HMC ${ }^{\text {TM }}$ PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Features

- Exceptional Broadband Performance, 0.05-6.0 GHz
- Low Loss: $\mathrm{T}_{\mathrm{X}}=0.33 \mathrm{~dB}$ @ $2010 \mathrm{MHz}, 5 \mathrm{~V} / 20 \mathrm{~mA}$
- $\mathrm{T}_{\mathrm{X}}=0.38 \mathrm{~dB} @ 3.5 \mathrm{GHz}, 5 \mathrm{~V} / 20 \mathrm{~mA}$
- High Isolation: $\mathrm{Rx}=44 \mathrm{~dB}$ @ $2010 \mathrm{MHz}, 20 \mathrm{~mA} / 5 \mathrm{~V}$
- $\mathrm{Rx}=36 \mathrm{~dB}$ @ $3.5 \mathrm{GHz}, 20 \mathrm{~mA} / 5 \mathrm{~V}$
- High T_{X} RF Input Power = 50 W C.W. @ 2010MHz
- High Tx RF Input Peak Power > 1000 W
- Suitable for Very High Power TD-SCDMA \& WiMAX Applications
- Surface Mount 4mm PQFN Package, RoHS* Compliant

Description and Applications

The MASW-000834-13560T is a SPDT Broadband, high linearity, common anode, PIN diode T/R switch for 0.05 6.0 GHz applications, including WiMAX \& WiFi. The device is provided in industry standard 4mm PQFN plastic packaging. This device incorporates a PIN diode die fabricated with M/A-COM Technology Solutions patented Silicon-Glass $\mathrm{HMIC}^{\text {TM }}$ process. This chip features two silicon pedestals embedded in a low loss, low dispersion glass. The diodes are formed on the top of each pedestal. The topside is fully encapsulated with silicon nitride and has an additional polymer passivation layer. These polymer protective coatings prevent damage and contamination during handling and assembly.

This compact 4mm PQFN package, SPDT switch offers wideband $0.05-6.0 \mathrm{GHz}$ performance with excellent isolation to loss ratio for both T_{X} and R_{X} states. The PIN diode provides 50 W typical C.W. power handling and 65 dBm IIP3 at 2010 MHz for maximum switch performance.

Absolute Maximum Ratings ${ }^{1,2}$

@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Absolute Maximum
Forward Current	$\|100 \mathrm{~mA}\|$
Reverse Voltage (RF \& D.C.)	$\mid-200 \mathrm{~V} \mathrm{\mid}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$
T_{X} Incident C.W. Power	$50 \mathrm{~W}(47 \mathrm{dBm})^{3}$ $@ 2010 \mathrm{MHz}$
T_{X} Peak Incident Power	$>300 \mathrm{~W}, 5 \mathrm{us}, 1 \%$ duty

1. Exceeding these limits may cause permanent damage.
2. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.
3. Baseplate Temperature must be controlled to a constant $+25^{\circ} \mathrm{C}$. See page 7 for derating curve.
[^0]Functional Diagram (TOP VIEW)

Pin Configuration:

(Center Metal Area is RF, D.C., and Thermal Ground)

Pin	Function	Pin	Function
1	GND	9	DC2
2	ANT	10	N/C
3	GND	11	N/C
4	N/C	12	N/C
5	N/C	13	GND
6	GND	14	TX
7	RX	15	GND
8	GND	16	N/C

Ordering Information

Part Number	Package
MASW-000834-13560T	Tape and Reel
MASW-000834-001SMB	Sample Board
MADR-008851-0001TB	Sample Board with recommended externalDriver \& MASW-000834- 13560T Switch${ }^{\text {MA }}$

Static Sensitivity

These devices are rated Class 1B Human Body. Proper ESD control techniques should be used when handling these devices.

[^1]- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

HMCTM PIN Diode SPDT 50 Watt Switch for
 0.05-6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $20 \mathrm{~mA} / 5 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=\mathbf{5 0 \Omega}$

Parameter	Symbol	20mA / 5V Conditions	Units	Min.	Typ.	Max.
$\mathrm{F}=900 \mathrm{MHz}$						
Insertion Loss, R_{X}	R_{x}	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.34	0.56
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.26	0.445
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{x}} \\ \mathrm{ISO} \end{gathered}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	45.8	52.1	-
Isolation, ANT To T_{X}	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	21.7	27.1	-
$\mathrm{F}=1800 \mathrm{MHz}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.40	0.72
Insertion Loss, T_{X}	$\begin{aligned} & \text { Tx } \\ & \text { IL } \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.32	0.49
Isolation, ANT To Rx	$\begin{gathered} \mathrm{Rx} \\ \mathrm{ISO} \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	43.7	48.9	-
Isolation, ANT To T_{X}	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	18.4	21.4	
F = 2010 MHz						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.42	0.75
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.33	0.5
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{x}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	43.2	44.6	-
Isolation, ANT To T_{X}	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	17.7	19.9	-
Input Return Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 1, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	32.1	-
Input Return Loss, R_{x}	$\begin{aligned} & R_{x} \\ & R L \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	24.2	-

