7.3. Channel Specific Setup Areas of the Parameter Table

	7	6	5	4	3	2	1	0
ADCCONFIGx	RSRVD	DECIM_F	RATE[1:0]					
ADCSENSx	HSIG	SW_GAIN[2:0]				HW_G/	AIN[3:0]	·'O'.
ADCPOSTx	RSRVD	24BIT_OUT	F	OSTSHIFT[2:0	0]	UNUSED	THRESH	_SEL[1:0]
MEASCONFIGx	COUNTER	_INDEX[1:0]			RSR\	/D(5:0)	-0	

The following figure illustrates how to use the channel-specific registers in the parameter table above.

Figure 7.1. THRESH_SEL, COUNTER_INDEX Fields in Each Channel Specific Register Area Points to Global Area Register THRESHOLDx and MEASCOUNTx (Respectively)

Note: In the figure above, the counter selected (1, 2, or 3) defines the number of 800 µs periods to have between readings when the channel runs. The threshold selected (0, 1, or 2) defines the threshold used.

7.2.1 ADCCONFIGx

Parameter Ad	Parameter Addresses: 0x02, 0x06, 0x0A, 0x0E, 0x12, 0x16										
Bit	7	6	5	4	3	2	1	0			
Name	Reserved	DECIM_F	RATE[1:0]			ADCMUX[4:0]					
Reset	0	0	0 0 0 0 0								

Bit	Name	Funct	ion						
7	RESERVED						Must remain	at 0.	(0)
6:5	DEC- IM_RATE[1:0]	mation and 48	n rate i: 8.8 µs	s an A/ min me	D optir easurer	nizatio nent tii	s. This setting affects the r n parameter. The most come. Consult the related ap- sing more clocks does not	ommon decimation value oplication notes for more	is 0 for a 1024 clocks details.
			alue		o of 21 Clock	MHz	Measurement time at HW_GAIN[3:0] = 0	Measurement time at HW_GAIN[3:0] = n	Usage
							Note: All measurements nally for ADC offset cand times below represent the one of these measurements	cellation purposes. The ne integration time for	
			0		1024	1	48.8 µs	48.8*(2**n) μs	Normal
			1		2048	3	97.6 µs	97.6*(2**n) μs	Useful for longer short measurement times
			2		4096	6	195 µs	195*(2**n) μs	Useful for longer short measurement times
			3		512		24.4 μs	24.4*(2**n) μs	Useful for very short measurement times
4:0	ADCMUX[4:0]	The A	DC Mu	ıx sele	cts whi	ch pho	todiode(s) are connected	to the ADCs for measure	ement.
		See P	hotodi	ode Se	ction fo	or more	e information regarding the	e location of the photodic	odes.
			AD	CMUX	4:0]		Optical Functions	Operation	Comments
		0	0	0	0	0	Small IR	D1b	
		0	0	0	0	1	Medium IR	D1b + D2b	
		0	0	0	1	0	Large IR	D1b + D2b + D3b + D4b	
		0 1 0 1				1	White	D1	
	~6	0	1	1	0	1	Large White	D1 + D4	
	/	1	1	0	0	0	UV	D - 10	
	X	1	1	0	0	1	UV-Deep	D - 10b	

7.2.2 ADCSENSx

Parameter Ad	Parameter Addresses: 0x03, 0x07, 0x0B, 0x0F, 0x13, 0x17										
Bit	7	6	5	4	3	2	1	0			
Name	HSIG		SW_GAIN[2:0]			HW_G	AIN[2:0]				
Reset	0	0	0 0 0 0 0 0								

Bit	Name	Function						
7	HSIG	This is the Ranging bit for the A/D. Normal gaby 14.5) when set to 1.	in at 0 and High range (sensitivity is divided					
6:4	SW_GAIN[2:0]	Causes an internal accumulation of samples with no pause between readings when in FORCED Mode. In Autonomous mode the the accumulation happens at the measurement rate selected. The calculations are accumulated in 24 bits and an optional shift is applied later. See ADC-POSTx.ADC_MISC[1:0]						
		Value	Number of Measurements					
		0	1					
		1	2					
		2	4					
		3	8					
		4	16					
		5	32					
		6	64					
		7	128					
3:0	HW_GAIN[3:0]	Value	Nominal Measurement time for 512 clocks					
		0	24.4 μs					
		1	48.8 μs					
		2	97.5 μs					
	-0)	10	25 ms					
		11	50 ms					
		12 to 15	unused					

