
HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM WITH SEMAPHORE

Features

- High-speed access
 - Commercial: 20ns(max.)
- Industrial: 25ns (max.)
- Low-power operation
 - IDT71342LA Active: 700mW (typ.)
 - Standby: 1mW (typ.)
- + Fully asynchronous operation from either port

- Full on-chip hardware support of semaphore signalling between ports
- Battery backup operation—2V data retention (LA only)
- TTL-compatible; single 5V (±10%) power supply
- Available in plastic packages
- Industrial temperature range (-40°C to +85°C) is available for selected speeds

Functional Block Diagram

Description

The IDT71342 is a high-speed 4K x 8 Dual-Port Static RAM with full on-chip hardware support of semaphore signalling between the two ports.

The IDT71342 provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. To assist in arbitrating between ports, a fully independent semaphore logic block is provided. This block contains unassigned flags which can be accessed by either side; however, only one side can control the flag at any

Pin Configurations^(1,2,3)

1/03L 1/03L 1/01L 1/01L 1/01L 1/01L 1/01L 28L 28L 23L 23L 23L 23L 20 19 18 17 16 15 14 13 12 11 10 9 8 221 50 I/O4L 7 AOL 6 [] ŌĒL I/O5L 322 5 [] A10L I/O6L] 23 I/O7L 324 51 A11L 4 50] 25 3 SEML N/C GND 2 [] R/WL 326 71342 PLG52⁽⁴⁾ 223 I/Oor 227 CEL I/O1R 328 52 I I Vcc 52-PIn PLCC Top View⁵⁾ 51 **C** CER I/O2R 29 50 I I R/WR I/O3R **C**] 30 I/O4R 31 SEMR 49 **[**] 32 48 **:** I/O5r A11R I/O6r 33 47 🛽 A10R 34 35 36 37 38 39 40 41 42 43 44 45 46 A9R A8R A7R A5R A5R A3R A3R A2R NC A1R Aor <u>DE</u>r 2721 drw 02a I/O7R I/O6R Aor A1r A1r A2r A3r A6r A6r A6r A7r A7r A8r A8r A8r A9r NO 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 N/C 32 I/O5r 49 N/C 50 31 I/O4R 51 30 N/C A10R A11R 52 29 I/O3R SEM R 53 28 I/O2R R/WR 27 54 I/O1R CER 55 71342 26 I/OOR PNG64(4) 25 N/C 56 GND Vcc 57 64-Pin TQFP 24 N/C Top View⁽⁵⁾ CEL 23 N/C 58 22 R/₩L 59 I/O7L 21 SEML 60 I/O6L 20 A11L 61 I/O5L A10L 62 19 I/O4L NOTES: N/C 18 N/C 63 All Vcc pins must be connected to power supply. 1. 17 N/C 64 I/O3L All GND pins must be connected to ground supply. 2 2 3 4 5 6 7 8 9 101112 131415 16 PLG52 package body is approximately .79 in x .79 in x .17 in. 3. PNG64 package body is approximately 14mm x 14mm x 1.4mm. 2721 drw 03a 4. This package code is used to reference the package diagram.

time. An automatic power down feature, controlled by \overline{CE} and \overline{SEM} , permits the on-chip circuitry of each port to enter a very low standby power mode (both \overline{CE} and \overline{SEM} HIGH).

Fabricated using CMOS high-performance technology, this device typically operates on only 700mW of power. Low-power (LA) versions offer battery backup data retention capability, with each port typically consuming 200µW from a 2V battery. The device is packaged in either a 64-pin TQFP or a 52-pin PLCC.

Industrial and Commercial Temperature Ranges

GND

0V

0V

Vcc

5.0V + 10%

5.0V + 10%

2721 tbl 03

Temperature and Supply Voltage^(1,2)

Ambient

Temperature

0°C to +70°C

-40°C to +85°C

1. This is the parameter TA. This is the "instant on" case temperature.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Tbias	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-65 to +150	٥C
Рт	Power Dissipation	1.5	W
lout	DC Output Current	50	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc +10%.

2721 tbl 01

2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10 ns

Recommended DC Operating Conditions Symbol Min. Typ. Max. Unit Parameter

Maximum Operating

Grade

Commercial

Industrial

NOTES:

,			51		
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
V⊪	Input High Voltage	2.2		6.0 ⁽²⁾	V
Vil	Input Low Voltage	-0.5 ⁽¹⁾		0.8	V
				:	2721 tbl 04

NOTES:

 V_{L} (min.) \geq -1.5V for pulse width less than 10ns. 1.

