

#### **DATA SHEET**

## SKY65313-21: 900 MHz Transmit/Receive Front-End Module

#### **Applications**

- · Automated meter reading
- · Advanced metering infrastructure
- ISM systems

#### **Features**

- Transmit output power > +30.5 dBm
- High efficiency PA
- · Analog power control
- Receive path NF <1.9 dB
- LNA bypass mode
- Integrated control logic
- . Internal RF match and bias circuits
- · All RF ports internally DC blocked
- · Shutdown mode
- Small footprint, MCM (28-pin, 6 x 6 mm) package (MSL3, 260 °C per JEDEC J-STD-020)



Skyworks Green<sup>TM</sup> products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*<sup>TM</sup>, document number SQ04-0074.

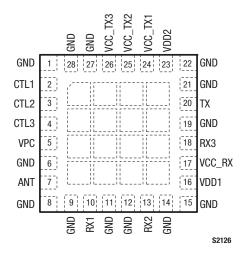



Figure 1. SKY65313-21 Pinout (Top View)

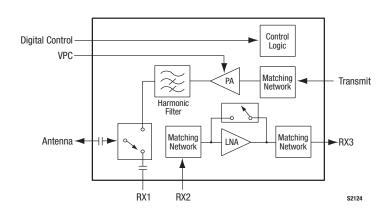



Figure 1. SKY65313-21 Block Diagram

## **Description**

The Skyworks SKY65313-21 is a high-performance, transmit/receive (T/R) front-end module (FEM). The device provides a complete T/R chain with T/R switches.

The device transmit chain features +30.5 dBm output power and a 40 percent power-added efficiency (PAE).

The device receive chain features a low noise amplifier (LNA) with a 1.4 dB noise figure (NF) and 16.6 dB gain. The cascaded NF and gain, taking into account the 0.5 dB insertion loss transmit/receive antenna switch, are 1.9 dB and 16.1 dB, respectively, which makes the SKY65313-21 ideal for medium power microwave links such as 900 MHz Industrial, Scientific and Medical (ISM) band applications.

The module also has a shut-down mode and LNA bypass mode to minimize power consumption.

The device is mounted in a 28-pin, 6 x 6 mm Multi-Chip Module (MCM) surface-mount technology (SMT) package, which allows for a highly manufacturable low-cost solution.

A block diagram of the SKY65313-21 is shown in Figure 1. The device package and pinout are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

**Table 1. SKY65313-21 Signal Descriptions** 

| Pin | Name | Description                                                       | Pin | Name    | Description                                                                  |
|-----|------|-------------------------------------------------------------------|-----|---------|------------------------------------------------------------------------------|
| 1   | GND  | Ground                                                            |     | GND     | Ground                                                                       |
| 2   | CTL1 | Transmit/receive mode digital control input                       | 16  | VDD1    | 3.3 V power supply                                                           |
| 3   | CTL2 | Shutdown mode digital control input                               | 17  | VCC_RX  | 3.3 V power supply                                                           |
| 4   | CTL3 | Receive bypass mode digital control input                         |     | RX3     | LNA and bypass switch output port. Internally matched to 50 $\Omega_{\cdot}$ |
| 5   | VPC  | Transmit output power analog control voltage input                |     | GND     | Ground                                                                       |
| 6   | GND  | Ground                                                            | 20  | TX      | PA input port. Internally matched to 50 $\Omega$ .                           |
| 7   | ANT  | Antenna switch common port. Internally matched to 50 $\Omega.$    | 21  | GND     | Ground                                                                       |
| 8   | GND  | Ground                                                            | 22  | GND     | Ground                                                                       |
| 9   | GND  | Ground                                                            | 23  | VDD2    | 4.0 V power supply                                                           |
| 10  | RX1  | Receive arm of antenna switch. Internally matched to 50 $\Omega.$ | 24  | VCC_TX1 | 4.0 V power supply                                                           |
| 11  | GND  | Ground                                                            | 25  | VCC_TX2 | 4.0 V power supply                                                           |
| 12  | GND  | Ground                                                            | 26  | VCC_TX3 | 4.0 V power supply                                                           |
| 13  | RX2  | LNA and bypass switch input port                                  | 27  | GND     | Ground                                                                       |
| 14  | GND  | Ground                                                            | 28  | GND     | Ground                                                                       |

#### **Technical Description**

The SKY65313-21 consists of a complete T/R chain with T/R switches contained in the module. A single-pole, double-throw (SPDT) switch selects between the receive and transmit paths. The module has a shut-down mode to minimize power consumption.

Three digital input pins (CTL1, CTL2, and CTL3) are used to select between transmit, receive, receive bypass, or shutdown mode.

#### **Transmit Path**

The transmit path contains a power amplifier (PA) optimized for saturated performance. The PA output is internally matched for optimum output power and efficiency into a 50  $\Omega$  load impedance. The PA output is passed through an harmonic filter before being fed through the SPDT switch. The PA input provides a good return loss into a 50  $\Omega$  source impedance.