7.2.3 ADCPOSTx

Parameter Ac	Parameter Addresses: 0x04, 0x08, 0x0C, 0x10, 0x14, 0x18										
Bit	7	6	5 4 3 2 1 0								
Name	Reserved	24BIT_OUT	F	POSTSHIFT[2:0)]	UNUSED	THRESH	_EN[1:0]			
Reset	0	0	0	0 0 0 0 0							

	Name	Function								
7	RESERVED	Must be set	to 0		,(0)					
6	24BIT_OUT	Determines	the size of the fields	in the output registers.	6					
		Value		Bits/Result	Output					
		0		16	Unsigned integer					
		1		24	Signed Integer					
					N					
5:3	POSTSHIFT[2:0]	The number overflow the	of bits to shift right a output. Especially us	after SW accumulation. Allows the seful when the output is in 16 bit r	results of many additions not to node.					
2	UNUSED			19						
1:0	THRESH_EN [1:0]	Value	Operation							
		0	Do not use THRES	HOLDs						
		1	Interrupt when the	measurement is larger than the Ti	HRESHOLD0 Global Parameters					
		2	2 Interrupt when the measurement is larger than the THRESHOLD1 Global Parameters							
		3	3 Interrupt when the measurement is larger than the THRESHOLD2 Global Parameters							
	-C)									
40	200									

7.2.4 MEASCONFIGx

Parameter Ad	Parameter Addresses: 0x05, 0x0A, 0x0D, 0x11, 0x15, 0x19									
Bit	7	6	5	4	3	2	1	0		
Name	COUNTER	_INDEX[1:0]	RSRVD[5:0]							
Reset	0	0	0	0	0	0	0	0		

Bit	Name		Function			
7:6	COUNTER_INDEX[1:0]	this channel. These cour When the channel uses t the parameter table, ther MEASRATE * MEASCOI A value of zero in MEAS	e counters (MEASCOUNTx) in the global parameter list is in use by inters control the period/frequency of measurements. The COUNTER_INDEX[1:0] to select a MEASCOUNTk register in in the time between measurements for this channel is = 800 us * UNTk. RATE will prevent autonomous mode from working. Similarly a zero event the autonomous mode from working for the concerned chan-			
	Value Res	Results				
		0	No counter selected so this measurement will not be performed unless BURST or Forced measurements.			
		1	Selects MEASCOUNT1			
		2	Selects MEASCOUNT2			
		3 Selects MEASCOUNT3				
5:0	RESERVED[5:0]	Reserved				

7.3 Photodiode Selection

The ADCCONFIGx.ADCMUX [4:0] Register controls the photodiode selection. See section 7.2.1 ADCCONFIGx.

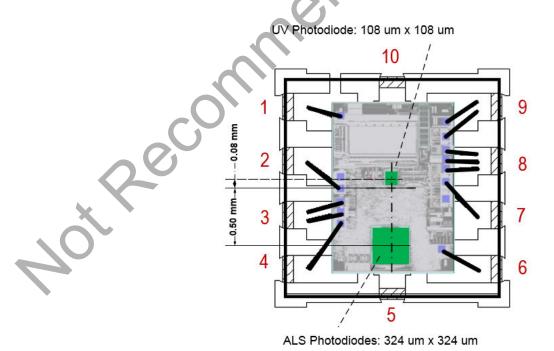


Figure 7.2. Photodiode Locations

8. Electrical Specifications

Table 8.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
V _{DD} Supply Voltage	V _{DD}		1.62	_	3.6	V
V _{DD} OFF Supply Voltage	V _{DD_OFF}	OFF mode	-0.3	_	1.0	V
V _{DD} Supply Ripple Voltage		V _{DD} = 3.3 V 1 kHz–10 MHz	_	_	50	mVpp
Operating Temperature	Т		-40	25	85	°C
SCL, SDA, Input High Logic Voltage	I ² C _{VIH}		V _{DD} x 0.7	-	V_{DD}	V
SCL, SDA Input Low Logic Voltage	I ² C _{VIL}		0	4	V _{DD} x 0.3	V
Start-Up Time		V _{DD} above 1.62 V	25	77,	_	ms