2. VTERM must not exceed Vcc + 10%.

Symbol	Parameter	Conditions ⁽²⁾	Мах.	Unit
Cin	Input Capacitance	VIN = 3dV	9	pF
Соит	Output Capacitance	Vout = 3dV	10	pF
				2721 tbl 02

Capacitance⁽¹⁾ (TA = +25°C, f = 1.0MHz)

NOTES:

This parameter is determined by device characterization but is not production 1. tested.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage (Vcc = 5V ± 10%)

			71342SA		71342LA		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
lu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, VIN = 0V to Vcc	_	10	-	5	μA
llo	Output Leakage Current	$\overline{CE} = VIH$, VOUT = 0V to VCC	_	10	-	5	μA
Vol	Output Low Voltage	Iol = 6mA	_	0.4	-	0.4	V
		Iol = 8mA	—	0.5	-	0.5	V
Vон	Output High Voltage	Іон = -4mA	2.4	_	2.4	_	V

NOTE:

1. At Vcc ≤ 2.0V input leakages are undefined.

2721 tbl 05

^{2. 3}dv references the interpolated capacitance when the input and output signals switch from 0V to 3V and from 3V to 0V.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾ ($Vcc = 5.0V \pm 10\%$)

						2X20 Only	7134 Com'l		7134 Com'l		
Symbol	Parameter	Test Condition	Versi	on	Тур. ⁽²⁾	Мах.	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Unit
lcc	Dynamic Operating Current (Both Ports Active)	CE = VIL, Outputs Disabled	COM'L	SA LA	170 170	280 240	160 160	280 240	150 150	260 200	mA
		SEM = Don't Care f = f _{MAX} ⁽³⁾	IND	SA LA	_		160 160	310 260	150 150	300 250	
ISB1	Standby Current (Both Ports - TTL Level Inputs)		COM'L	SA LA	25 25	80 80	25 25	80 50	25 25	75 45	mA
	Lever inputs)	T = 1MAX**	IND	SA LA			25 25	100 80	25 25	75 55	
ISB2	Standby Current (One Port - TTL Level Inputs)	$\overline{CE}^{*}_{A^*} = V_{IL}$ and $\overline{CE}^{*}_{B^*} = V_{IH}$ Active Port Outputs Disabled, $f=f_{MAX}^{(3)}$	COM'L	SA LA	105 105	180 150	95 95	180 150	85 85	170 140	mA
	Lever inputs)	T=IMAX ^{ee}	IND	SA LA			95 95	210 170	85 85	200 160	
ISB3	Full Standby Current (Both Ports - CMOS Level Inputs)	Both Ports $\overline{CE}L$ and $\overline{CE}R \ge Vcc - 0.2V$, $Vm \ge Vcc - 0.2V$	COM'L	SA LA	1.0 0.2	15 4.5	1.0 0.2	15 4.0	1.0 0.2	15 4.0	mA
	Civids Level inputs)		IND	SA LA			1.0 0.2	30 10	1.0 0.2	30 10	
ISB4	Full Standby Current (One Port - CMOS Level Inputs)	One Port \overline{CE}^*A^* or $\overline{CE}^*B^* \ge Vcc - 0.2V$	COM'L	SA LA	105 105	170 130	95 95	170 120	85 85	150 110	mA
	Civios Level Ilipuis)	$\label{eq:linear_state} \begin{array}{l} \underline{V} \ \ge \overline{V} \underline{C} \underline{C} - \underline{0}. 2 V \mbox{ or } V \ \le 0.2 V \\ \overline{SEML} = \overline{SEMR} \ge V \underline{C} \underline{C} - \underline{0}. 2 V \\ Active Port Outputs Disabled, \\ f = f_{MAX}^{(3)} \end{array}$	IND	SA LA			95 95	210 190	85 85	190 130	

						2X45 Only	7134: Com'l		71342 Com'l		
Symbol	Parameter	Test Condition	Versi	on	Тур. ⁽²⁾	Max.	Тур. ⁽²⁾	Мах.	Typ. ⁽²⁾	Мах.	Unit
lcc	Dynamic Operating Current (Both Ports Active)	Outputs Disabled		SA LA	140 140	240 200	140 140	240 200	140 140	240 200	mA
		$\overline{\text{SEM}} = \text{Don't Care} \\ f = f_{MAX}^{(3)}$	IND	SA LA			140 140	270 220			
ISB1	Standby Current (Both Ports - TTL Level Inputs)	$\frac{\overline{CE}L}{SEM} = \frac{\overline{CE}R}{SEM} = V_{\text{IH}}$	COM'L	SA LA	25 25	70 40	25 25	70 40	25 25	70 40	m/
	Level lipuis)	$f = f_{MAX}^{(3)}$	IND	SA LA			25 25	70 50			
ISB2	Standby Current (One Port - TTL	$\overline{CE}^*A^* = VIL \text{ and } \overline{CE}^*B^* = VIH$ Active Port Outputs Disabled,	COM'L	SA LA	75 75	160 130	75 75	160 130	75 75	160 130	m
	Level Inputs)	f=fMAX ⁽³⁾	IND	SA LA			75 75	180 150			
ISB3	Full Standby Current (Both Ports -	Both Ports \overline{CE}_{L} and $\overline{CE}_{R} \ge Vcc - 0.2V$,	COM'L	SA LA	1.0 0.2	15 4.0	1.0 0.2	15 4.0	1.0 0.2	15 4.0	m
	CMOS Level Inputs)	$\label{eq:linear_state} \begin{array}{l} \underline{V_{IN}} \geq V_{CC} - 0.2V \mbox{ or } V_{IN} \leq 0.2V \\ \hline SEM_L = \overline{SEM_R} \geq V_{CC} - 0.2V \\ f = 0^{(3)} \end{array}$	IND	SA LA			1.0 2.0	30 10			
ISB4	Full Standby Current (One Port -	One Port \overline{CE}^* or $\overline{CE}^*B^* \ge Vcc - 0.2V$	COM'L	SA LA	75 75	150 100	75 75	150 100	75 75	150 100	m/
	CMOS Level Inputs)	$ \begin{array}{l} \hline V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V \\ \hline SEML = \overline{SEM_R} \geq V_{CC} - 0.2V \\ Active \mbox{ Port Outputs Disabled,} \\ f = f_{MAX}^{(3)} \end{array} $	IND	SA LA			75 75	170 120			

