

56F8355/56F8155

Data Sheet

Preliminary Technical Data

56F8300 16-Bit Digital Signal Controllers

MC56F8355 Rev. 17 08/2009

freescale.com

Document Revision History

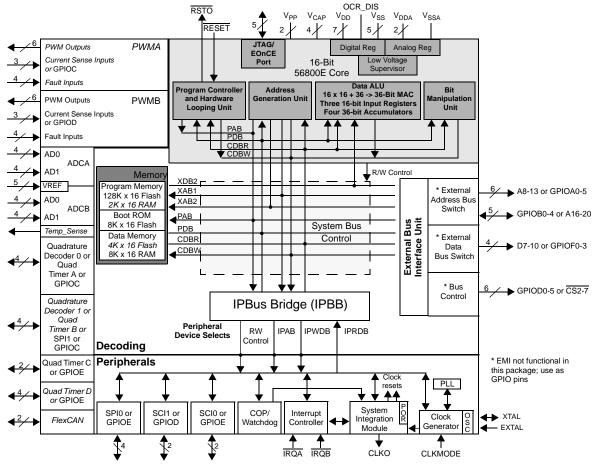
Version History	Description of Change		
Rev 0.0	Initial release		
Rev 1.0	Fixed typos in Section 1.1.3; Replace any reference to Flash Interface Unit with Flash Memory Module; added note to Vcap pin in Table 2-2; corrected Table 4-4, removed unneccessary notes in Table 10-12; corrected temperature range in Table 10-14; added ADC calibration information to Table 10-23 and new graphs in Figure 10-22		
Rev 2.0	Corrected 2.2μ F to 0.1μ F low ESR capacitor in Table 2-2. Replaced Table 10-16 with correct parameters for the 128 package pinout. Corrected (fout/2) with (fout) in Table 10-1. Corrected pinout labels in Figure 11-1.		
Rev 3.0	Adding/clarifing notes to Table 4-4 to help clarify independent program flash blocks and other Program Flash modes, clarification to Table 10-22 , corrected Digital Input Current Low (pullup enabled) numbers in Table 10-5 . Removed text and Table 10-2; replaced with note to Table 10-1 .		
Rev 4.0	Correcting Table 4-6 Address locations.		
Rev 5.0	Added 56F8155 information; edited to indicate differences in 56F8355 and 56F8155. Reformatted for Freescale look and feel. Updated Temperature Sensor and ADC tables, then updated balance of electrical tables for consistency throughout the family. Clarified I/O power description in Table 2-2, added note to Table 10-7 and clarified Section 12.3.		
Rev 6.0	Added output voltage maximum value and note to clarify in Table 10-1 ; also removed overal life expectancy note, since life expectancy is dependent on customer usage and must be determined by reliability engineering. Clarified value and unit measure for Maximum allowed P _D in Table 10-3 . Corrected note about average value for Flash Data Retention in Table 10-4 . Added new RoHS-compliant orderable part numbers in Table 13-1 .		
Rev 7.0	Updated Table 10-23 to reflect new value for maximum Uncalibrated Gain Error		
Rev 8.0	Deleted RSTO from Pin Group 2 (listed after Table 10-1). Deleted formula for Max Ambient Operating Temperature (Automotive) and Max Ambient Operating Temperature (Industrial) in Table 10-4 . Added RoHS-compliance and "pb-free" language to back cover.		
Rev 9.0	Added information/corrected state during reset in Table 2-2 . Clarified external reference crystal frequency for PLL in Table 10-14 by increasing maximum value to 8.4MHz.		
Rev 10.0	Replaced "Tri-stated" with an explanation in State During Reset column in Table 2-2.		
Rev 11.0	Corrected bootflash memory map layout in Table 4-4 to 16KB.		
Rev. 12	 Added the following note to the description of the TMS signal in Table 2-2: Note: Always tie the TMS pin to V_{DD} through a 2.2K resistor. Added the following note to the description of the TRST signal in Table 2-2: Note: For normal operation, connect TRST directly to V_{SS}. If the design is to be used in a debugging environment, TRST may be tied to V_{SS} through a 1K resistor. 		

Please see http://www.freescale.com for the most current data sheet revision.

56F8355 Technical Data, Rev. 17

Version History	Description of Change			
Rev 13	Table 2-2 — TDO pullup is not enabled			
	Table 2-2 — PWM pullup is not enabled			
	Table 2-2 — CAN_TX — remove pullup related text			
	Table 2-2 — Adding pullup is enabled to several rows for clarification			
	Section 4 — Factory Programmed Memory — add ADC callibration vector			
Rev 14	Section 4 — Factory Programmed Memory — remove ADC callibration vector			
	Section 10 — Add Figure 10-1			
	Section 10 — ADC correction factor refinement in Table 10-23			
Rev 15	Table 2-2 — Remove pullup is enabled from TDO, PWMA0–PWMA5, and			
	PWMB0–PWMB5.			
Rev 16	• Figure 10-1 — Label the vertical axis and include the phrase "maximum current" in the title of the figure.			
	• Remove the equation fragment from the bottom of Table 10-3 on page 133 .			
Rev 17	 Table 10-23 — Added non-averaged DC drift of error over temperature specification and footnote. 			

Document Revision History (Continued)



56F8355/56F8155 General Description

Note: Features in italics are NOT available in the 56F8155 device.