Transmit output power is controlled by the VPC pin, which is normally set to 2.25 V DC voltage. The nominal DC input impedance into the VPC pin is 50 k $\Omega$ .

#### **Receive Path**

The receive path contains an LNA with bypass switch. The LNA impedance matching networks are internal to the module and have been optimized for a low NF while maintaining good return losses into a 50  $\Omega$  source and load impedance. The receive arm of the SPDT switch and the LNA input are connected to module pins to allow an external filter to be inserted into the receive path.

#### **Operation Mode Control**

The four SKY65313-21 operating modes are controlled by the three digital pins: CTL1, CTL2, and CTL3 (pins 2, 3, and 4, respectively). The control logic truth table is provided in Table 2.

## **Electrical and Mechanical Specifications**

The absolute maximum ratings of the SKY65313-21 are provided in Table 3. Recommended operating conditions are specified in Table 4. Electrical specifications are provided in Tables 5, 6, and 7.

Typical performance characteristics of the SKY65313-21 are illustrated in Figures 3 through 22.

Table 2. SKY65313-21 Operating Modes Truth Table<sup>1</sup>

|                       |                 | Control Voltage |                 | Internal States |     |                      |            |  |
|-----------------------|-----------------|-----------------|-----------------|-----------------|-----|----------------------|------------|--|
| Operating Mode        | CTL1<br>(Pin 2) | CTL2<br>(Pin 3) | CTL3<br>(Pin 4) | PA              | LNA | LNA Bypass<br>Switch | T/R Switch |  |
| Transmit              | 1               | 1               | Х               | 0n              | Off | Open                 | Transmit   |  |
| Receive               | 0               | 1               | 0               | Off             | On  | Open                 | RX1        |  |
| Receive Bypass        | 0               | 1               | 1               | Off             | Off | Through              | RX1        |  |
| Shutdown <sup>2</sup> | Х               | 0               | Х               | Off             | Off | Open                 | RX1        |  |

See Recommended Operating Conditions Table for logic 0 and 1 characteristics. "X" = don't care state, defined as a valid state of logic 1 or 0.

Table 3. SKY65313-21 Absolute Maximum Ratings<sup>1</sup>

| Parameter                                   | Symbol            | Minimum | Maximum    | Units |
|---------------------------------------------|-------------------|---------|------------|-------|
| LNA supply voltage                          | VCC_RX            | -0.3    | +5.0       | V     |
| LNA supply current                          | lcc1              |         | 20         | mA    |
| PA supply voltage                           | VCC_TX1/2/3       | -0.3    | +5.0       | V     |
| PA supply current                           | Icc2              |         | 1.6        | Α     |
| Digital supply voltage                      | V <sub>DD</sub> 1 | -0.5    | +5.5       | V     |
| Digital supply voltage                      | VDD2              | -0.5    | +5.5       | V     |
| Digital control voltage (CTL1, CTL2, CTL3)  | Vctl              | -0.5    | VDD1 + 0.3 | V     |
| Transmit output power control voltage (VPC) | VPC               | -0.3    | +5.0       | V     |
| Receive RF input power (RX2)                | Pin_rx2           |         | +5         | dBm   |
| Receive RF input power (ANT)                | Pin_ant           |         | +33        | dBm   |
| Transmit RF input power                     | PIN_TX            |         | +15        | dBm   |
| Operating case temperature                  | Tc                | -40     | +85        | °C    |
| Storage temperature                         | Тѕтс              | -55     | +150       | °C    |
| Junction temperature                        | TJ                |         | +150       | °C    |
| T/R port load VSWR in transmit mode         | VSWR              |         | 10:1       | -     |

Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value.

Nominal thermal resistance, junction to case, is 18 °C/W.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device.

This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection.

Industry-standard ESD handling precautions should be used at all times.

<sup>2</sup> In the high state, CTL1, CTL2, and CTL3 have an input current of 33 μA due to an internal 100 kΩ pulldown. In the shutdown mode, for the lowest leakage current, the high state is not recommended for CTL1 and CTL3.

**Table 4. SKY65313-21 Recommended Operating Conditions** 

| Parameter                                         | Symbol            | Min | Тур         | Max               | Units |
|---------------------------------------------------|-------------------|-----|-------------|-------------------|-------|
| Frequency range                                   | f                 | 860 |             | 960               | MHz   |
| LNA supply voltage                                | VCC_RX            | 3.0 | 3.3         | 3.6               | V     |
| Digital supply voltage <sup>1</sup>               | V <sub>DD</sub> 1 |     | VCC_RX      |                   | V     |
| PA supply voltage                                 | VCC_TX1/2/3       | 3.0 | 4.0         | 4.4               | V     |
| Digital supply voltage <sup>1</sup>               | VDD2              |     | VCC_TX1/2/3 |                   | V     |
| Digital input voltage, logic 0 (CTL1, CTL2, CTL3) | VCTL              | 0   |             | 0.7               | V     |
| Digital input voltage, logic 1 (CTL1, CTL2, CTL3) | VCTL              | 1.6 |             | V <sub>DD</sub> 1 | V     |
| Transmit output power control voltage (VPC)       | VPC               | 0   | 2.25        | 2.50              | V     |
| Receive RF input power (RX2)                      | PIN_RX2           |     |             | -15               | dBm   |
| Transmit RF input power (TX)                      | PIN_TXIN          |     | +10         | +13               | dBm   |
| Transmit duty cycle                               |                   |     |             | 50                | %     |