NOTES:

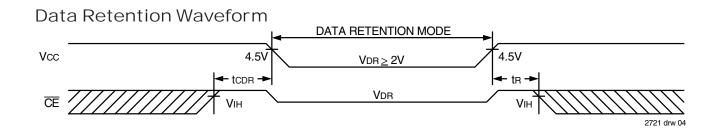
1. 'X' in part number indicates power rating (SA or LA).

2. Vcc = 5V, TA = $+25^{\circ}$ C for typical, and parameters are not production tested.

3. fmax = 1/trc = All inputs cycling at f = 1/trc (except Output Enable). f = 0 means no address or control lines change. Applies only to inputs at CMOS level standby ISB3.

Industrial and Commercial Temperature Ranges

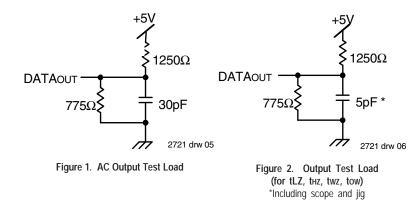
Data Retention Characteristics (LA Version Only) VLC = 0.2V, VHC = VCC - 0.2V


Symbol	Parameter	Test Cond	Test Condition			Test Condition			Max.	Unit
Vdr	Vcc for Data Retention		2.0			V				
ICCDR	Data Retention Current	Vcc = 2V, $\overline{CE} \ge$ VHc	COM'L. & IND.	_	100	1500	μA			
tcdr ⁽³⁾	Chip Deselect to Data Retention Time	SEM > VHC		0	_	_	ns			
tR ⁽³⁾	Operation Recovery Time	Vin ≥ Vhc or <u><</u> Vlc	F				ns			
NOTEC	•	•				2	721 tbl 07			

NOTES:

1. Vcc = 2V, TA = +25 $^{\circ}$ C, and are not production tested.

2. trc = Read Cycle Time.


3. This parameter is guaranteed by device characterization, but is not production tested.

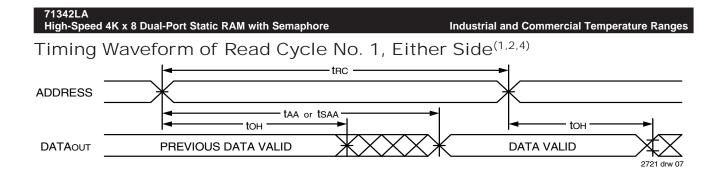
AC Test Conditions

Input Pulse Levels	GND to 3.0V				
Input Rise/Fall Times	5ns				
Input Timing Reference Levels	1.5V				
Output Reference Levels	1.5V				
Output Load	Figures 1 and 2				

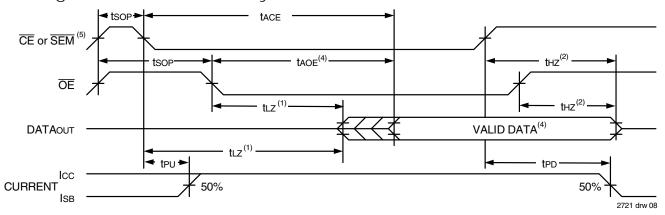
2721 tbl 09b

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽⁵⁾

			2X20 I Only	7134 Com'l	2X25 & Ind	71342X35 Com'l Only		
Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Max.	Unit
READ CYCLE		•						
trc	Read Cycle Time	20		25		35	—	ns
taa	Address Access Time		20		25		35	ns
TACE	Chip Enable Access Time ⁽³⁾	_	20		25		35	ns
taoe	Output Enable Access Time	—	15	_	15		20	ns
toн	Output Hold from Address Change	0	_	0	_	0	_	ns
tLZ	Output Low-Z Time ^(1,2)	0	_	0		0	—	ns
tHZ	Output High-Z Time ^(1,2)		15		15		20	ns
tPU	Chip Enable to Power Up Time ⁽²⁾	0		0		0	_	ns
tPD	Chip Disable to Power Down Time ⁽²⁾	—	50	_	50		50	ns
tSOP	SEM Flag Update Pulse (OE or SEM)	10	_	10	_	15	_	ns
twdd	Write Pulse to Data Delay ⁽⁴⁾	_	40		50		60	ns
tDDD	Write Data Valid to Read Data Delay ⁽⁴⁾	_	30		30		35	ns
tsaa	Semaphore Address Access Time	_			25		35	ns
								2721 tbl 09
			2X45 I Only		2X55 I Only		42X70 'I Only	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Мах.	Unit