HMCTM PIN Diode SPDT 50 Watt Switch for
 0.05-6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $20 \mathrm{~mA} / 5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Symbol	20mA / 5V Conditions	Units	Min.	Typ.	Max.
$\mathrm{F}=\mathbf{2 . 3 - 2 . 7} \mathbf{~ G H z}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.46	0.84
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.35	0.525
Isolation, ANT To R ${ }_{\text {x }}$	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	40.2	41.2	-
Isolation, ANT To T_{x}	$\begin{array}{r} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \\ \hline \end{array}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	16.2	18.6	-
Input Return Loss, T_{x}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	See Bias Table 1, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	-	30.5	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	22.9	-
$\mathrm{F}=3.3$-3.8 GHz						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.56	1.0
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	-	0.38	0.575
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	$\begin{gathered} \text { See Bias Table 1, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	33.7	35.9	-
Isolation, ANT To T_{x}	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	13.6	16.1	-
Input Return Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	27.4	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	21.9	-
$\mathrm{F}=4.9-5.9 \mathrm{GHz}$						
Insertion Loss, R_{X}	R_{x}	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.78	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.52	-
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \mathrm{ISO} \end{gathered}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	26.4	-
Isolation, ANT To T_{X}	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	11.8	-
Input Return Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	20.3	-
Input Return Loss, R_{X}	$\begin{aligned} & R_{x} \\ & R L \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	24.2	-

HMCTM PIN Diode SPDT 50 Watt Switch for
 0.05-6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $50 \mathrm{~mA} / 25 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Typ.	Max.
$\mathrm{F}=900 \mathrm{MHz}$						
Insertion Loss, R_{X}	R_{x}	See Bias Table 2, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	-	0.27	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.22	-
Isolation, ANT To Rx	$\begin{array}{r} \hline \mathrm{R}_{\mathrm{X}} \\ \mathrm{ISO} \end{array}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	53.3	-
Isolation, ANT To Tx	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 2, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	-	27.4	-
$\mathrm{F}=1800 \mathrm{MHz}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.32	-
Insertion Loss, T_{X}	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.27	-
Isolation, ANT To R ${ }_{\text {x }}$	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	50.2	-
Isolation, ANT To Tx	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \\ \hline \end{gathered}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	21.6	-
$\mathrm{F}=2010 \mathrm{MHz}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.34	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.28	-
Isolation, ANT To R ${ }_{\text {x }}$	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	45.5	-
Isolation, ANT To Tx	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	20.1	-
Input Return Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	33.1	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	24.1	-

HMCTM PIN Diode SPDT 50 Watt Suitch for
 0.05-6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $50 \mathrm{~mA} / 25 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Typ.	Max.
$\mathrm{F}=2.3$-2.7 GHz						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.38	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.30	-
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	41.8	-
Isolation, ANT To Tx	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	18.7	-
Input Return Loss, T_{x}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	31.3	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	22.8	-
$\mathrm{F}=3.3$-3.8 GHz						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.47	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.33	-
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{x}} \\ \text { ISO } \end{gathered}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	36.2	-
Isolation, ANT To T_{x}	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	16.2	-
Input Return Loss, T_{x}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	28.0	-
Input Return Loss, R_{X}	$\begin{aligned} & R_{x} \\ & R L \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	21.8	-
$\mathrm{F}=4.9-5.9 \mathrm{GHz}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.72	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.48	-
Isolation, ANT To Rx	$\begin{array}{r} \mathrm{R}_{\mathrm{X}} \\ \mathrm{ISO} \end{array}$	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	-	26.6	-
Isolation, ANT To T_{x}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \text { ISO } \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	11.8	-
Input Return Loss, T_{x}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	20.5	-
Input Return Loss, R_{x}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	24.2	-