- Up to 60 MIPS at 60MHz core frequency
- DSP and MCU functionality in a unified, C-efficient architecture
- 256KB Program Flash
- 4KB Program RAM
- 8KB Data Flash
- 16KB Data RAM
- 16KB Boot Flash
- Up to two 6-channel PWM modules
- Four 4-channel, 12-bit ADCs
- Temperature Sensor

- Up to two Quadrature Decoders
- FlexCAN module
- Two Serial Communication Interfaces (SCIs)
- Up to two Serial Peripheral Interface (SPIs)
- Up to four general purpose Quad Timers
- Computer Operating Properly (COP)/Watchdog
- JTAG/Enhanced On-Chip Emulation (OnCE™) for unobtrusive, real-time debugging
- Up to 49 GPIO lines
- 128-pin LQFP Package

56F8355/56F8155 Block Diagram

Table of Contents

Part 1	Overview
1.1	56F8355/56F8155 Features 6
1.2	Device Description
1.3	Award-Winning Development
	Environment10
1.4	Architecture Block Diagram10
1.5	Product Documentation14
1.6	Data Sheet Conventions 15
Part 2	Signal/Connection Descriptions. 16
2.1	Introduction
2.2	Signal Pins 19
Dert 2	On Chin Clock Sumthania (OCCS) 25
Part 3	On-Chip Clock Synthesis (OCCS) 35
3.1 3.2	Introduction
3.2	Registers
0.0	Registers
Part 4	Memory Map 37
4.1	Introduction
4.2	Program Map
4.3	Interrupt Vector Table
4.4	Data Map43
4.5	Flash Memory Map43
4.6	EOnCE Memory Map 44
4.7	Peripheral Memory Mapped Registers 45
4.8	Factory Programmed Memory72
Part 5	Interrupt Controller (ITCN) 72
5.1	Introduction
5.1 5.2 5.3	Introduction72Features73Functional Description73
5.1 5.2 5.3 5.4	Introduction72Features73Functional Description73Block Diagram75
5.1 5.2 5.3 5.4 5.5	Introduction72Features73Functional Description73Block Diagram75Operating Modes75
5.1 5.2 5.3 5.4 5.5 5.6	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76
5.1 5.2 5.3 5.4 5.5	Introduction72Features73Functional Description73Block Diagram75Operating Modes75
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Operating Modes104Operating Modes104Operating Modes104Operating Modes104
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4 6.5	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Result104Signatures104Operating Modes104Operating Modes104Operating Mode105Register Descriptions106
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4 6.5 6.6	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Corrig Modes104Operating Modes104Operating Modes104Operating Mode Register105Register Descriptions106Clock Generation Overview120
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Operating Modes104Operating Modes104Operating Mode Register105Register Descriptions106Clock Generation Overview120Power Down Modes Overview120
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Operating Modes104Operating Modes104Operating Mode Register105Register Descriptions106Clock Generation Overview120Power Down Modes Overview120Stop and Wait Mode Disable Function121
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Operating Modes104Operating Modes104Operating Mode Register105Register Descriptions106Clock Generation Overview120Power Down Modes Overview120
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Operating Modes104Operating Modes104Operating Mode Register105Register Descriptions106Clock Generation Overview120Power Down Modes Overview120Stop and Wait Mode Disable Function121
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Operating Modes104Operating Modes104Operating Mode Register105Register Descriptions106Clock Generation Overview120Power Down Modes Overview120Stop and Wait Mode Disable Function121Resets122
5.1 5.2 5.3 5.4 5.5 5.6 5.7 Part 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 Part 7	Introduction72Features73Functional Description73Block Diagram75Operating Modes75Register Descriptions76Resets102System Integration Module (SIM)104Overview104Features104Operating Modes104Operating Modes104Operating Modes104Operating Modes104Operating Mode Register105Register Descriptions106Clock Generation Overview120Power Down Modes Overview120Stop and Wait Mode Disable Function121Resets122Security Features122

	eneral Purpose Input/Output					
•	PIO) 125					
8.1	Introduction					
8.2	Memory Maps					
8.3	Configuration126					
Part 9 Jo	bint Test Action Group (JTAG) 131					
9.1	56F8355 Information					
Part 10S	pecifications 131					
10.1	General Characteristics					
10.2	DC Electrical Characteristics					
10.3	AC Electrical Characteristics					
10.4	Flash Memory Characteristics140					
10.5	External Clock Operation Timing 140					
10.6	Phase Locked Loop Timing141					
10.7	Crystal Oscillator Timing					
10.8	Reset, Stop, Wait, Mode Select, and					
	Interrupt Timing					
10.9	Serial Peripheral Interface (SPI)					
	Timing					
10.10	Quad Timer Timing					
10.10	Quadrature Decoder Timing					
10.12	Serial Communication Interface (SCI)					
10.12	Timing					
10.13	Controller Area Network (CAN) Timing. 149					
10.10	JTAG Timing					
10.15	Analog-to-Digital Converter (ADC)					
10.15	Parameters					
10.16	Equivalent Circuit for ADC Inputs 155					
10.10	Power Consumption					
10.17						
Part 11Pa	ackaging					
11.1	56F8355 Package and Pin-Out					
	Information					
11.2	56F8155 Package and Pin-Out					
	Information					
Part 12D	esign Considerations 165					
12.1	Thermal Design Considerations 165					
12.2	Electrical Design Considerations 166					
12.3	Power Distribution and I/O Ring					
12.0	Implementation167					
Part 130	rdering Information 168					

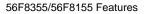
Part 1 Overview

1.1 56F8355/56F8155 Features

1.1.1 Core

- Efficient 16-bit 56800E family controller engine with dual Harvard architecture
- Up to 60 Million Instructions Per Second (MIPS) at 60MHz core frequency
- Single-cycle 16×16 -bit parallel Multiplier-Accumulator (MAC)
- Four 36-bit accumulators, including extension bits
- Arithmetic and logic multi-bit shifter
- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Three internal address buses
- Four internal data buses
- Instruction set supports both DSP and controller functions
- Controller-style addressing modes and instructions for compact code
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/EOnCE debug programming interface

1.1.2 Differences Between Devices


Table 1-1 outlines the key differences between the 56F8355 and 56F8155 devices.

Feature	56F8355	56F8155
Guaranteed Speed	60MHz/60 MIPS	40MHz/40MIPS
Program RAM	4KB	Not Available
Data Flash	8KB	Not Available
PWM	2 x 6	1 x 6
CAN	1	Not Available
Quad Timer	4	2
Quadrature Decoder	2 x 4	1 x 4
Temperature Sensor	1	Not Available

Table 1-1 Device Differences

1.1.3 Memory

Note: Features in italics are NOT available in the 56F8155 device.