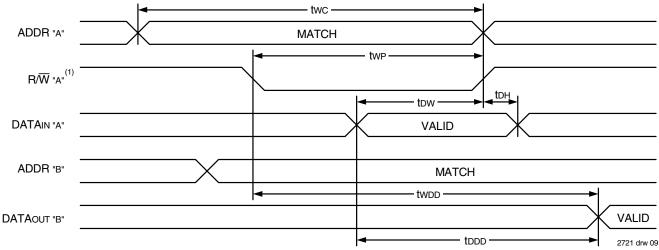

Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE			-	-		-	-	-
trc	Read Cycle Time	45		55		70	_	ns
taa	Address Access Time		45	_	55	_	70	ns
tace	Chip Enable Access Time ⁽³⁾		45	-	55	_	70	ns
taoe	Output Enable Access Time		25		30	_	40	ns
toн	Output Hold from Address Change	0		0		0	-	ns
t∟z	Output Low-Z Time ^(1,2)	5	-	5		5	_	ns
tHZ	Output High-Z Time ^(1,2)		20	_	25		30	ns
tpu	Chip Enable to Power Up Time ⁽²⁾	0	-	0		0	_	ns
t PD	Chip Disable to Power Down Time ⁽²⁾		50	_	50	_	50	ns
tSOP	SEM Flag Update Pulse (OE or SEM)	15	_	20		20	_	ns
twdd	Write Pulse to Data Delay ⁽⁴⁾		70	_	80		90	ns
tDDD	Write Data Valid to Read Data Delay ⁽⁴⁾		45		55		70	ns
tsaa	Semaphore Address Access Time		45		55		70	ns

NOTES:


1. Transition is measured 0mV from Low or High-impedance voltage with the Ouput Test Load (Figure 2).

2. This parameter is guaranteed by device characterization, but is not production tested. 3. To access SRAM, $\overline{CE} = V_{IL}$, $\overline{SEM} = V_{IH}$. To access semaphore, $\overline{CE} = V_{IH}$, and $\overline{SEM} = V_{IL}$. 4. 'X' in part number indicates power rating (SA or LA).

5. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read".


Timing Waveform of Read Cycle No. 2, Either Side^(1,3)

NOTES:

- 1. Timing depends on which signal is asserted last, \overline{OE} or \overline{CE} .
- 2. Timing depends on which signal is de-asserted first, OE or CE.
- 3. $R/\overline{W} = V_{IH}$ and $\overline{OE} = V_{IL}$, unless otherwise noted.
- 4. Start of valid data depends on which timing becomes effective last; taoe, tace, or taa
- 5. To access SRAM, \overrightarrow{CE} = VIL and SEM = VIH. To access semaphore, \overrightarrow{CE} = VIH and \overrightarrow{SEM} = VIL taa is for SRAM Address Access and tsaa is for Semaphore Address Access.

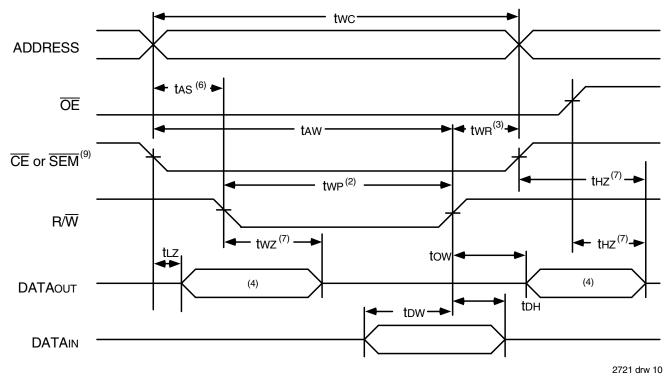
Timing Waveform of Write with Port-to-Port Read^(2,3)

NOTES:

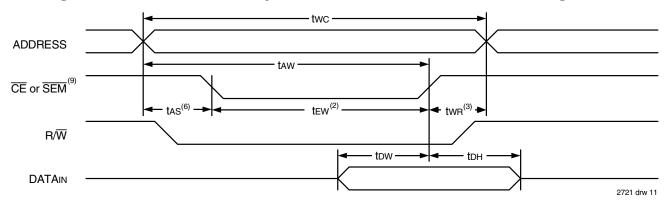
- 1. Write cycle parameters should be adhered to, in order to ensure proper writing.
- 2. $\overline{CE}L = \overline{CE}R = VIL$. $\overline{CE}"B" = VIL$.
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