Table 8.2. Performance Characteristics¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
L Standby Mada (Sleen)	I _{sb}	No ADC Conversions No I ² C Activity; $V_{DD} = 1.8 \text{ V}$	_	125	_	nA
I _{DD} Standby Mode (Sleep)	I _{sb}	No ADC Conversions No I ² C Activity; $V_{DD} = 3.3 \text{ V}$	_	125	_	nA
I _{DD} Suspend Mode	I _{sus}	Autonomous Operation (RTC On) ADC conversion in Progress No I ² C Activity; V _{DD} = 1.8 V	_	0.550	_	μА
IDD Susperiu Mode	I _{sus}	Autonomous Operation (RTC On) ADC conversion in Progress No I ² C Activity; V _{DD} = 3.3 V	_	0.525	_	μА
I active not measuring but		Responding to commands and pre- paring and calculating results of readings; V _{DD} = 1.8 V	_	4.25		mA
active	I _{active}	Responding to commands and pre- paring and calculating results of readings; V _{DD} = 3.3 V	_	4.5		mA
INT, SCL, SDA Leakage Current		V _{DD} = 3.3 V	-1	_	1	μА
Processing Time per Measurement (During this time the current is I Active)	t _{process}	UV or ALS	_	155	_	μs

AD Stratup Time per Measurement (During his time the current is I Suspend) Vor ALS	Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Photodiode Response	Measurement (During this time the current is I Sus-	t _{adstart}	UV or ALS	_	48.8	_	μs
DECIM = 0 DECIM = 0 ADC_RANGE = 0 HSIG = 0 Dual White minus Dual Dark Photodiode Response 460 nm (blue) ADC_GAIN = 0 ADC_MUX = 13 DECIM = 0 ADC_MUX = 0 B50 nm (R) ADC_GAIN = 0 ADC_Counts / (Wim²) ADC_GAIN = 0 ADC_Mix = 0 ADC_Counts / (Wim²) ADC_GAIN = 0 ADC_Mix = 0 ADC_Mix = 0 ADC_Counts / (Wim²) ADC_GAIN = 0 ADC_Mix = 0 ADC_Counts / (Wim²) ADC_GAIN = 0 ADC_Counts / (Wim²) ADC_GAIN = 0 ADC_Counts / (Wim²) ADC_GAIN = 0 ADC_Counts / (Wim²)			460 nm (blue)	_	190	_	
DECIM = 0 ADC_RANGE = 0 B50 nm (IR) ADC_MAIN = 10 B20 ADC MAIN = 10 B20 ADC MAIN = 10 B255 nm (green) B250 mm (IR) ADC MAIN = 13 B255 nm (IR) B250 mm (IR) ADC_GAIN = 0 B30 ADC MAIN = 10 B30 ADC MAIN = 11	ADCMUX = 11		525 nm (green)	_	160	_	
HSIG = 0 940 nm (IR) — 10 — ADC Dual White minus Dual Dark Photodiode Response 460 nm (blue) — 380 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 600 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 600 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 600 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 600 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 600 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 600 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 600 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 600 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 490 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 190 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 1280 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 1280 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 1280 — ADC Counts / (W/m²) ADC_AIN = 0 850 nm (IR) — 1740 — ADC ADC Counts / (W/m²) ADC_AIN = 1 11 HSIG = 0 840 nm (blue) — 152 — Units ADC ADC Counts / (W/m²) ADC_AIN = 11 HSIG = 0 840 nm (blue) — 152 — Units	DECIM = 0		625 nm (red)	_	100	_	