- Harvard architecture permits as many as three simultaneous accesses to program and data memory
- Flash security protection feature
- On-chip memory, including a low-cost, high-volume Flash solution
 - 256KB of Program Flash
 - 4KB of Program RAM
 - 8KB of Data Flash
 - 16KB of Data RAM
 - 16KB of Boot Flash
- EEPROM emulation capability

1.1.4 Peripheral Circuits

Note: Features in italics are NOT available in the 56F8155 device.

- Pulse Width Modulator module:
 - In the 56F8355, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense inputs, and four Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes
 - In the 56F8155, one Pulse Width Modulator module with six PWM outputs, three Current Sense inputs and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes
- Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels 2 and 3
- Quadrature Decoder:
 - In the 56F8355, two four-input Quadrature Decoders or two additional Quad Timers
 - In the 56F8155, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A
- Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip temperature
- Quad Timer:

- In the 56F8355, four dedicated general-purpose Quad Timers totaling six dedicated pins: Timer C with two pins and Timer D with four pins
- In the 56F8155, two Quad Timers; Timer A and Timer C both work in conjunction with GPIO
- Optional On-Chip Regulator
- FlexCAN (CAN Version 2.0 B-compliant) module with 2-pin port for transmit and receive
- Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)
- Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO lines); SPI 1 can also be used as Quadrature Decoder 1 or Quad Timer B
- Computer Operating Properly (COP)/Watchdog timer
- Two dedicated external interrupt pins
- 49 General Purpose I/O (GPIO) pins; 28 pins dedicated to GPIO
- External reset input pin for hardware reset
- External reset output pin for system reset
- Integrated low-voltage interrupt module
- JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent, real-time debugging
- Software-programmable, Phase Lock Loop-based frequency synthesizer for the core clock

1.1.5 Energy Information

- Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs
- On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be disabled
- On-chip regulators for digital and analog circuitry to lower cost and reduce noise
- Wait and Stop modes available
- ADC smart power management
- Each peripheral can be individually disabled to save power

1.2 Device Description

The 56F8355 and 56F8155 are members of the 56800E core-based family of controllers. It combines, on a single chip, the processing power of a Digital Signal Processor (DSP) and the functionality of a microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost, configuration flexibility, and compact program code, the 56F8355 and 56F8155 are well-suited for many applications. The devices include many peripherals that are especially useful for motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and control, *automotive* control (56F8355 only), engine management, noise suppression, remote utility metering, industrial control for power, lighting, and automation applications.

The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and optimized instruction set allow straightforward generation of efficient, compact DSP and control code. The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized control applications.

The 56F8355 and 56F8155 support program execution from internal memories. Two data operands can be accessed from the on-chip data RAM per instruction cycle. These devices also provide two external dedicated interrupt lines and up to 49 General Purpose Input/Output (GPIO) lines, depending on peripheral configuration.

1.2.1 56F8355 Features

The 56F8355 controller includes 256KB of Program Flash and 8KB of Data Flash (each programmable through the JTAG port) with 4KB of Program RAM and 16KB of Data RAM. A total of 16KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software routines that can be used to program the main Program and Data Flash memory areas. Both Program and Data Flash memories can be independently bulk erased or erased in page sizes. Program Flash page erase size is 1KB. Boot and Data Flash page erase size is 512 bytes. The Boot Flash memory can also be either bulk or page erased.

A key application-specific feature of the 56F8355 is the inclusion of two Pulse Width Modulator (PWM) modules. These modules each incorporate three complementary, individually programmable PWM signal output pairs (each module is also capable of supporting six independent PWM functions, for a total of 12 PWM outputs) to enhance motor control functionality. Complementary operation permits programmable dead time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard optoisolators. A "smoke-inhibit", write-once protection feature for key parameters is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM modules provide a reference output to synchronize the Analog-to-Digital Converters through two channels of Quad Timer C.

The 56F8355 incorporates two Quadrature Decoders capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded.

This controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and four Quad Timers. Any of these interfaces can be used as General-Purpose Input/Outputs (GPIOs) if that function is not required. A Flex Controller Area Network (FlexCAN) interface (CAN Version 2.0 B-compliant) and an internal interrupt controller are included on the 56F8355.

1.2.2 56F8155 Features

The 56F8155 controller includes 256KB of Program Flash, programmable through the JTAG port, and 16KB of Data RAM. A total of 16KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software routines that can be used to program the main Program Flash memory area. The Program Flash memory can be independently bulk erased or erased in pages; Program Flash page

erase size is 1KB. The Boot Flash page erase size is 512 bytes; Boot Flash memory can also be either bulk or page erased.

A key application-specific feature of the 56F8155 is the inclusion of one Pulse Width Modulator (PWM) module. This module incorporates three complementary, individually programmable PWM signal output pairs and can also support six independent PWM functions to enhance motor control functionality. Complementary operation permits programmable dead time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard optoisolators. A "smoke-inhibit", write-once protection feature for key parameters is also included. A patented PWM waveform distortion correction circuit is also provided. The PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM module provides reference outputs to synchronize the Analog-to-Digital Converters through two channels of Quad Timer C.

The 56F8155 incorporates a Quadrature Decoder capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded.

This controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and two Quad Timers. Any of these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An internal interrupt controller is also a part of the 56F8155.

1.3 Award-Winning Development Environment

Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use component-based software application creation with an expert knowledge system.

The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation, compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable tools solution for easy, fast, and efficient development.

1.4 Architecture Block Diagram

Note: Features in italics are NOT available in the 56F8155 device and are shaded in the following figures.

The 56F8355/56F8155 architecture is shown in **Figure 1-1** and **Figure 1-2**. **Figure 1-1** illustrates how the 56800E system buses communicate with internal memories and the IP Bus Bridge. **Table 1-1** lists the internal buses in the 56800E architecture and provides a brief description of their function. **Figure 1-2** shows the peripherals and control blocks connected to the IP Bus Bridge. The figures do not show the

on-board regulator and power and ground signals. They also do not show the multiplexing between peripherals or the dedicated GPIOs. Please see **Part 2, Signal/Connection Descriptions,** to see which signals are multiplexed with those of other peripherals.