AC Electrical Characteristics Over the Operating Temperature Supply Voltage⁽⁵⁾

		7134 Com'	2X20 I Only		2X25 & Ind	7134 Com'	I2X35 I Only	
Symbol	Parameter	Min.	Max.	Min.	Мах.	Min.	Max.	Unit
WRITE CYCL	E							
twc	Write Cycle Time	20	_	25		35	—	ns
tew	Chip Enable to End-of-Write ⁽³⁾	15	_	20		30	-	ns
taw	Address Valid to End-of-Write	15	_	20		30	-	ns
tas	Address Set-up Time	0		0		0	_	ns
twp	Write Pulse Width	15	_	20		25	-	ns
twr	Write Recovery Time	0	_	0		0	-	ns
tow	Data Valid to End-of-Write	15		15		20	—	ns
tHZ	Output High-Z Time ^(1,2)		15	—	15		20	ns
tDH	Data Hold Time ⁽⁴⁾	0		0		3	—	ns
twz	Write Enable to Output in High-Z ^(1,2)		15		15		20	ns
tow	Output Active from End-of-Write ^(1,2,4)	3		3		3	—	ns
tswr	SEM Flag Write to Read Time	10		10		10	—	ns
tsps	SEM Flag Contention Window	10		10		10	—	ns
	•							2721 tbl 10a
				-				
		7134 Com'	2X45 I Only	7134 Com'	2X55 I Only	7134 Com'	I2X70 I Only	
Symbol	Parameter	7134 Com' Min.	2X45 I Only Max.	7134 Com' Min.	2X55 I Only Max.	7134 Com' Min.	12X70	Unit
Symbol WRITE CYCL		Com	l Only	Com'	l Only	Com'	I2X70 I Only	
WRITE CYCL		Com	l Only	Com'	l Only	Com'	I2X70 I Only	
WRITE CYCL	E T	Com' Min.	l Only Max.	Com' Min.	l Only Max.	Com' Min.	I2X70 I Only	Unit
WRITE CYCL	E Write Cycle Time	Com' Min. 45	I Only Max.	Com' Min. 55	I Only Max.	Com' Min. 70	I2X70 I Only Max.	Unit
WRITE CYCL twc tew	Write Cycle Time Chip Enable to End-of-Write ⁽³⁾	Com' Min. 45 40	I Only Max.	Com' Min. 55 50	I Only Max.	Com' Min. 70 60	12X70 I Only Max.	Unit ns ns
WRITE CYCL twc tew taw	E Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write	Com' Min. 45 40 40	Max.	Com' Min. 55 50 50	I Only Max.	Com' Min. 70 60 60	I2X70 I Only Max.	Unit ns ns ns
WRITE CYCLI twc tew taw tas	E Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time	Com' Min. 45 40 40 0	Max.	Com' Min. 55 50 50 0	I Only Max.	Com' Min. 70 60 60 0	I2X70 I Only Max.	Unit ns ns ns ns
WRITE CYCLI twc tew taw taw tas twp twr	E Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time Write Pulse Width	Com' Min. 45 40 40 40 0 40	Max. 	Com' Min. 55 50 50 0 50	I Only Max.	Com' Min. 70 60 60 0 60	I2X70 I Only Max.	Unit ns ns ns ns ns
WRITE CYCLI twc tew taw taw tas twp twr twr tow	E Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time Write Pulse Width Write Recovery Time	Com' Min. 45 40 40 40 0 40 0 40	Max	Com' Min. 55 50 50 0 50 0 50 0	I Only Max.	Com' Min. 70 60 60 0 60 0	I2X70 I Only Max.	Unit ns ns ns ns ns ns ns
WRITE CYCLI twc tew taw taw tas twp twr twr tow thz	E Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time Write Pulse Width Write Recovery Time Data Valid to End-of-Write	Com' Min. 45 40 40 40 0 40 0 40	Max. ————————————————————————————————————	Com' Min. 55 50 50 0 50 0 50 0 25	I Only Max.	Com' Min. 70 60 60 0 60 0	12X70 I Only Max.	Unit ns ns ns ns ns ns ns ns
WRITE CYCLI twc tew taw taw taw taw taw twp twp twp twr twr tow thz toh	E Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time Write Pulse Width Write Recovery Time Data Valid to End-of-Write Output High-Z Time ^(1,2)	Com' Min. 45 40 40 40 0 40 0 40 0 20 20 	Only Max. — — — — — — — — — — — — — — — 20	Com' Min. 55 50 50 0 50 0 50 0 25 	Only Max. — — — — — — — — — — — — — — — — 25	Com' Min. 70 60 60 0 60 0 30 30	12X70 1 Only Max. —— —— —— —— —— —— —— 30	Unit ns ns ns ns ns ns ns ns ns
WRITE CYCLI twc tew taw taw tas twP twR tbw tbw thz tow thz	E Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time Write Pulse Width Write Recovery Time Data Valid to End-of-Write Output High-Z Time ^(1,2) Data Hold Time ⁽⁴⁾	Com' Min. 45 40 40 40 0 40 0 40 0 20 20 	Only Max. — — — — — — — — 20 —	Com' Min. 55 50 50 0 50 0 50 0 25 3	Only Max. — — — — — — — — — — 25 —	Com' Min. 70 60 60 0 60 0 30 3	12X70 I Only Max. —— —— —— —— —— —— 30 ——	Unit ns ns ns ns ns ns ns ns ns ns
WRITE CYCL twc tew taw tas twp	E Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time Write Pulse Width Write Recovery Time Data Valid to End-of-Write Output High-Z Time ^(1,2) Data Hold Time ⁽⁴⁾ Write Enable to Output in High-Z ^(1,2)	Com' Min. 45 40 40 40 0 40 0 40 0 20 20 3 3 	Only Max. — — — — — — — 20 20 20	Com' Min. 55 50 50 0 50 0 50 0 25 0 25 3 	Only Max. — — — — — 25 25 25 25	Com' Min. 70 60 60 0 60 0 30 30 30 30 31 	I2X70 I Only Max.	Unit ns ns ns ns ns ns ns ns ns ns