 $<sup>\</sup>overline{\ ^1}$  VDD1 and VDD2 are diode-coupled together with a typical turn-on voltage of 3.2 V.

Table 5. SKY65313-21 DC Electrical Specifications  $^1$  (VCC\_RX = VDD1 = 3.0 V to 3.6 V, VCC\_TX1/2/3 = VDD2 = 3.6 V to 4.4 V, Tc = -40 °C to +85 °C, No RF Input Power, Unless Otherwise Noted)

| Parameter                                                    | Symbol                                         | Test Condition                                    | Min | Тур  | Max  | Units |
|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|-----|------|------|-------|
| Quiescent current, receive mode <sup>2</sup>                 | Iq_rx                                          |                                                   | 7.5 | 12.6 | 20.0 | mA    |
| Quiescent current, receive bypass mode <sup>2</sup>          | IQ_BYP                                         |                                                   |     | 46   | 90   | μΑ    |
| VDD1 quiescent current, transmit mode                        | lq_vdd1                                        |                                                   |     | 25   | 30   | mA    |
| VCC_TX1/2/3/quiescent current, transmit mode                 | Іо_тхім                                        | Tc = 25 °C,<br>VCC_TX1/2/3 = 4 V,<br>VPC = 2.25 V |     | 55   | 88   | mA    |
| VCC_TX1/2/3/ operating current, transmit mode                | lop_txin                                       | Pin = +10 dBm, @ 902 to<br>928 MHz, Vpc = 2.25 V  |     | 655  | 826  | mA    |
| Vcc_Rx quiescent current, shudown mode <sup>2, 3</sup>       | IQ_SDVCC_RX                                    |                                                   |     | 0.01 |      | μΑ    |
| VCC_TX1/2/3 quiescent current, shutdown mode <sup>2, 3</sup> | lo_sdvcc_tx1,<br>lo_sdvcc_tx2,<br>lo_sdvcc_tx3 |                                                   |     | 0.03 |      | μΑ    |
| Digital input current, logic <sup>3</sup>                    | Ін                                             |                                                   |     | 33   |      | μΑ    |
| Digital input current, logic 0 <sup>3</sup>                  | lL .                                           |                                                   |     | 0    |      | μΑ    |

<sup>&</sup>lt;sup>1</sup> Performance is guaranteed only under the conditions listed in this table.

 $<sup>^{\</sup>rm 2}$  Total module power supply current.

<sup>&</sup>lt;sup>3</sup>Not production tested.

Table 6. SKY65313-21 Electrical Specifications: Receive and Receive Bypass Mode<sup>1</sup> (VCC\_RX = VDD1 = 3.0 V to 3.6 V, VCC\_TX1/2/3 = VDD2 = 3.6 V to 4.4 V, Tc = -40 °C to +85 °C, f = 902 to 928 MHz, 50  $\Omega$  Source and Load Impedance, CW Input, Unless Otherwise Noted)