Also shown in **Figure 1-2** are connections between the PWM, Timer C and ADC blocks. These connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions. In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer C input channel as indicated. The timer can then be used to introduce a controllable delay before generating its output signal. The timer output then triggers the ADC. To fully understand this interaction, please see the **56F8300 Peripheral User Manual** for clarification on the operation of all three of these peripherals.

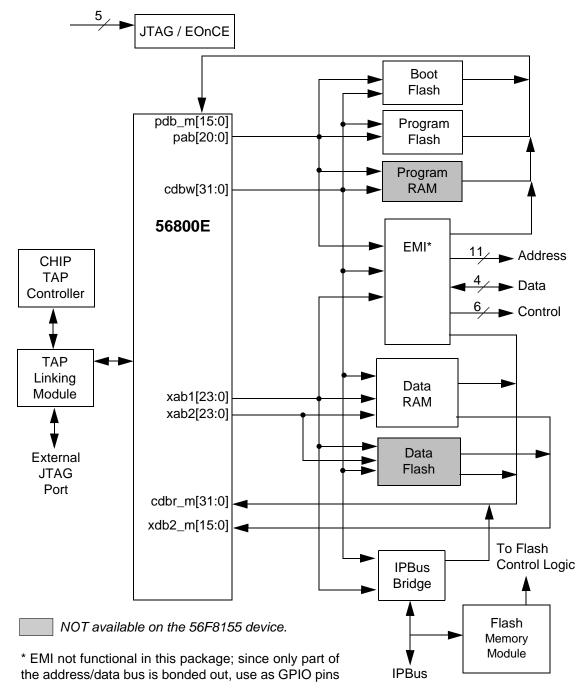
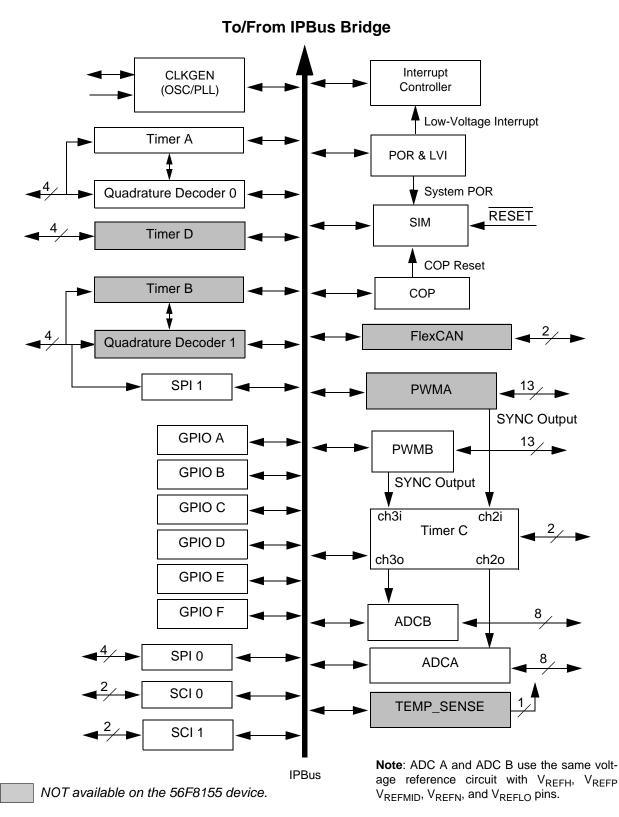



Figure 1-1 System Bus Interfaces

- **Note:** Flash memories are encapsulated within the Flash Memory (FM) Module. Flash control is accomplished by the I/O to the FM over the peripheral bus, while reads and writes are completed between the core and the Flash memories.
- **Note:** The primary data RAM port is 32 bits wide. Other data ports are 16 bits.

56F8355 Technical Data, Rev. 17

Name	Function		
Program Memory Interface			
pdb_m[15:0]	Program data bus for instruction word fetches or read operations.		
cdbw[15:0]	Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus are used for writes to program memory.)		
pab[20:0]	Program memory address bus. Data is returned on pdb_m bus.		
	Primary Data Memory Interface Bus		
cdbr_m[31:0]	Primary core data bus for memory reads. Addressed via xab1 bus.		
cdbw[31:0]	Primary core data bus for memory writes. Addressed via xab1 bus.		
xab1[23:0]	Primary data address bus. Capable of addressing bytes ¹ , words, and long data types. Data is written on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O.		
	Secondary Data Memory Interface		
xdb2_m[15:0]	Secondary data bus used for secondary data address bus xab2 in the dual memory reads.		
xab2[23:0]	Secondary data address bus used for the second of two simultaneous accesses. Capable of addressing only words. Data is returned on xdb2_m.		
	Peripheral Interface Bus		
IPBus [15:0]	Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate as the Primary Data Memory and therefore generates no delays when accessing the processor. Write data is obtained from cdbw. Read data is provided to cdbr_m.		

Table 1-2 Bus Signal Names

1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced to 0.

1.5 Product Documentation

The documents listed in **Table 1-3** are required for a complete description and proper design with the 56F8355 and 56F8155 devices. Documentation is available from local Freescale distributors, Freescale semiconductor sales offices, Freescale Literature Distribution Centers, or online at **http://www.freescale.com**.