Dual White minus Dual Dark Photodiode Response	ADC_RANGE = 0		850 nm (IR)	_	30		2
Dark Photodiode Response 460 nm (blue) — 380 — ADC ADC Counts / Counts / Counts / (W/m²) DECIM = 0 625 nm (green) — 320 — Counts / (W/m²) ADC_GAIN = 0 850 nm (IR) — 60 — HSIG = 0 940 nm (IR) — 20 — Deep minus Dark Photodiode Response 460 nm (blue) — 90 — ADCMUX = 0 525 nm (green) — 260 — ADC Counts / (W/m²) DECIM = 0 625 nm (red) — 510 — (W/m²) ADC_GAIN = 0 850 nm (IR) — 690 — HSIG = 0 940 nm (IR) — 490 — Dual Deep Photodiode minus Dual Dark Photodiode Response 460 nm (blue) — 190 — ADCMUX = 1 525 nm (green) — 520 — Counts / (W/m²) DECIM = 0 850 nm (IR) — 190 — ADC Counts / (W/m²) ADC_GAIN = 0 850 nm (IR) — 1280 — DECIM = 0 850 nm (IR) — 1280	HSIG = 0		940 nm (IR)	_	10	70	
ADCMUX = 13 DECIM = 0 ADC Gounts / DECIM = 0 ADC GAIN = 0 ADC GOUNTS / BEGIN = 0 ADC MIR (Blue) ADC GAIN = 0 ADC GOUNTS / ADC GAIN = 0 ADC GOUNTS / BEGIN = 0 ADC GOUNTS / ADC	Dark Photodiode Re-		460 nm (blue)	_	380		
DECIM = 0 ADC_GAIN = 0 ADC_GAIN = 0 BS0 nm (IR) BS0 n	ADCMUX = 13						
ADC_GAIN = 0 HSIG = 0 940 nm (IR)				_			
HSIG = 0 940 nm (IR)			` '			_	
Deep minus Dark Photo-diode Response				<_			
diode Response 460 nm (blue) — 90 — ADC ADCMUX = 0 525 nm (green) — 260 — ADC DECIM = 0 625 nm (red) — 510 — (W/m²) ADC_GAIN = 0 850 nm (IR) — 690 — HSIG = 0 940 nm (IR) — 490 — Dual Deep Photodiode minus Dual Dark Photodiode Response 460 nm (blue) — 190 — ADCMUX = 1 525 nm (green) — 520 — Counts / DECIM = 0 625 nm (red) — 1000 — (W/m²) ADC_GAIN = 0 850 nm (IR) — 1280 — HSIG = 0 940 nm (IR) — 860 — UV Photodiode Response ADC — ADC Counts / (W/m²) ADC_GAIN = 11 — 1740 — ADC HSIG = 0 — 310 nm — 1740 — ADC Response — — 1740 — Counts / (W/m²²)			o to till (itt)		20		
DECIM = 0 ADC_GAIN = 0 HSIG = 0 Dual Deep Photodiode minus Dual Dark Photodiode Response ADC_MIN = 0 ADC_GAIN = 0 ADC_GAIN = 0 ADC MIN (blue) ADC_GOUNTS / (W/m²) ADC Counts / (W/m²) ADC_GAIN = 0 ADC_GAIN = 0 ADC MIN (R) ADC Counts / (W/m²) ADC Counts / (W/m²) ADC GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 1 for			460 nm (blue)	_	90	_	
DECIM = 0 625 nm (red) — 510 — (W/m²) ADC_GAIN = 0 850 nm (IR) — 690 — HSIG = 0 940 nm (IR) — 490 — Dual Deep Photodiode minus Dual Dark Photodiode Response — 460 nm (blue) — 190 — ADCMUX = 1 525 nm (green) — 520 — ADC Counts / (W/m²) DECIM = 0 625 nm (red) — 1000 — (W/m²) ADC_GAIN = 0 850 nm (IR) — 1280 — HSIG = 0 940 nm (IR) — 860 — UV Photodiode Response — ADC Counts / (W/m²) ADC_GAIN = 11 — 1740 — ADC Counts / (W/m²) — 15.2 — Units	ADCMUX = 0		525 nm (green)	_	260	_	l
HSIG = 0 940 nm (IR) — 490 — Dual Deep Photodiode minus Dual Dark Photodiode Response 460 nm (blue) — 190 — ADC ADCMUX = 1 525 nm (green) — 520 — Counts / (W/m²) DECIM = 0 625 nm (red) — 1000 — (W/m²) ADC_GAIN = 0 850 nm (IR) — 1280 — HSIG = 0 940 nm (IR) — 860 — UV Photodiode Response ADC_Counts / (W/m²) ADC_GAIN = 11 HSIG = 0 T1740 — ADC_Counts / (W/m²) Ratio of readings with HSIG = 0 and HSIG = 1 for 525 nm, Internal — 15.2 — Units	DECIM = 0		625 nm (red)	_	510	_	l I