2721 tbl 10b

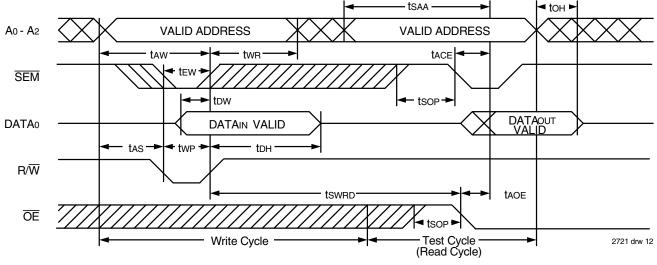
NOTES:


1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2). 2. This parameter is guaranteed by device characterization but is not production tested. 3. To access SRAM, $\overline{CE} = V_{IL}$ and $\overline{SEM} = V_{IH}$. To access semaphore, $\overline{CE} = V_{IH}$ and $\overline{SEM} = V_{IL}$. Either condition must be valid for the entire tew time. 4. The specification for toH must be met by the device supplying write data to the SRAM under all operating conditions. Although toH and tow values will vary over voltage and temperature, the actual toH will always be smaller than the actual tow.

5. 'X' in part number indicates power rating (SA or LA).

TIMING WAVEFORM OF WRITE CYCLE NO. 1, R/w CONTROLLED TIMING^(1,5,8)

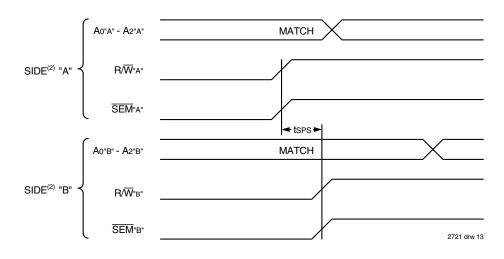
Timing Waveform of Write Cycle No. 2, **CE** Controlled Timing^(1, 5)



NOTES:

- 1. R/\overline{W} or \overline{CE} must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of either \overline{CE} or $\overline{SEM} = V_{IL}$ and $R/\overline{W} = V_{IL}$.
- 3. two is measured from the earlier of \overline{CE} or R/\overline{W} going HIGH to the end-of-write cycle.
- 4. During this period, the I/O pins are in the output state, and input signals must not be applied.
- 5. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is asserted last.
- 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2).
- 8. If $\overrightarrow{\mathsf{OE}}$ is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If $\overrightarrow{\mathsf{OE}}$ is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 9. To access SRAM, $\overline{CE} = V_{IL}$ and $\overline{SEM} = V_{IH}$. To access semaphore, $\overline{CE} = V_{IH}$ and SEM = VIL. Either condition must be valid for the entire tew time.

Industrial and Commercial Temperature Ranges


Timing Waveform of Semaphore Read After Write Timing, Either Side⁽¹⁾

NOTE:

1. $\overline{CE} = V_{H}$ for the duration of the above timing (both write and read cycle).

Timing Waveform of Semaphore Condition^(1,3,4)

NOTES:

- 1. DOR = DOL = VIL, $\overline{CER} = \overline{CE}L = VIH$, Semaphore Flag is released from both sides (reads as ones from both sides) at cycle start.
- 2. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 3. This parameter is measured from the point where R/W "A" or SEM "A" goes HIGH until R/W "B" or SEM "B" goes HIGH.
- 4. If typs is violated, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.

Industrial and Commercial Temperature Ranges

Functional Description

71342LA

The IDT71342 is an extremely fast Dual-Port 4K x 8 CMOS Static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port RAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port RAM or any other shared resource.

The Dual-Port RAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAMs and can be read from or written to at the same time, with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/ WRITE of, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port SRAM. These devices have an automatic power-down feature controlled by \overrightarrow{CE} , the Dual-Port SRAM enable, and \overrightarrow{SEM} , the semaphore enable. The \overrightarrow{CE} and \overrightarrow{SEM} pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table I where \overrightarrow{CE} and \overrightarrow{SEM} are both HIGH.

Systems which can best use the IDT71342 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT71342's hardware semaphores, which provide a lockout mechanism without requiring complex programming.

Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT71342 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very high-speed systems.

How the Semaphore Flags Work

The semaphore logic is a set of eight latches which are independent of the Dual-Port RAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that a shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor had set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control.

The semaphore flags are active LOW. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch.

The eight semaphore flags reside within the IDT71342 in a separate memory space from the Dual-Port RAM. This address space is accessed by placing a LOW input on the SEM pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, \overline{OE} , and R/\overline{W}) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can be accessed by either side through the address pins Ao–A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only data pin Do is used. If a LOW level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other (see Truth Table II). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore subsequently locks out writes from the other side is what makes semaphore flags useful in interprocessor communications. (A thorough discussion on the use of this feature follows shortly.) A zero written into the same location from the semaphore request latch for that side until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side's output register when that side's semaphore select (\overline{SEM}) and output enable (\overline{OE}) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must cause either signal (\overline{SEM} or \overline{OE}) to go inactive or the output will never change.

A sequence of WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as a one, a fact which the processor will verify by the subsequent read (see Truth Table II). As an example, assume a processor writes a zero in the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during a subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles.

It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 3. Two semaphore

Industrial and Commercial Temperature Ranges

request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag LOW and the other side HIGH. This condition will continue until a one is written to the same semaphore request latch. Should the other side's semaphore request latch have been written to a zero in the meantime, the semaphore flag will now stay LOW until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen. Code integrity is of the utmost importance when semaphores are used instead of slower, more restrictive hardware intensive schemes.