Торіс	Description	Order Number
DSP56800E Reference Manual		
56F8300 Peripheral User Manual	Detailed description of peripherals of the 56F8300 devices	MC56F8300UM
56F8300 SCI/CANDetailed description of the SCI/CAN BootloadersBootloader User Manual56F8300 family of devices		MC56F83xxBLUM

Table 1-3 Chip Documentation

Торіс	Description	Order Number
56F8355/56F8155 Technical Data Sheet	Electrical and timing specifications, pin descriptions, and package descriptions (this document)	MC56F8355
Errata	Details any chip issues that might be present	MC56F8355E MC56F8155E

Table 1-3 Chip Documentation

1.6 Data Sheet Conventions

This data sheet uses the following conventions:

OVERBAR	This is used to indicate a signal that is active when pulled low. For example, the $\overline{\text{RESET}}$ pin is active when low.				
"asserted"	A high true (active high)	signal is high or a low tr	rue (active low) signal is lo	w.	
"deasserted"	A high true (active high)	signal is low or a low tru	ue (active low) signal is hig	ıh.	
Examples:	Signal/Symbol	Logic State	Signal State	Voltage ¹	
	PIN	True	Asserted	V _{IL} /V _{OL}	
	PIN	False	Deasserted	V _{IH} /V _{OH}	
	PIN	True	Asserted	V _{IH} /V _{OH}	
	PIN	False	Deasserted	V _{IL} /V _{OL}	

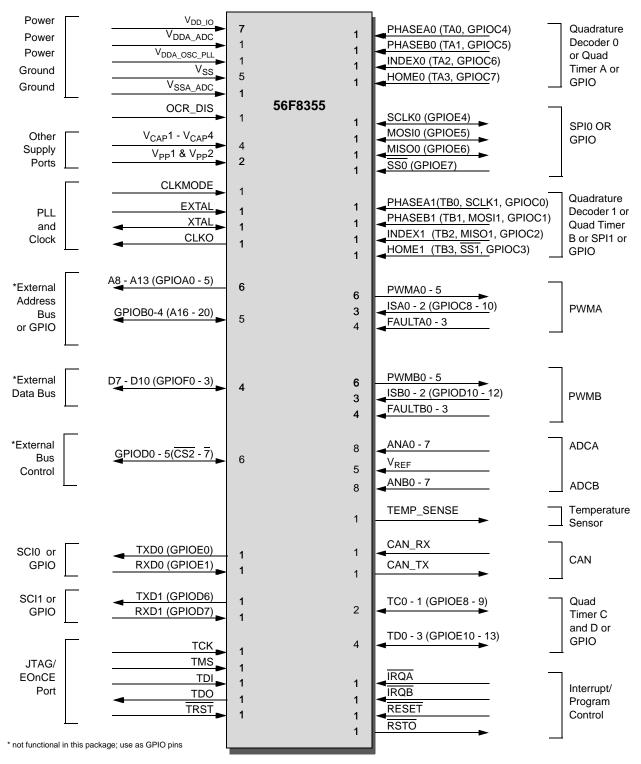
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.

Part 2 Signal/Connection Descriptions

2.1 Introduction

The input and output signals of the 56F8355 and 56F8155 are organized into functional groups, as shown in **Table 2-1** and as illustrated in **Figure 2-1**. In **Table 2-2**, each table row describes the signal or signals present on a pin.

Functional Occur	Number of Pins in Package		
Functional Group	56F8355	56F8155	
Power (V _{DD} or V _{DDA})	9	9	
Power Option Control	1	1	
Ground (V _{SS} or V _{SSA})	6	6	
Supply Capacitors ¹ & V _{PP}	6	6	
PLL and Clock	4	4	
Bus Control	6	6	
Interrupt and Program Control	4	4	
Pulse Width Modulator (PWM) Ports	26	13	
Serial Peripheral Interface (SPI) Port 0	4	4	
Serial Peripheral Interface (SPI) Port 1	—	4	
Quadrature Decoder Port 0 ²	4	4	
Quadrature Decoder Port 1 ³	4	_	
Serial Communications Interface (SCI) Ports	4	4	
CAN Ports	2	_	
Analog-to-Digital Converter (ADC) Ports	21	21	
Timer Module Ports	6	4	
JTAG/Enhanced On-Chip Emulation (EOnCE)	5	5	
Temperature Sense	1		
Dedicated GPIO (Address Bus = 11; Data Bus = 4; Other = 13^4)	28	28	


1. If the on-chip regulator is disabled, the V_{CAP} pins serve as 2.5V V_{DD_CORE} power inputs

2. Alternately, can function as Quad Timer pins or GPIO

3. Pins in this section can function as Quad Timer, SPI 1, or GPIO

4. EMI not functional in these packages; use as GPIO pins.

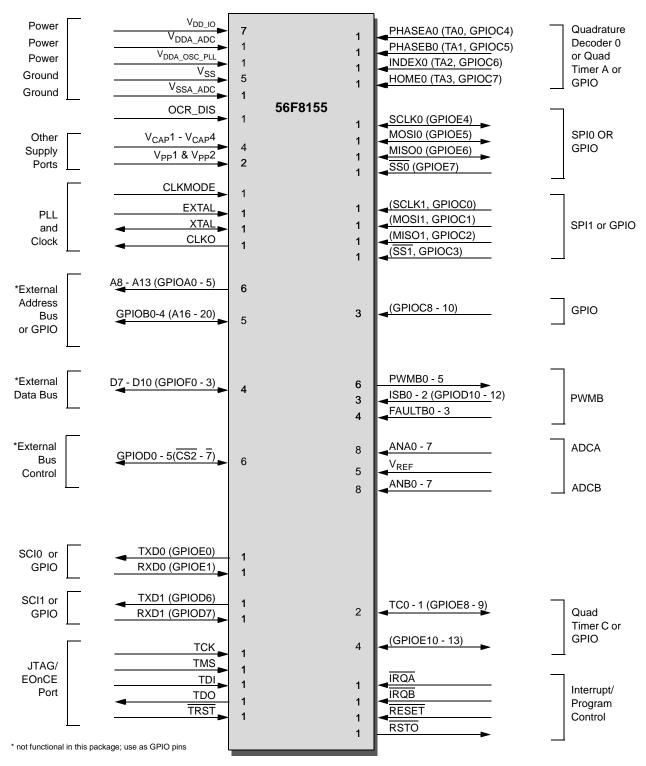


Figure 2-1 56F8355 Signals Identified by Functional Group¹ (128-pin LQFP)

1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.

56F8355 Technical Data, Rev. 17

Figure 2-2 56F8155 Signals Identified by Functional Group¹ (128-pin LQFP)

1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.