Dual Deep Photodiode minus Dual Dark Photodiode Response 460 nm (blue) — 190 — ADC ADC Counts / (W/m²) ADCMUX = 1 525 nm (green) — 520 — ADC Counts / (W/m²) DECIM = 0 625 nm (red) — 1000 — (W/m²) ADC_GAIN = 0 850 nm (IR) — 1280 — HSIG = 0 940 nm (IR) — 860 — UV Photodiode Response ADC Counts / (W/m²) ADC_GAIN = 11 ADC_GAIN = 11 — 1740 — ADC Counts / (W/m²) Ratio of readings with HSIG = 0 and HSIG = 1 for 525 nm, Internal — 15.2 — Units	ADC_GAIN = 0		850 nm (IR)	_	690	_	
nus Dual Dark Photodiode Response 460 nm (blue) — 190 — ADC ADC Counts / (W/m²) ADCMUX = 1 525 nm (green) — 520 — Counts / (W/m²) DECIM = 0 625 nm (red) — 1000 — (W/m²) ADC_GAIN = 0 850 nm (IR) — 1280 — HSIG = 0 940 nm (IR) — 860 — UV Photodiode Response ADC_GAIN = 11 — 1740 — ADC Counts / (W/m²) ADC_GAIN = 11 HSIG = 0 — 15.2 — Units	HSIG = 0		940 nm (IR)	_	490	_	
ADCMUX = 1 DECIM = 0 ADC_GAIN = 0 ADC_GAIN = 0 ADC_GAIN = 0 B50 nm (IR) ADC_MOM_CAIN = 0 B50 nm (IR) ADC_GAIN = 0 B50 nm (IR) ADC_GAIN = 0 B50 nm (IR) ADC_GAIN = 0 B60 ADC_MOM_CAIN = 24 DECIM = 0 ADC_GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 0 and HSIG = 1 for	nus Dual Dark Photodiode				400		
DECIM = 0 ADC_GAIN = 0 ADC_GAIN = 0 HSIG = 0 UV Photodiode Response ADCMUX = 24 DECIM = 0 ADC_GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 0 and HSIG = 1 for	ADOMIN' 4			_		_	ADC
ADC_GAIN = 0 HSIG = 0 UV Photodiode Response ADCMUX = 24 DECIM = 0 ADC_GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 0 and HSIG = 1 for				_		_	l I
HSIG = 0 940 nm (IR) — 860 — UV Photodiode Response ADCMUX = 24 — ADC Counts / (W/m²) DECIM = 0 — 1740 — Counts / (W/m²) ADC_GAIN = 11 HSIG = 0 — 15.2 — Units		-O'		_		_	(۷۷/111)
UV Photodiode Response ADCMUX = 24 DECIM = 0 ADC_GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 0 and HSIG = 1 for ADC_MOMENT				_		_	
ADCMUX = 24 DECIM = 0 ADC_GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 0 and HSIG = 1 for ADC ADC ADC ADC Counts / (W/m²) The strength of the s	-		940 nm (IR)	_	860	_	
DECIM = 0 ADC_GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 0 and HSIG = 1 for 310 nm — 1740 — Counts / (W/m²) (W/m²)	UV Photodiode Response						
DECIM = 0 ADC_GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 0 and HSIG = 1 for 310 nm — 1740 — Counts / (W/m²) (W/m²) — 15.2 — Units	ADCMUX = 24						ADC
ADC_GAIN = 11 HSIG = 0 Ratio of readings with HSIG = 0 and HSIG = 1 for 525 nm, Internal — 15.2 — Units	DECIM = 0		310 nm	_	1740	_	Counts /
Ratio of readings with HSIG = 0 and HSIG = 1 for 525 nm, Internal — 15.2 — Units	ADC_GAIN = 11						((((((((((((((((((((
HSIG = 0 and HSIG = 1 for	HSIG = 0						
			525 nm, Internal		45.0		1
			ADCMUX = 11; ADC_GAIN = 0	_	15.2	_	Units