HMCTM PIN Diode SPDT 50 Watt Switch for
 0.05 - 6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $50 \mathrm{~mA} / 25 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Typ.	Max.
T_{x} Input P1dB ${ }^{3}$	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \mathrm{P} 1 \mathrm{~dB} \end{gathered}$	2010 MHz, Tx to Antenna	dBm	-	>45.5	-
Tx $2^{\text {nd }}$ Harmonic	$\begin{array}{r} \mathrm{T}_{\mathrm{X}} \\ 2 \mathrm{Fo} \\ \hline \end{array}$	2010 MHz , Pin $=+30 \mathrm{dBm}$	dBc	-	80	-
Tx $3^{\text {rd }}$ Harmonic	$\begin{gathered} \mathrm{T}_{\mathrm{x}} \\ 3 \mathrm{Fo} \\ \hline \end{gathered}$	2010 MHz , Pin $=+30 \mathrm{dBm}$	dBc	-	95	-
T_{X} Input Third Order Intercept Point	$\begin{gathered} \hline \mathrm{T}_{\mathrm{X}} \\ \mathrm{IIP} 3 \end{gathered}$	$\mathrm{Pi}=+10 \mathrm{dBm}, \mathrm{F} 1=2010 \mathrm{MHz}, \mathrm{F} 2=2020 \mathrm{MHz}$	dBm	-	>64	-
Tx C.W. Input Power ${ }^{3}$	T_{x} Pinc	$\mathrm{F}=2010 \mathrm{MHz}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{aligned} & 47 \\ & 50 \\ & \hline \end{aligned}$	-
Rx C.W. Input Power	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { Pinc } \end{gathered}$	$\mathrm{F}=2010 \mathrm{MHz}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 41.5 \\ 14 \end{gathered}$	-
Tx RF Switching Speed	$\mathrm{t}_{\text {RF }}$	F = 2010 MHz ($10-90 \%$ RF Voltage) 1 MHz Rep Rate in Modulating Mode	ns	-	200	-

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Typ.	Max.
T_{x} Input P1dB	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \mathrm{P} 1 \mathrm{~dB} \end{gathered}$	3.5 GHz, T_{x} to Antenna	dBm	-	>45	-
$\mathrm{T}_{\mathrm{x}} 2^{\text {nd }}$ Harmonic	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ 2 \mathrm{Fo} \end{gathered}$	3.5 GHz, Pin $=+30 \mathrm{dBm}$	dBc	-	88	-
Tx $3^{\text {rd }}$ Harmonic	$\begin{gathered} \mathrm{T}_{\mathrm{x}} \\ 3 \mathrm{Fo} \end{gathered}$	3.5 GHz, Pin $=+30 \mathrm{dBm}$	dBc	-	105	-
T_{X} Input Third Order Intercept Point	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { IIP3 } \end{gathered}$	$\mathrm{Pi}=+10 \mathrm{dBm}, \mathrm{F} 1=3.500 \mathrm{GHz}, \mathrm{F} 2=3.510 \mathrm{GHz}$	dBm	-	>64	-
Rx C.W. Input Power	R_{X} Pinc	$\mathrm{F}=3.5 \mathrm{GHz}$	$\begin{gathered} \text { dBm } \\ \text { W } \end{gathered}$	-	$\begin{gathered} 40.5 \\ 11 \end{gathered}$	-
Tx RF Switching Speed	$t_{\text {RF }}$	$\mathrm{F}=3.5 \mathrm{GHz}$ ($10-90 \%$ RF Voltage) 1 MHz Rep Rate in Modulating Mode	ns	-	200	-

HMCTM PIN Diode SPDT 50 Watt Switch for
 0.05 - 6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $50 \mathrm{~mA} / 25 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Note that this part must be held to a constant baseplate temperature to achieve the power handling results specified above. Adding a heatsink to the baseplate will improve performance to values greater than shown here. The increase in maximum input power from using a heatsink depends on the specific heatsink design.

With a sample board mounted onto a heatsink of dimensions and fins shown below, this switch can handle up to 35 Watts C.W. of incident power.

HMC ${ }^{\text {TM }}$ PIN Diode SPDT 50 Watt Switch for 0.05-6.0 GHz Higher Power Applications

T_{X} Performance Curves at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $\mathrm{Z}_{\mathbf{0}}=50 \Omega$

Tx Insertion Loss 20mA \& 50mA Forward Bias

Tx Isolation
5V \& 25V Reverse Bias

HMC ${ }^{\text {TM }}$ PIN Diode SPDT 50 Watt Switch for 0.05-6.0 GHz Higher Power Applications

R_{X} Performance Curves at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $Z_{0}=50 \Omega$
Rx Isolation
5V \& 25V Reverse Bias

Rx Insertion Loss
$20 \mathrm{~mA} \& 50 \mathrm{~mA}$ Forward Bias

HMC ${ }^{\text {TM }}$ PIN Diode SPDT 50 Watt Switch for
 0.05 - 6.0 GHz Higher Power Applications

Bias Diagrams \& Tables

Bias Table 1	TX	R_{X}	DC2	ANT
	Pin 14	Pin 7	Pin 9	Pin 2
T x -ANT Insertion Loss	-20 mA	+5V, 0 mA	-20 mA	OV
R_{x}-ANT Isolation				
R_{x}-ANT Insertion Loss	+5V, 0 mA	-20 mA	+5V, 0 mA	OV
T_{x}-ANT Isolation				

Bias Table 2	Tx	R_{X}	DC2	ANT
	Pin 14	Pin 7	Pin 9	Pin 2
T x -ANT Insertion Loss	-50 mA	+25V, 0 mA	-50 mA	OV
R_{X}-ANT Isolation				
R_{x}-ANT Insertion Loss	+25V, 0 mA	-50 mA	+25V, 0 mA	OV
T_{x}-ANT Isolation				

*Note - Diode Based Products require different minimum reverse bias voltages depending on the
frequency and incident power levels. More details can be found on page 11 of this datasheet.