| Parameter                                      | Symbol               | Test Condition                                     | Min  | Тур   | Max  | Units |
|------------------------------------------------|----------------------|----------------------------------------------------|------|-------|------|-------|
| Receive Mode: RX2 to Receive Output Pa         | th                   | <u> </u>                                           |      |       |      |       |
| Small signal gain                              | GLNA                 |                                                    | 15.6 | 16.6  | 18.3 | dB    |
| Noise figure                                   | NFLNA                | Tc = 25 °C, Vcc_rx = 3.3 V                         |      | 1.4   | 1.8  | dB    |
| Noise figure variation over temperature        | NFTEMP               |                                                    |      | ±0.25 |      | dB    |
| 1 dB input compression point                   | IP1dBlna             | 1 dB gain compression                              | -13  | -11   |      | dBm   |
| Third order input intercept point              | IIP3LNA              | P <sub>IN</sub> = -30 dBm/tone,<br>200 kHz spacing | -3.5 | 0     |      | dBm   |
| Input return loss                              | IS11ILNA             |                                                    | 8.0  | 10.7  |      | dB    |
| Output return loss                             | IS22ILNA             |                                                    | 10.0 | 13.6  |      | dB    |
| Reverse isolation                              | IS12ILNA             |                                                    | 20   | 22    |      | dB    |
| Non-harmonic spurious <sup>2, 3</sup>          | PSPUR_LNA            | VSWR 10:1, all phases                              |      |       | -50  | dBm   |
| Transition time <sup>2</sup>                   | TLNA                 |                                                    |      | 0.5   |      | μs    |
| Receive Bypass Mode: RX2 to Receive Ou         | ıtput Path           | <u> </u>                                           |      |       |      |       |
| Insertion loss                                 | LBYP                 |                                                    |      | 3     | 4    | dB    |
| 1 dB input compression point                   | IP1dB <sub>BYP</sub> | 1 dB gain compression                              | +15  | +16   |      | dBm   |
| Third order input intercept point              | IIРЗ <sub>ВУР</sub>  | P <sub>IN</sub> = -30 dBm/tone,<br>200 kHz spacing | +27  | +30   |      | dBm   |
| Input return loss                              | IS11 BYP             |                                                    | 12   | 15    |      | dB    |
| Receive Bypass Mode: RX2 to Receive Ou         | ıtput Path (continu  | ıed)                                               |      |       |      |       |
| Output return loss                             | IS22lbyp             |                                                    | 12   | 22    |      | dB    |
| Transition time <sup>2</sup>                   | Твур                 |                                                    |      | 0.5   |      | μs    |
| Receive and Receive Bypass Mode: ANT           | to RX1 Path          | <u> </u>                                           |      |       |      | •     |
| Insertion loss                                 | LANT                 |                                                    |      | 0.5   | 0.9  | dB    |
| 1 dB input compression point <sup>2</sup>      | IP1dBant             | 1 dB gain compression                              |      | +35   |      | dBm   |
| Third order input intercept point <sup>2</sup> | IIP3ant              | P <sub>IN</sub> = -30 dBm/tone,<br>200 kHz spacing |      | +50   |      | dBm   |
| Input return loss                              | IS11IANT             |                                                    | 12   | 15    |      | dB    |
| Output return loss                             | IS22IANT             |                                                    | 12   | 15    |      | dB    |
| Transition time <sup>2</sup>                   | TANT                 |                                                    |      | 0.5   |      | μs    |

<sup>&</sup>lt;sup>1</sup> Performance is guaranteed only under the conditions listed in this table.

 $<sup>^{2}</sup>$  Not production tested.

 $<sup>^3</sup>$  Measurement performed with spectrum analyzer RBW = 100 kHz for frequencies < 1 GHz and RBW = 1 MHz for frequencies between 1 GHz and 10 GHz.

Table 7. SKY65313-21 Electrical Specifications: Transmit Mode<sup>1</sup> (Vcc\_Rx = Vdd1 = 3.0 V to 3.6 V, Vcc\_Tx2 = Vdd2 = 3.6 V to 4.4 V, Tc = -40 °C to +85 °C, f = 902 to 928 MHz, 50  $\Omega$  Source and Load Impedance, CW Input, Unless Otherwise Noted)

| Parameter                                                 | Symbol          | Test Condition                                                                                                           | Min   | Typical | Max | Units |
|-----------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------|---------|-----|-------|
| TXIN to ANT Path                                          |                 | ·                                                                                                                        |       |         |     |       |
| Saturated output power                                    | Роит            | P <sub>IN</sub> = +10 dBm,<br>T <sub>C</sub> = 25 °C,<br>VCC_TX1/2/3 = 4.0 V,<br>V <sub>PC</sub> = 2.25 V                | +30.0 | +30.5   |     | dBm   |
| Output power variation over supply voltage                |                 | PIN = +10 dBm, $VPC = 2.25 V$                                                                                            |       | ±0.8    |     | dB    |
| Output power variation over temperature                   |                 | PIN = +10  dBm,<br>VPC = 2.25  V                                                                                         |       | ±0.15   |     | dB    |
| Output power control                                      | Рсть            | $P_{IN} = +10 \text{ dBm},$<br>$V_{PC} = 0 \text{ V to } 2.7 \text{ V}$<br>(Note 2)                                      | 40    | 50      |     | dB    |
| Power-added efficiency                                    | PAE             | Pin = +10 dBm                                                                                                            |       | 41      |     | %     |
| 2 <sup>nd</sup> harmonic                                  | 2fo             | PIN = +10 dBm                                                                                                            |       | -36     | -20 | dBc   |
| 3 <sup>rd</sup> harmonic                                  | 3fo             | Pin = +10 dBm                                                                                                            |       | -62     | -58 | dBc   |
| 4 <sup>th</sup> harmonic                                  | 4fo             | PIN = +10 dBm                                                                                                            |       | -76     | -66 | dBc   |
| 5 <sup>th</sup> harmonic                                  | 5fo             | Pin = +10 dBm                                                                                                            |       | -78     | -70 | dBc   |
| 6 <sup>th</sup> - 10 <sup>th</sup> harmonics <sup>3</sup> | 6fo - 10fo      | Pin = +10 dBm                                                                                                            |       |         | -70 | dBc   |
| Input return loss                                         | IS11ltx         | $P_{IN} = +10 \text{ dBm}, \\ T_{C} = 25  ^{\circ}\text{C}, \\ VCC\_TX1/2/3 = 4.0 \text{ V}, \\ V_{PC} = 2.25 \text{ V}$ | 10    | 16      |     | dB    |
| Output impedance <sup>4</sup>                             | <b>Z</b> оυт_тх | P <sub>IN</sub> = +10 dBm                                                                                                |       | 39-j46  |     | Ω     |
| Non-harmonic spurious <sup>4, 5</sup>                     | PSPUR_TX        | VSWR 10:1, all phases                                                                                                    |       |         | -50 | dBm   |
| Transition time <sup>4</sup>                              | Ттх             |                                                                                                                          |       | 0.5     |     | μs    |
| ANT to RX1 Path                                           |                 |                                                                                                                          |       |         |     |       |
| Isolation                                                 | IS21IANT        |                                                                                                                          | 18    | 23      |     | dB    |