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Ratio of readings with HSIG = 0 and HSIG = 1 for the deep PD		940 nm ADCMUX = 0; ADC_GAIN = 0	_	15.2	_	Units
SCL, SDA VOL			_	_	V _{DD} x 0.2	V
INT VOL			_	_	0.4	V

Note:

- 1. Unless specifically stated in "Conditions", electrical data assumes ambient light levels < 1 klx.
- 2. Guaranteed by design and characterization.

Table 8.3. I²C Timing Specifications

Parameter	Symbol	Min	Тур	Max	Unit
Clock Frequency	f _{SCL}	_	_	400	kHz
Clock Pulse Width Low	t _{LOW}	1.3	- (77 –	μs
Clock Pulse Width High	t _{HIGH}	0.6	47	_	μs
Rise Time	t _R	20	_	300	ns
Fall Time	t _F	20 x (V _{DD} / 5.5)	<u></u>	300	ns
Start Condition Hold Time	t _{HD.STA}	0.6	<u> </u>	_	μs
Start Condition Setup Time	t _{SU.STA}	0.6	_	_	μs
Input Data Setup Time	t _{SU.DAT}	100	_	_	ns
Data Hold Time	t _{HD.DAT}	0	_	_	ns
Output Data Valid Time	t _{VD.DAT}	_	_	0.9	μs
Stop Setup Time	t _{su.sто}	0.6	_	_	μs
Bus Free Time	t _{BUF}	1.3	_	_	μs
Supressed Pulse Width	tsp	_	_	40	ns
Bus Capacitance	C _b	_	_	400	pF

Table 8.4. Absolute Maximum Ratings

Parameter	Test Condition	Min	Max	Unit
V _{DD} Supply Voltage		-0.3	4	V
Operating Temperature		-40	85	°C
Storage Temperature		-65	85	°C
INT, SCL, SDA Voltage	V _{DD} = 0 V, T _A < 85 °C	-0.5	3.6	V
	Human Body Model	_	2	kV
ESD Rating	Machine Model	_	225	V
	Charged-Device Model	_	2	kV

9. Pin Descriptions

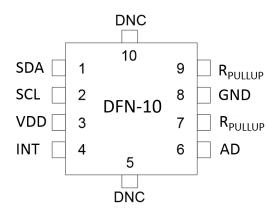


Figure 9.1. 10-Pin DFN

Table 9.1. Pin Descriptions

		SCL [VDD [INT [2 DFN-10 8 GND 3 7 R _{PULLUP} 4 6 AD DNC Figure 9.1. 10-Pin DFN Table 9.1. Pin Descriptions
Pin	Name	Туре	Description
1	SDA	Bidirectional	I ² C Data.
2	SCL	Input	I ² C Clock.
3	VDD	Power	Power Supply. Voltage source.
4	INT	Bidirectional	Interrupt Output. Open-drain interrupt output pin. Must be at logic level high during power-up sequence to enable low power operation.
5	DNC	~	Do Not Connect. This pin is electrically connected to an internal Si1133 node. It should remain unconnected.
6	AD	Input	I ² C Address Select. It is sensed during startup. Pull up to VDD with 47 k Resistor for default I ² C address (0x55). Pull down with 47 k Resistor to select alternate I ² C address (0x52).
7	RPullup	Input	Resistor Pullup. Always connect to V _{DD} through a pull-up resistor.
8	GND	Power	Ground.
0	DD::!!a	lne:-4	Reference voltage.
70	RPullup	Input	Resistor Pull-up. Connect to V_{DD} through a pull-up resistor when not in use.
10	DNC		Do Not Connect. This pin is electrically connected to an internal Si1133 node. It should remain unconnected.