HMC ${ }^{\text {M }}$ PIN Diode SPDT 50 Watt Switch for 0.05-6.0 GHz Higher Power Applications

MASW-000834 Minimum Required Reverse Bias Voltage

Minimum reverse bias voltage on a PIN diode based product varies with frequency of operation and incident power levels. As a rule of thumb, a designer can always use the magnitude of the peak RF voltage or empirically locate lower bias values than the peak RF voltage magnitude. However, it has been shown that lower DC voltages can be used depending on the RF environment in which a diode is placed. In the plot below, the minimum required reverse voltage vs. frequency is shown for an incident RF power of 50 Watts. This trend line will shift lower if the incident RF power is decreased. The biasing values have not been verified through measurement at M/A-COM Technology Solutions. As a result, please use the data below as a guide only for biasing requirements as this data is based solely on generic PIN diode equations. ${ }^{4}$

Please be cautious in that lower reverse bias levels can degrade isolation and distortion in a PIN diode based product.

4. R. Caverly and G. Hiller, "Establishing the Minimum Reverse Bias for a P-I-N Diode in a High Power Switch," IEEE Transactions on Microwave Theory and Techniques, Vol.38, No.12, December 1990

MASW-000834 and Recommended Driver with +5V \& +28V DC Power ${ }^{5,6,7,8,9,10,11,12}$

MADR-008851 is the recommended driver for the MASW-000834 Switch.

Link to MADR-008851 Datasheet

TX Voltage

5. Forward Bias Diode Voltage: $\Delta \mathrm{Vf}$ is $\sim 0.9 \mathrm{~V} @ 22 \mathrm{~mA} ; \Delta \mathrm{Vf}$ is $\sim 1.0 \mathrm{~V} @ 35 \mathrm{~mA}$
6. R 1 is calculated by $(\mathrm{Vcc}-1.5 \mathrm{~V}) I_{\text {series }}$, where $\mathrm{I}_{\text {series }}$ is the desired bias current for the series diodes. For 21 mA load current, $\mathrm{R} 1=165 \Omega @$ $\mathrm{VCC}=5.0 \mathrm{~V}$ and $82 \Omega @ \mathrm{VCC}=3.3 \mathrm{~V}$. For 32 mA load current, $\mathrm{R} 1=110 \Omega @ \mathrm{VCC}=5.0 \mathrm{~V}$ and $56 \Omega @ \mathrm{VCC}=3.3 \mathrm{~V}$.
7. R 2 is calculated by $(\mathrm{Vdd}-1 \mathrm{~V}) / I_{\text {shunt }}$, where $\mathrm{I}_{\text {shunt }}$ is the desired forward bias current for the shunt diode. The power dissipation is calculated by $\mathrm{I}_{\text {shunt }} \times 27 \mathrm{~V}$. For 20 mA of $\mathrm{I}_{\text {shunt }}, \mathrm{R} 2$ should use a $2511,1 \mathrm{~W}, 1.3 \mathrm{k}$ ohm resistor.
8. C8 is already built-in for M/A-COM MASW-000834-13560T switch.
9. The voltage at the common anode will be approximately 1.5 V .
10. The current in through the back-biased diodes will be the leakage current for the diodes
11. C1-C5, L1-L4, R1, R2, and the switch are discrete components that should be installed on the user's board. It is recommended that Coilcraft 0603CS-27NXJLW or equivalent be used for L1-L4 at 2 GHz (values may vary based on the frequency).
12. There are 33 pF bypass capacitors included in the driver for the RX, TX, and SH 1 ports. There are cases, especially at higher frequencies, where the optional 12 pF bypass capacitors (C 6 and C 7) that are shown on the schematic are needed.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

India Tel: +91.80.43537383
Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

HMC ${ }^{\text {TM }}$ PIN Diode SPDT 50 Watt Switch for
 0.05 - 6.0 GHz Higher Power Applications

MASW-000834-13560T Outline - 4mm PQFN 16-Lead Saw Singulated

[^2]
Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

[^2]: \dagger^{\dagger} Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