<sup>&</sup>lt;sup>1</sup> Performance is guaranteed only under the conditions listed in this table.

 $<sup>^2</sup>$  Output power control is the difference between the output power at VPC = 2.25 V and VPC = 0 V.

 $<sup>^3</sup>$  Only the  $2^{\rm nd}$  to  $5^{\rm th}$  harmonics have been production tested. The  $6^{\rm th}$  to  $10^{\rm th}$  harmonics are characterized only.

<sup>&</sup>lt;sup>4</sup> Not production tested.

<sup>&</sup>lt;sup>5</sup> Measurement performed with spectrum analyzer RBW = 100 kHz for frequencies < 1 GHz and RBW = 1 MHz for frequencies between 1 GHz and 10 GHz.

#### **Typical Performance Characteristics**

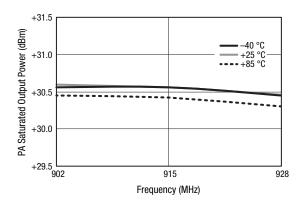



Figure 3. PA Saturated Output Power vs Frequency Over Temperature (VCC\_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC\_RX = 3.3 V, Pin = +10 dBm, VPC = 2.25 V)

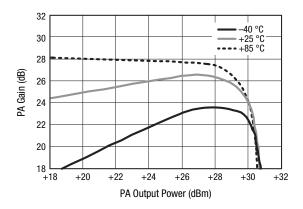



Figure 5. PA Gain vs Output Power Over Temperature (VCC\_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC\_RX = 3.3 V, f = 915 MHz, VPC = 2.25 V)

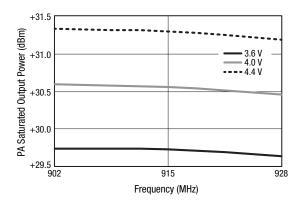



Figure 4. PA Saturated Output Power vs Frequency Over VCC\_TX/1/2/3 (VDD1 = VCC\_RX = 3.3 V, Tc = 25  $^{\circ}$ C, PIN = +10 dBm, VPC = 2.25 V)

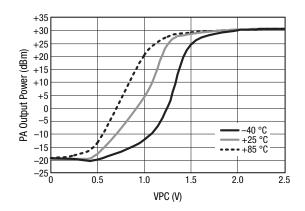



Figure 6. PA Output Power vs VPC Over Temperature (VCC\_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC\_RX = 3.3 V, f = 915 MHz, PIN = +10 dBm)

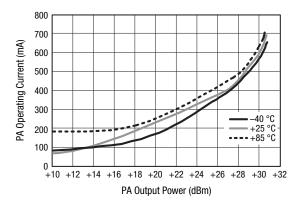



Figure 7. PA Operating Current vs Output Power Over Temperature (VCC\_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC\_RX = 3.3 V, f = 915 MHz, VPC = 2.25 V)

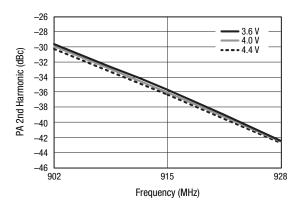



Figure 9. PA  $2^{nd}$  Harmonic vs Frequency Over VCC\_TX1/2/3 (VDD1 = VCC\_RX = 3.3 V, Tc = 25 °C, Pin = +10 dBm VPC = 2.25 V)

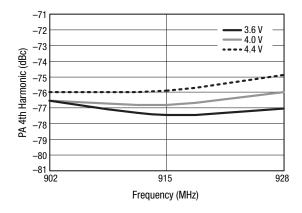



Figure 11. PA 4th Harmonic vs Frequency Over VCC\_TX1/2/3 (VDD1 = VCC\_RX = 3.3 V, Tc = 25 °C, PIN = +10 dBm VPC = 2.25 V)