2.2 Signal Pins

After reset, all pins are by default the primary function. Any alternate functionality must be programmed.

EMI is not functional in this package; since only part of the address/data bus is bonded out, use as GPIO pins.

Note: Signals in italics are NOT available in the 56F8155 device.

If the "State During Reset" lists more than one state for a pin, the first state is the actual reset state. Other states show the reset condition of the alternate function, which you get if the alternate pin function is selected without changing the configuration of the alternate peripheral. For example, the A8/GPIOA0 pin shows that it is tri-stated during reset. If the GPIOA_PER is changed to select the GPIO function of the pin, it will become an input if no other registers are changed.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
V _{DD_IO}	4	Supply		I/O Power — This pin supplies 3.3V power to the chip I/O interface and also the Processor core throught the on-chip voltage
V _{DD_IO}	14			regulator, if it is enabled.
V _{DD_IO}	25			
V _{DD_IO}	36			
V _{DD_IO}	62			
V _{DD_IO}	76			
V _{DD_IO}	112			
V _{DDA_ADC}	94	Supply		ADC Power — This pin supplies 3.3V power to the ADC modules. It must be connected to a clean analog power supply.
V _{DDA_OSC_PLL}	72	Supply		Oscillator and PLL Power — This pin supplies 3.3V power to the OSC and to the internal regulator that in turn supplies the Phase Locked Loop. It must be connected to a clean analog power supply.
V _{SS}	3	Supply		V_{SS} — These pins provide ground for chip logic and I/O drivers.
V _{SS}	21			
V _{SS}	35			
V _{SS}	59			
V _{SS}	65			