10. 10-Pin 2x2 mm DFN Module Outline

DFN Package Diagram Dimensions illustrates the package details for the Si1133 DFN package lists the values for the dimensions shown in the illustration.



Figure 10.1. DFN Package Diagram Dimensions

Table 10.1. Package Diagram Dimensions

Dimension	Min	Nom	Max			
Α	0.55	0.65	0.75			
b	0.20	0.25	0.30			
D		2.00 BSC.				
е	0.50 BSC.					
E		2.00 BSC.				
L	0.30	0.35	0.40			
aaa		0.10				
bbb	0.10					
ccc	0.08					
ddd	0.10					
lotos:	-					

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. Dimensioning and Tolerance per ANSI Y14.5M-1994.

11. 2x2 mm DFN Land Pattern

See the figure and table below for the suggested 2 x 2 mm DFN PCB land pattern.

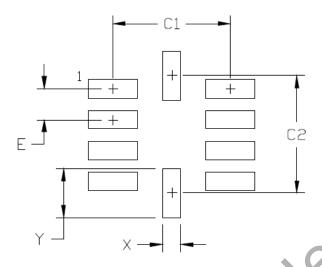


Figure 11.1. 2 x 2 mm DFN PCB Land Pattern

Table 11.1. Land Pattern Dimensions

Dimension	mm
C1	1.90
C2	1.90
E	0.50
X	0.30
Y	0.80

Notes:

General

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad.

Stencil Design

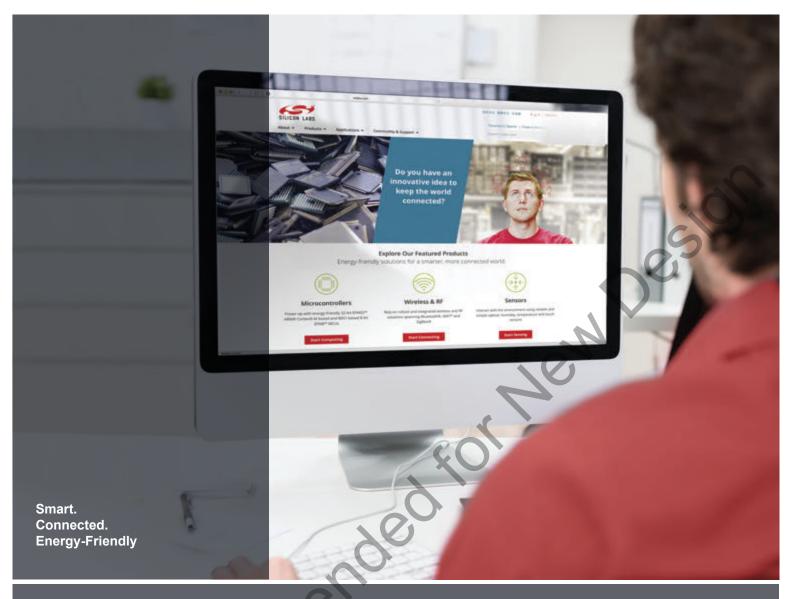
- 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 6. The stencil thickness should be 0.125 mm (5 mils).
- 7. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

Card Assembly

- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020D specification for Small Body Components.

12. Revision History

12.1 Revision 0.9


December 4th, 2015

· Initial release.

12.2 Revision 0.91

February 11, 2016

- ot Recommended for New Desil. Corrected the value of I²C addresses to 0x55 and 0x52.
- · Corrected Device ID value to 0x33.

Products
www.silabs.com/products

Quality www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labss®, Bergy Micro, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9