Initialization of the semaphores is not automatic and must be handled via the initialization program at power up. Since any semaphore request flag which contains a zero must be reset to a one, all

	Le	ft or Righ	nt Port ⁽¹⁾		
R/W	ĈĒ	SEM	ŌĒ	D0-7	Function
Х	Н	Н	Х	Z	Port Disabled and in Power Down Mode
Н	Н	L	L	DATAOUT	Data in Semaphore Flag Output on Port
Х	Х	Х	Н	Z	Output Disabled
\uparrow	Н	L	Х	DATAIN	Port Data Bit Do Written Into Semaphore Flag
Н	L	Н	L	DATAOUT	Data in Memory Output on Port
L	L	Н	Х	DATAIN	Data on Port Written Into Memory
Х	L	L	Х		Not Allowed
NOTE					2721 tbl 11

Truth Table I — Non-Contention Read/Write Control⁽²⁾

NOTE:

1. AOL - A11L \neq AOR - A11R.

2. "H" = VIH, "L" = VIL, "X" = Don't Care, "Z" = High-Impedance.

Truth Table II — Example Semaphore Procurement Sequence^(1,2,3)

Functions	Do - D15 Left	Do - D15 Right	Status	
No Action	1	1	Semaphore free	
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token	
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore	
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token	
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore	
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token	
Left Port Writes "1" to Semaphore	1	1	Semaphore free	
Right Port Writes "0" to Semaphore	1	0	Right port has semaphore token	
Right Port Writes "1" to Semaphore	1	1	Semaphore free	
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token	
Left Port Writes "1" to Semaphore	1	1	Semaphore free	

NOTE:

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT71342.

^{2.} There are eight semaphore flags written to via I/Oo and read from all I/O's. These eight semaphores are addressed by Ao-A2.

^{3.} CE = VIH, SEM = VIL to access the semaphores. Refer to the semaphore Read/Write Control Truth Table.

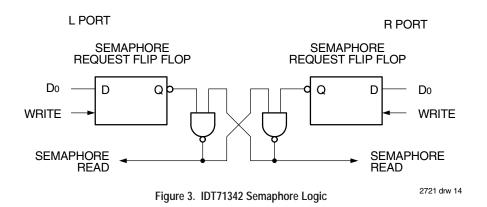
Industrial and Commercial Temperature Ranges

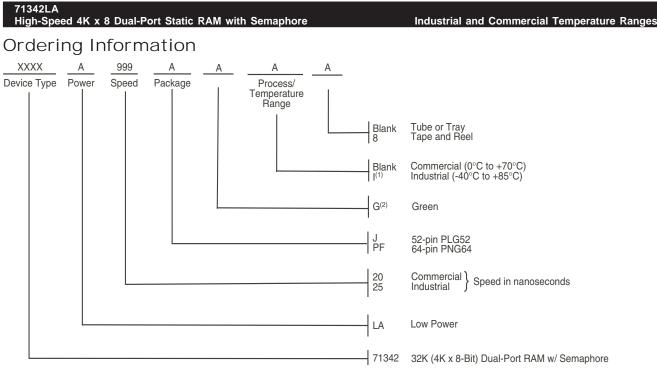
semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

Using Semaphores-Some examples

Perhaps the simplest application of semaphores is their application as resource markers for the IDT71342's Dual-Port RAM. Say the 4K x 8 RAM was to be divided into two 2K x 8 blocks which were to be dedicated at any one time to servicing either the left or right port. Semaphore 0 could be used to indicate the side which would control the lower section of memory, and Semaphore 1 could be defined as the indicator for the upper section of the memory.

To take a resource, in this example the lower 2K of Dual-Port RAM, the processor on the left port could write and then read a zero into Semaphore 0. If this task were successfully completed (a zero was read back rather than a one), the left processor would assume control of the lower 2K. Meanwhile, the right processor would attempt to perform the same function. Since this processor was attempting to gain control of the resource after the left processor, it would read back a one in response to the zero it had attempted to write into Semaphore 0. At this point, the software could choose to try and gain control of the second 2K section by writing, then reading a zero into Semaphore 1. If it succeeded in gaining control, it would lock out the left side.


Once the left side was finished with its task, it would write a one to Semaphore 0 and may then try to gain access to Semaphore 1. If Semaphore 1 was still occupied by the right side, the left side could undo its semaphore request and perform other tasks until it was able to write, then read a zero into Semaphore 1. If the right processor performs a similar task with Semaphore 0, this protocol would allow the two processors to swap 2K blocks of Dual-Port RAM with each other.


The blocks do not have to by any particular size and can even be variable, depending upon the complexity of the software using the semaphore flags. All eight semaphores could be used to divide the Dual-Port RAM or other shared resources into eight parts. Semaphores can even be assigned different meanings on different sides rather than being given a common meaning as was shown in the example above.

Semaphores are a useful form of arbitration in systems like disk interfaces where the CPU must be locked out of a section of memory during a transfer and the I/O device cannot tolerate any wait states. With the use of semaphores, once the two devices had determined which memory area was "off limits" to the CPU, both the CPU and the I/O devices could access their assigned portions of memory continuously without any wait states.