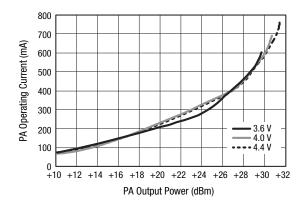



Figure 8. PA Operating Current vs Output Power Over VCC\_TX/1/2/3 (VDD1 = VCC\_RX = 3.3 V, Tc = 25  $^{\circ}$ C, f = 915 MHz, VPC = 2.25 V)

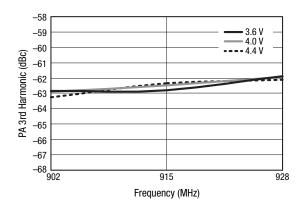



Figure 10. PA  $3^{rd}$  Harmonic vs Frequency Over VCC\_TX1/2/3 (VDD1 = VCC\_RX = 3.3 V, Tc = 25 °C, PIN = +10 dBm VPC = 2.25 V)

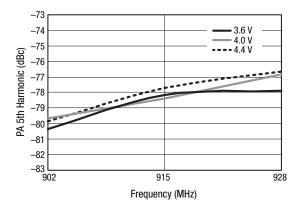



Figure 12. PA 5th Harmonic vs Frequency Over VCC\_TX1/2/3 (VDD1 = VCC\_RX = 3.3 V, Tc = 25 °C, PIN = +10 dBm VPC = 2.25 V)

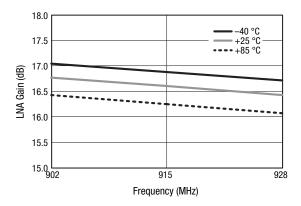



Figure 13. LNA Gain vs Frequency Over Temperature (VCC\_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC\_RX = 3.3 V)

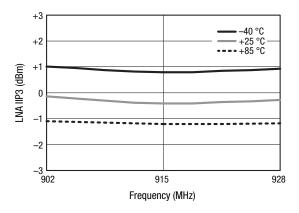



Figure 15. LNA IIP3 vs Frequency Over Temperature (VCC\_TX/1/2/3 = VDD2 = 4.0 V, Tc =  $25 ^{\circ}\text{C}$ )

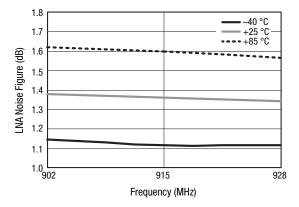



Figure 17. LNA Noise Figure vs Frequency Over Temperature (VCC\_TX/1/2/3 = VDD2 = 4.0 V, VCC\_RX = VDD1 = 3.3 V)

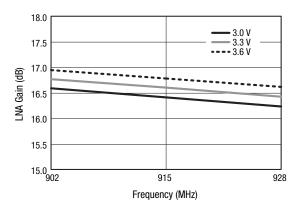



Figure 14. LNA Gain vs Frequency Over VCC\_RX (VCC\_TX/1/2/3 = VDD2 = 4.0 V, Tc = 25 °C)

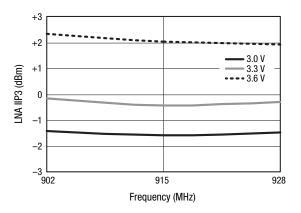



Figure 16. LNA IIP3 vs Frequency Over VCC\_RX  $(VCC_TX/1/2/3 = VDD2 = 4.0 \text{ V}, Tc = 25 ^{\circ}C)$ 

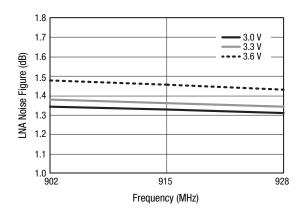



Figure 18. LNA Noise Figure vs Frequency Over VCC\_RX (VCC\_TX/1/2/3 = VDD2 = 4.0 V, Tc = 25 °C)

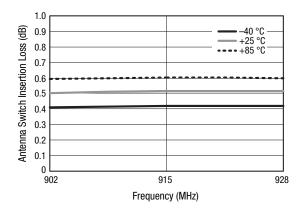



Figure 19. Antenna Switch Insertion Loss vs Frequency Over Temperature (VCC\_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC\_RX = 3.3 V)

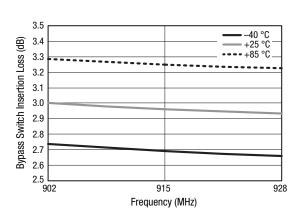



Figure 21. Bypass Switch Insertion Loss vs Frequency Over Temperature (VCC TX/1/2/3 = VDD2 = 4.0 V, Tc =  $25 \, ^{\circ}\text{C}$ )

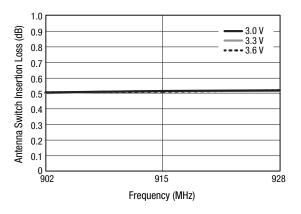



Figure 20. Antenna Switch Insertion Loss vs Frequency Over VCC RX (VCC TX/1/2/3 = VDD2 = 4.0 V, Tc =  $25 \, ^{\circ}\text{C}$ )