	1	r	1	
Signal Name	Pin No.	Туре	State During Reset	Signal Description
V _{SSA_ADC}	95	Supply		ADC Analog Ground — This pin supplies an analog ground to the ADC modules.
OCR_DIS	71	Input	Input	On-Chip Regulator Disable —Tie this pin to V_{SS} to enable the on-chip regulator.Tie this pin to V_{DD} to disable the on-chip regulator.This pin is intended to be a static DC signal from power-up to shut down. Do no try to toggle this pin for power savings during operation.
V _{CAP} 1	49	Supply	Supply	V _{CAP} 1 - 4 — When OCR_DIS is tied to V _{SS} (regulator enabled),
V _{CAP} 2	122			connect each pin to a $2.2\mu F$ or greater bypass capacitor in order to bypass the core logic voltage regulator, required for proper chip
V _{CAP} 3	75			operation. When OCR_DIS is tied to V_{DD} (regulator disabled), these pins become V_{DD_CORE} and should be connected to a
V _{CAP} 4	13			regulated 2.5V power supply.
				Note: This bypass is required even if the chip is powered with an external supply.
V _{PP} 1	119	Input	Input	$V_{PP}1 - V_{PP}2$ — These pins should be left unconnected as an open
V _{PP} 2	5			circuit for normal functionality.
CLKMODE	79	Input	Input	Clock Input Mode Selection — This input determines the function of the XTAL and EXTAL pins.
				1 = External clock input on XTAL is used to directly drive the input clock of the chip. The EXTAL pin should be grounded.
				0 = A crystal or ceramic resonator should be connected between XTAL and EXTAL.
EXTAL	74	Input	Input	External Crystal Oscillator Input — This input can be connected to an 8MHz external crystal. Tie this pin low if XTAL is driven by an external clock source.
XTAL	73	Input/ Output	Chip-driven	Crystal Oscillator Output — This output connects the internal crystal oscillator output to an external crystal.
				If an external clock is used, XTAL must be used as the input and EXTAL connected to GND.
				The input clock can be selected to provide the clock directly to the core. This input clock can also be selected as the input clock for the on-chip PLL.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
CLKO	6	Output	In reset, output is disabled	Clock Output — This pin outputs a buffered clock signal. Using the SIM CLKO Select Register (SIM_CLKOSR), this pin can be programmed as any of the following: disabled, CLK_MSTR (system clock), IPBus clock, oscillator output, prescaler clock and postscaler clock. Other signals are also available for test purposes.
				See Part 6.5.7 for details.
A8	15	Output	In reset, output is disabled, pullup is enabled	Address Bus — A8 - A13 specify six of the address lines for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A8 - A13 and EMI control signals are tri-stated when the external bus is inactive.
(GPIOA0)		Schmitt		Port A GPIO — These six GPIO pins can be individually
A9 (GPIOA1)	16	Input/ Output		programmed as input or output pins. After reset, these pins default to address bus functionality and
A10 (GPIOA2)	17			<u>must</u> be programmed as GPIO. To deactivate the internal pullup resistor, clear the appropriate
A11 (GPIOA3)	18			GPIO bit in the GPIOA_PUR register. Example: GPIOA0, clear bit 0 in the GPIOA_PUR register.
A12 (GPIOA4)	19			Note: Primary function is not available in this package
A13 (GPIOA5)	20			configuration; GPIO function must be used instead.
GPIOB0	27	Schmitt Input/ Output	Input, pullup enabled	Port B GPIO — These four GPIO pins can be programmed as input or output pins.
(A16)		Output		Address Bus — A16 - A19 specify four of the address lines for
GPIOB1 (A17)	28			external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A16 - A19 and EMI control signals are tri-stated when the external bus is
GPIOB2 (A18)	29			inactive. After reset, the default state is GPIO.
GPIOB3 (A19)	30			To deactivate the internal pullup resistor, clear bit 0 in the GPIOB_PUR register.
				Example: GPIOB1, clear bit 1 in the GPIOB_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
GPIOB4	31	Schmitt Input/ Output	Input, pullup enabled	Port B GPIO — This GPIO pin can be individually programmed as an input or output pin.
(A20)		Output		Address Bus — A20 specifies one of the address lines for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A20 and EMI control signals are tri-stated when the external bus is inactive.
(prescaler_ clock)		Output		Clock Output — can be used to monitor the prescaler_clock on GPIOB4.
				After reset, the default state is GPIO.
				This pin can also be used to view the prescaler_clock. In these cases, the GPIOB_PER can be used to disable the GPIO. The CLKOSR register in the SIM can then be used to choose between address and clock functions; see Part 6.5.7 for details.
				To deactivate the internal pullup resistor, clear clear bit 4 in the GPIOB_PUR register.
D7	22	Input/ Output	In reset, output is disabled, pullup is enabled	Data Bus — D7 - D10 specify part of the data for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), D7 - D10 are tri-stated when the external bus is inactive
(GPIOF0)		Input/	enabled	Port F GPIO — These four GPIO pins can be individually
D8 (GPIOF1)	23	Output		programmed as input or output pins. After reset, these pins default to data bus functionality and should
D9 (GPIOF2)	24			be programmed as GPIO. To deactivate the internal pullup resistor, clear the appropriate
D10	26			GPIO bit in the GPIOF_PUR register.
(GPIOF3)				Example: GPIOF0, clear bit 0 in the GPIOF_PUR register.
				Note: Primary function is not available in this package configuration; GPIO function must be used instead.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
GPIOD0	42	Input/ Output	Input, pullup enabled	Port D GPIO — These six GPIO pins can be individually programmed as input or output pins.
(CS2)		Output	enabled	Chip Select — $\overline{CS2}$ - $\overline{CS7}$ may be programmed within the EMI
G <u>PIOD</u> 1 (CS3)	43			module to act as chip selects for specific areas of the external memory map. Depending upon the state of the DRV bit in the EMI bus control register (BCR), CS2 - CS7 are tri-stated when the
G <u>PIOD</u> 2 (CS4)	44			external bus is inactive. After reset, these pins are configured as GPIO.
G <u>PIOD</u> 3 (CS5)	45			To deactivate the internal pullup resistor, clear the appropriate GPIO bit in the GPIOD_PUR register.
G <u>PIOD</u> 4 (CS6)	46			Example: GPIOD0, clear bit 0 in the GPIOD_PUR register.
G <u>PIOD</u> 5 (CS7)	47			
TXD0	7	Output	In reset, output is	Transmit Data — SCI0 transmit data output
(GPIOE0)		Input/ Output	disabled, pullup is enabled	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI output.
				To deactivate the internal pullup resistor, clear bit 0 in the GPIOE_PUR register.
RXD0	8	Input	Input, pullup	Receive Data — SCI0 receive data input
(GPIOE1)		Input/ Output	enabled	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI output.
				To deactivate the internal pullup resistor, clear bit 1 in the GPIOE_PUR register.
TXD1	40	Output	In reset, output is	Transmit Data — SCI1 transmit data output
(GPIOD6)		Input/ dis Output pr	disabled, pullup is enabled	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI output.
				To deactivate the internal pullup resistor, set bit 6 in the GPIOD_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
RXD1	41	Input	Input,	Receive Data — SCI1 receive data input
(GPIOD7)		Input/ Output	pullup enabled	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI input.
				To deactivate the internal pullup resistor, clear bit 7 in the GPIOD_PUR register.
тск	115	Schmitt Input	Input, pulled low internally	Test Clock Input — This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/EOnCE port. The pin is connected internally to a pull-down resistor.
TMS	116	Schmitt Input	Input, pulled high internally	Test Mode Select Input — This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pullup resistor.
				To deactivate the internal pullup resistor, set the JTAG bit in the SIM_PUDR register.
				Note: Always tie the TMS pin to V _{DD} through a 2.2K resistor.
TDI	117	Schmitt Input	Input, pulled high internally	Test Data Input — This input pin provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an on-chip pullup resistor.
				To deactivate the internal pullup resistor, set the JTAG bit in the SIM_PUDR register.