Semaphores are also useful in applications where no memory "WAIT" state is available on one or both sides. Once a semaphore handshake has been performed, both processors can access their assigned RAM segments at full speed.

Another application is in the area of complex data structures. In this case, block arbitration is very important. For this application one processor may be responsible for building and updating a data structure. The other processor then reads and interprets that data structure. If the interpreting processor reads an incomplete data structure, a major error condition may exist. Therefore, some sort of arbitration must be used between the two different processors. The building processor arbitrates for the block, locks it and then is able to go in and update the data structure. When the update is completed, the data structure block is released. This allows the interpreting processor to come back and read the complete data structure, thereby guaranteeing a consistent data structure.

2721 drw 15b

NOTES:

- 1. Contact your local sales office for industrial temp range for other speeds, packages and powers.
- Green parts available. For specific speeds, packages and powers contact your local sales office. LEAD FINISH (containing SnPb) are obsolete excluding BGA and Hermetic packages. Product Discontinuation Notice - PDN# SP-17-02 Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
20	71342LA20JG	PLG52	PLCC	С
	71342LA20JG8	PLG52	PLCC	С
	71342LA20PFG	PNG64	TQFP	С
	71342LA20PFG8	PNG64	TQFP	С
25	71342LA25JGI	PLG52	PLCC	Ι
	71342LA25JGI8	PLG52	PLCC	Ι
	71342LA25PFGI	PNG64	TQFP	I
	71342LA25PFGI8	PNG64	TQFP	I

Orderable Part Information

Datasheet Document History

01/12/99:		Initiated datasheet document history
		Converted to new format
		Cosmetic and typographical corrections
		Added additional notes to pin configurations
06/09/99:		Changed drawing format
10/01/99:		Added Industrial Temperature Ranges and removed corresponding notes
11/10/99:		Replaced IDT Logo
12/22/99:	Page 1	Made corrections to drawing
06/26/00:	Page 3	Increased storage temperature parameters
	0	Clarified TA parameter
	Page 4	DC Electrical parameters-changed wording from "open" to "disabled"
	U U	Changed ±500mV to 0mV in notes
01/12/00:	Pages 1 & 2	Moved "Description" to page 2 and adjusted page layouts
	Page 1	Added "(LA only)" to paragraph
	Page 2	Fixed J52 package description in notes
	Page 8	Replaced bottom table with correct 10b table
01/29/09:	Page 14	Removed "IDT" from orderable part number
09/26/12:	Page 1	Industrial speed access update for 35 & 55
	Page 2	Removed "IDT's" from description text
	Page 3	Removed footnote notation from PT in Absolute Maximum Ratings table 01
	Page 4, 6 & 8	Replaced "& Ind" with Com'l only for speed grades 35 & 55 in the DC Chars, AC Chars Read & Write tables
		06a, 06b, 09a, 09b, 10a & 10b
	Page 12	Added the word "system" to How the Semaphore Flags Work paragraph
	Page 12	Corrected equation for footnote 1 . Changed symbol "=" to - and "1" to not equal ($ eq$)
	Page 14	Added T&R and Green indicators to the ordering information as well as updated the "commercial only"
		offering for speed grades 35 & 55
03/15/19:	Page 2	The package codes J52-1 & PN64-1 changed to PLG52 & PNG64
		Product Discontinuation Notice - PDN# SP-17-02
		Last time buy expires June 15, 2018
07/12/19:	Page 2	Rotated PLG52 PLCC and PNG64 TQFP pin configurations to accurately reflect pin 1 orientation
	Page 14	Added Orderable Part Information

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: 408-284-2794 DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):

T1342SA35J8T1342SA55PFT1342SA70J8T1342LA25PFI8T1342LA55J8T1342LA35PFT1342SA25PFT1342LA35J8T1342LA25JGI8T1342SA55J8T1342LA55PFT1342LA20JT1342LA25JT1342LA45JT1342LA25JI8T1342LA25PF8T1342LA55JT1342LA35JT1342LA35PFT1342LA25JT1342LA45JT1342LA25PFIT1342LA25PF8T1342LA55JT1342LA35JT1342LA25JIT1342LA25PFT1342LA20PFT1342LA25PFIT1342SA25PF8T1342LA25JGIT1342LA45J8T1342LA25JIT1342LA25PFT1342LA20PFT1342LA20JGT1342LA20PFGT1342SA20PF8T1342SA20PF8T1342SA45J8T1342SA45J8T1342SA25PF8T1342SA20PFT1342SA35PFT1342SA45JT1342SA35JT1342SA45J8T1342SA20J8T1342SA25JT1342SA20JT1342LA55PF8T1342SA35PFT1342SA45JT1342SA35JT1342SA20J8T1342SA20J8T1342SA20JT1342LA55PF8T1342SA25J8T1342SA55JT1342LA20PFG8T1342LA20PF8T1342LA20J68T1342LA25PFGIT1342SA25J8T1342SA55JT1342LA20PFG8T1342LA20PF8T1342LA20J68T1342LA25PFGIT1342SA25J8T1342SA55JT1342LA20PFG8T1342LA20PF8T1342LA20J68T1342LA25PFGIT1342LA25PFGI8T1342LA25PFGI8T1342LA20PF8T1342LA20PF8T1342LA20PF8

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9