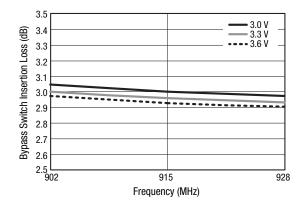



Figure 22. Bypass Switch Insertion Loss vs Frequency Over VCC\_RX (VCC\_TX/1/2/3 = VDD2 = 4.0 V, Tc =  $25 ^{\circ}$ C)

### **Evaluation Board Description**

The SKY65313-21 Evaluation Board is used to test the performance of the SKY65313-21 T/R FEM. A typical application schematic diagram is provided in Figure 23.

An Evaluation Board schematic diagram is provided in Figure 24. An assembly drawing for the Evaluation Board is shown in Figure 25.

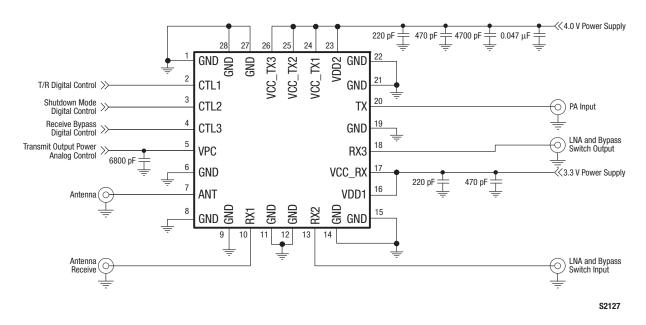



Figure 23. SKY65313-21 Typical Application Schematic

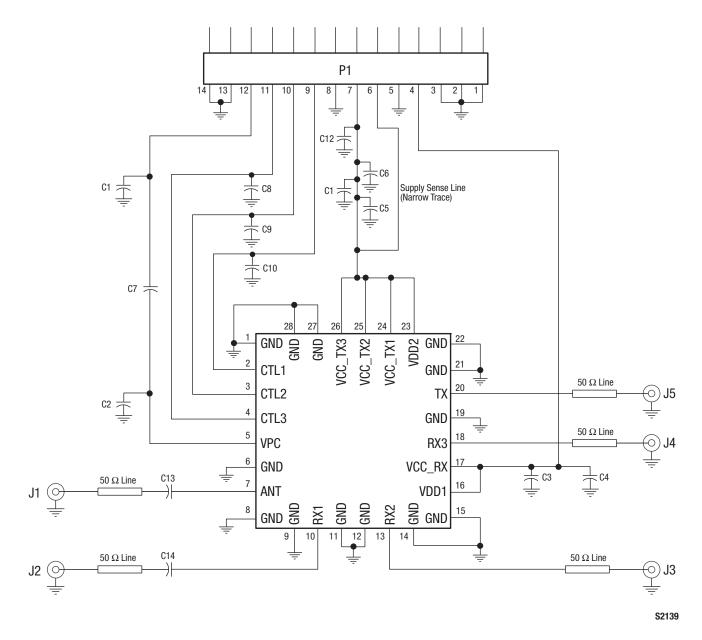



Figure 24. SKY65313-21 Evaluation Board Schematic

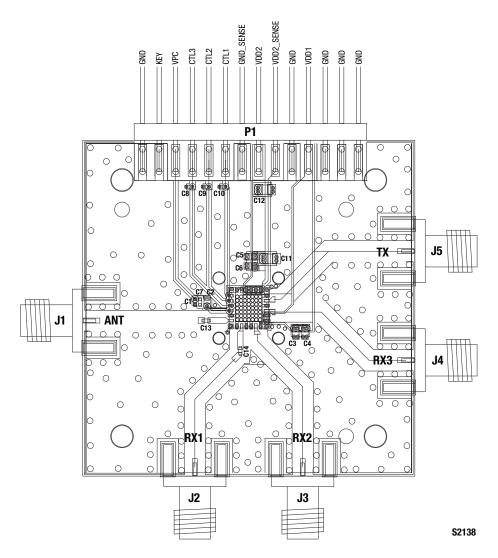



Figure 25. SKY65313-21 Evaluation Board Assembly Diagram

#### **Package Dimensions**

A typical part marking is shown in Figure 26. The PCB layout footprint for the SKY65313-21 is provided in Figure 27. Package dimensions are shown in Figure 28, and tape and reel dimensions are provided in Figure 29.

