High Current LED Driver

This device is designed to replace discrete solutions for driving LEDs in low voltage AC–DC applications 5.0 V, 12 V or 24 V. An external resistor allows the circuit designer to set the drive current for different LED arrays. This discrete integration technology eliminates individual components by combining them into a single package, which results in a significant reduction of both system cost and board space. The device is a small surface mount package (SO–8).

Features

- Supplies Constant LED Current for Varying Input Voltages
- External Resistor Allows Designer to Set Current up to 500 mA
- Offered in Surface Mount Package Technology (SO-8)
- AEC-Q101 Qualified and PPAP Capable
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- Pb-Free Package is Available

Benefits

- Maintains a Constant Light Output During Battery Drain
- One Device can be used for Many Different LED Products
- Reduces Board Space and Component Count
- Simplifies Circuit and System Designs

Typical Applications

- Portables: For Battery Back–up Applications, also Simple Ni–CAD Battery Charging
- Industrial: Low Voltage Lighting Applications and Small Appliances
- Automotive: Tail Lights, Directional Lights, Back-up Light, Dome Light

Pin	Symbol	Description	
1	V _{in}	Positive input voltage to the device	
2	Boost	This pin may be used to drive an external transistor as described in the App Note AND8198/D.	
3	R _{ext}	An external resistor between R_{ext} and V_{in} pins sets different current levels for different application needs	
4	GND	Ground	
5, 6, 7, 8	l _{out}	The LEDs are connected from these pins to ground	

ON Semiconductor®

http://onsemi.com

PIN CONFIGURATION

MARKING DIAGRAM

- A = Assembly Location
- Y = Year
- WW = Work Week
- = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping [†]
NUD4001DR2	SO-8	2500 / Tape & Reel
NUD4001DR2G	SO-8 (Pb-Free)	2500 / Tape & Reel
NSVD4001DR2G	SO-8 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Continuous Input Voltage	V _{in}	30	V
Non-repetitive Peak Input Voltage (t \leq 1.0 ms)	V _p	60	V
Output Current (For $V_{drop} \le 2.2 \text{ V}$) (Note 1)	l _{out}	500	mA
Output Voltage	V _{out}	28	V
Human Body Model (HBM)	ESD	1000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. $V_{drop} = V_{in} - 0.7 V - V_{LEDs}$.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Operating Ambient Temperature	T _A	-40 to +125	°C
Maximum Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55 to +150	°C
Total Power Dissipation (Note 2) Derating above 25°C (Figure 3)	PD	1.13 9.0	W mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	110	°C/W
Thermal Resistance, Junction-to-Lead (Note 2)	$R_{ hetaJL}$	77	°C/W

2. Mounted on FR-4 board, 2 in sq pad, 2 oz coverage.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Current1 $(V_{in} = 12 \text{ V}, \text{ R}_{ext} = 2.0 \Omega, \text{ V}_{LEDs} = 10 \text{ V})$	I _{out1}	305	325	345	mA
Output Current2 $(V_{in} = 30 \text{ V}, \text{ R}_{ext} = 7.0 \Omega, \text{ V}_{LEDs} = 24 \text{ V})$	I _{out2}	95	105	115	mA
Bias Current (V _{in} = 12 V, R _{ext} = Open, V _{LEDs} = 10 V)	I _{Bias}	_	5.0	8.0	mA
Voltage Overhead (Note 3)	V _{over}	1.4	-	-	V

3. $V_{over} = V_{in} - V_{LEDs}$.

TYPICAL PERFORMANCE CURVES

(T_A = 25°C unless otherwise noted)

Temperature

APPLICATION INFORMATION

Design Guide

- 1. Define LED's current: a. $I_{LED} = 350 \text{ mA}$
- 2. Calculate Resistor Value for R_{ext} : a. $R_{ext} = V_{sense}$ (see Figure 2) / I_{LED} b. $R_{ext} = 0.7$ ($T_J = 25 \text{ °C}$)/ $0.350 = 2.0 \Omega$
- 3. Define V_{in}: a. Per example in Figure 6, V_{in} = 12 V
- 4. Define V_{LED} @ I_{LED} per LED supplier's data sheet:
 - a. Per example in Figure 6, $V_{LED} = 3.5 \text{ V} + 3.5 \text{ V} + 3.5 \text{ V} = 10.5 \text{ V}$
- 5. Calculate V_{drop} across the NUD4001 device: a. $V_{drop} = V_{in} - V_{sense} - V_{LED}$
 - b. $V_{drop} = 12 \text{ V} 0.7 \text{ V} (T_J = 25 \text{ °C}) 10.5 \text{ V}$
 - c. $V_{drop} = 0.8 V$
- 6. Calculate Power Dissipation on the NUD4001 device's driver:
 a. P_{D_driver} = V_{drop} * I_{out}
 b. P_{D_driver} = 0.8 V x 0.350 A
 - $c_{\text{PD}} = 0.280 \text{ Watts}$
 - c. $P_{D_{driver}} = 0.280$ Watts
- 7. Establish Power Dissipation on the NUD4001 device's control circuit per Figure 4:
 a. P_{D_control} = Figure 4, for 12 V input voltage
 b. P_{D_control} = 0.055 W
- 8. Calculate Total Power Dissipation on the device:
 a. P_{D_total} = P_{D_driver} + P_{D_control}
 b. P_{D total} = 0.280 W + 0.055 W = 0.335 W
- 9. If P_{D_total} > 1.13 W (or derated value per Figure 3), then select the most appropriate recourse and repeat steps 1 through 8:
 a. Reduce V_{in}
 - b. Reconfigure LED array to reduce V_{drop}
 - c. Reduce I_{out} by increasing R_{ext}
 - d. Use external resistors or parallel device's configuration (see application note AND8156)
- Calculate the junction temperaure using the thermal information on Page 7 and refer to Figure 5 to check the output current drop due to the calculated junction temperature. If desired, compensate it by adjusting the value of R_{ext}.

TYPICAL APPLICATION CIRCUITS

Figure 9. NUD4001 Device Configuration for PWM

Figure 10. 12 Vac landscape lighting application circuit using the NUD4001 device to drive three 350 mA LEDs.

THERMAL INFORMATION

NUD4001, NSVD4001 Power Dissipation

The power dissipation of the SO–8 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R_{\theta JA}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_A . Using the values provided on the data sheet for the SO–8 package, P_D can be calculated as follows:

$$P_{D} = \frac{T_{Jmax} - T_{A}}{R_{\theta}JA}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 1.13 W.

$$P_{D} = \frac{150^{\circ} C - 25^{\circ} C}{110^{\circ} C} = 1.13 W$$

The 110°C/W for the SO–8 package assumes the use of a FR–4 copper board with an area of 2 square inches with 2 oz coverage to achieve a power dissipation of 1.13 W. There are other alternatives to achieving higher dissipation from the SOIC package. One of them is to increase the copper area to

reduce the thermal resistance. Figure 11 shows how the thermal resistance changes for different copper areas. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad®. Using a board material such as Thermal Clad or an aluminum core board, the power dissipation can be even doubled using the same footprint.

Figure 11. 0JA versus Board Area

Figure 12. Transient Thermal Response

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 ISSUE AK

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Thermal Clad is a registered trademark of the Bergquist Company.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use patent SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 NOTES:

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE
- 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
κ	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
s	5.80	6.20	0.228	0.244	

STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND IOUT 5. 6. IOUT IOUT 7. 8. IOUT

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9