#### **Package and Handling Information**

Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY65313-21 is rated to Moisture Sensitivity Level 3 (MSL3) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to Skyworks Application Note, *PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages*, document number 101752.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

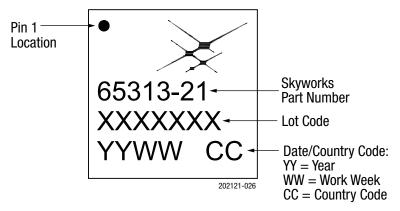



Figure 26. Typical Part Marking

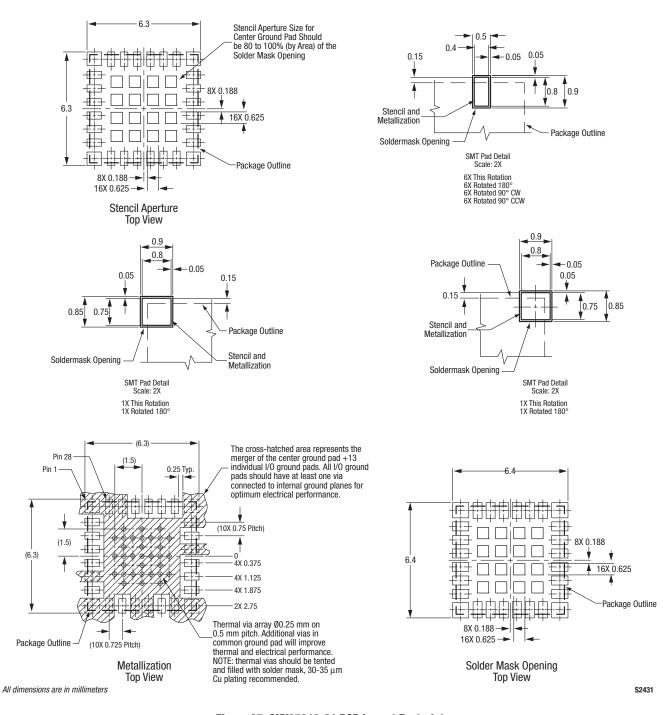



Figure 27. SKY65313-21 PCB Layout Footprint

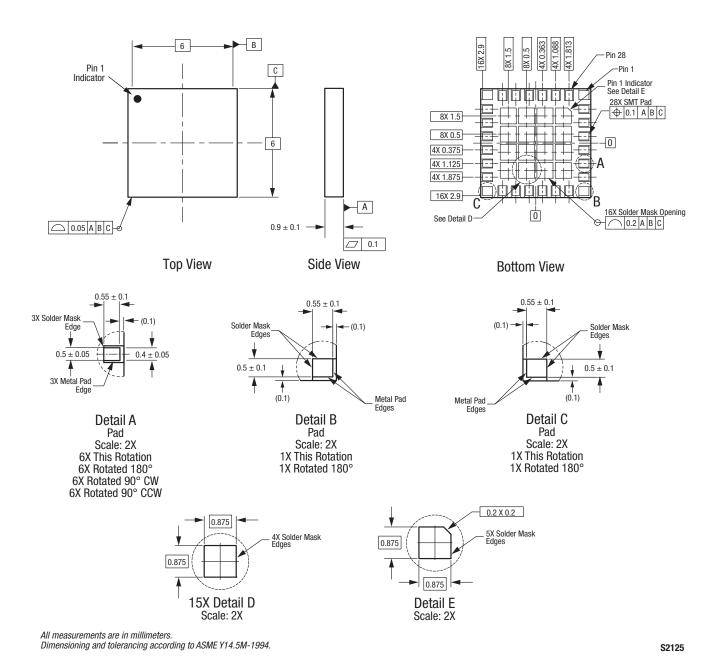



Figure 28. SKY65313-21 Package Dimensions

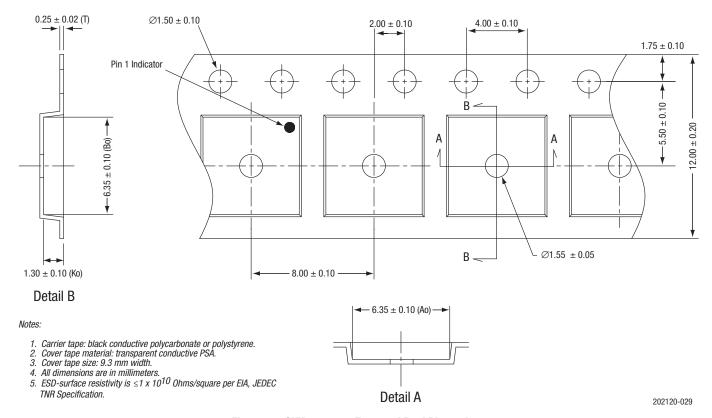



Figure 29. SKY65313-21 Tape and Reel Dimensions

#### **Ordering Information**

| Model Name                        | Manufacturing Part Number | Evaluation Board Part Number |
|-----------------------------------|---------------------------|------------------------------|
| SKY65313-21: T/R Front-End Module | SKY65313-21               | SKY65313-21-EVB              |

Copyright © 2012, 2016-2017 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

## **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

# Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

#### http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

#### Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru\_6 moschip.ru 4 moschip.ru 9