TDO	118	Output	In reset, output is disabled	Test Data Output — This tri-stateable output pin provides a serial output data stream from the JTAG/EOnCE port. It is driven in the shift-IR and shift-DR controller states, and changes on the falling edge of TCK.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
TRST	114	Schmitt Input	Input, pulled high internally	Test Reset — As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted whenever RESET is asserted. The only exception occurs in a debugging environment when a hardware device reset is required and the JTAG/EOnCE module must not be reset. In this case, assert RESET, but do not assert TRST.
				To deactivate the internal pullup resistor, set the JTAG bit in the SIM_PUDR register.
				Note: For normal operation, connect $\overline{\text{TRST}}$ directly to V_{SS} . If the design is to be used in a debugging environment, $\overline{\text{TRST}}$ may be tied to V_{SS} through a 1K resistor.
PHASEA0	127	Schmitt Input	Input, pullup	Phase A — Quadrature Decoder 0, PHASEA input
(TA0)		Schmitt Input/ Output	enabled	TA0 — Timer A, Channel 0
(GPIOC4)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output		After reset, the default state is PHASEA0.
				To deactivate the internal pullup resistor, clear bit 4 of the GPIOC_PUR register.
PHASEB0	128	Schmitt Input	Input, pullup	Phase B — Quadrature Decoder 0, PHASEB input
(TA1)		Schmitt Input/ Output	enabled	TA1 — Timer A, Channel 1
(GPIOC5)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is PHASEB0. To deactivate the internal pullup resistor, clear bit 5 of the GPIOC_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
INDEX0	1	Schmitt Input	Input, pullup enabled	Index — Quadrature Decoder 0, INDEX input
(TA2)		Schmitt Input/ Output	enableu	TA2 — Timer A, Channel 2
(GPOPC6)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is INDEX0.
				To deactivate the internal pullup resistor, clear bit 6 of the GPIOC_PUR register.
HOME0	2	Schmitt Input	Input, pullup enabled	Home — Quadrature Decoder 0, HOME input
(TA3)		Schmitt Input/ Output	enabled	TA3 — Timer A,Channel 3
(GPIOC7)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output		After reset, the default state is HOME0.
				To deactivate the internal pullup resistor, clear bit 7 of the GPIOC_PUR register.
SCLK0	124	Schmitt Input/ Output	Input, pullup enabled	SPI 0 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.
(GPIOE4)		Schmitt Input/ Output		Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output		After reset, the default state is SCLK0.
				To deactivate the internal pullup resistor, clear bit 4 in the GPIOE_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
MOSIO	126	Input/ Output	In reset, output is disabled, pullup is enabled	SPI 0 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data.
(GPIOE5)		Input/ Output		Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is MOSI0.
				To deactivate the internal pullup resistor, clear bit 5 in the GPIOE_PUR register.
MISO0	125	Input/ Output	Input, pullup enabled	SPI 0 Master In/Slave Out — This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected. The slave device places data on the MISO line a half-cycle before the clock edge the master device uses to latch the data.
(GPIOE6)		Input/ Output		Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is MISO0.
				To deactivate the internal pullup resistor, clear bit 6 in the GPIOE_PUR register.
SS0	123	Input	Input, pullup enabled	SPI 0 Slave Select — $\overline{SS0}$ is used in slave mode to indicate to the SPI module that the current transfer is to be received.
(GPIOE7)		Input/ Output	enabled	Port E GPIO — This GPIO pin can be individually programmed as input or output pin.
				After reset, the default state is \overline{SSO} .
				To deactivate the internal pullup resistor, clear bit 7 in the GPIOE_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
PHASEA1	9	Schmitt Input	Input, pullup enabled	Phase A1 — Quadrature Decoder 1, PHASEA input for decoder 1.
(TB0)		Schmitt Input/ Output	enabled	TB0 — Timer B, Channel 0
(SCLK1)		Schmitt Input/ Output		SPI 1 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input. To activate the SPI function, set the PHSA_ALT bit in the SIM_GPS register. For details, see Part 6.5.8.
(GPIOC0)		Schmitt Input/		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output		In the 56F8355, the default state after reset is PHASEA1.
				In the 56F8155, the default state is not one of the functions offered and must be reconfigured.
				To deactivate the internal pullup resistor, clear bit 0 in the GPIOC_PUR register.
PHASEB1	10	Schmitt Input	Input, pullup enabled	Phase B1 — Quadrature Decoder 1, PHASEB input for decoder 1.
(TB1)		Schmitt Input/ Output	chabled	TB1 — Timer B, Channel 1
(MOSI1)		Schmitt Input/ Output		SPI 1 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data. To activate the SPI function, set the PHSB_ALT bit in the SIM_GPS register. For details, see Part 6.5.8.
(GPIOC1)		Schmitt Input/		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output	.put	In the 56F8355, the default state after reset is PHASEB1.
				In the 56F8155, the default state is not one of the functions offered and must be reconfigured.
				To deactivate the internal pullup resistor, clear bit 1 in the GPIOC_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
INDEX1	11	Schmitt Input	Input, pullup enabled	Index1 — Quadrature Decoder 1, INDEX input
(TB2)		Schmitt Input/ Output	enabled	TB2 — Timer B, Channel 2
(MISO1)		Schmitt Input/ Output		SPI 1 Master In/Slave Out — This serial data pin is an input to a master device and output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected. The slave device places data on the MISO line a half-cycle before the clock edge the master device uses to latch the data. To activate the SPI function, set the INDEX_ALT bit in the SIM_GPS register. For details, see Part 6.5.8.
(GPIOC2)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output		In the 56F8355, the default state after reset is INDEX1.
				In the 56F8155, the default state is not one of the functions offered and must be reconfigured.
				To deactivate the internal pullup resistor, clear bit 2 in the GPIOC_PUR register.
HOME1	12	Schmitt Input	Input, pullup enabled	Home — Quadrature Decoder 1, HOME input
(TB3)		Schmitt Input/ Output	enabled	TB3 — Timer B, Channel 3
(SS 1)		Schmitt Input		SPI 1 Slave Select — In the master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave. To activate the SPI function, set the HOME_ALT bit in the SIM_GPS register. For details, see Part 6.5.8.
(GPIOC3)		Schmitt Input/		Port C GPIO — This GPIO pin can be individually programmed as input or output pin.
		Output		In the 56F8355, the default state after reset is HOME1.
				In the 56F8155, the default state is not one of the functions offered and must be reconfigured.
				To deactivate the internal pullup resistor, set bit 3 in the GPIOC_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
PWMA0	58	Output	In reset,	PWMA0 - 5 — These are six PWMA outputs.
PWMA1	60		output is disabled	
PWMA2	61			
PWMA3	63			
PWMA4	64			
PWMA5	66			
ISA0	104	Schmitt Input	Input, pullup enabled	ISA0 - 2 — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMA.
(GPIOC8)		Schmitt Input/		Port C GPIO — These GPIO pins can be individually programmed as input or output pins.
<i>ISA1</i> (GPIOC9)	105	Output		In the 56F8355, these pins default to ISA functionality.
<i>ISA2</i> (GPIOC10)	106			In the 56F8155, the default state is not one of the functions offered and must be reconfigured.
				To deactivate the internal pullup resistor, clear the appropriate bit of the GPIOC_PUR register. See Part 6.5.6 for details.
FAULTA0	67	Input	Input,	FAULTA0 - A2 — These three fault input pins are used for
FAULTA1	68		pullup enabled	disabling selected PWMA outputs in cases where fault conditions originate off-chip.
FAULTA2	69			To deactivate the internal pullup resistor, set the PWMA0 bit in the SIM_PUDR register. For details, see Part 6.5.6.
FAULTA3	70	Schmitt Input	Input, pullup enabled	FAULTA3 — This fault input pin is used for disabling selected PWMA outputs in cases where fault conditions originate off-chip. To deactivate the internal pullup resistor, set the PWMA1 bit in the SIM_PUDR register. See Part 6.5.6 for details.
PWMB0	32	Output	In reset,	PWMB0 - 5 — Six PWMB output pins.
PWMB1	33		output is disabled	
PWMB2	34			
PWMB3	37			
PWMB4	38			
PWMB5	39			

Signal Name	Pin No.	Туре	State During Reset	Signal Description
ISB0	48	Schmitt Input	Input, pullup enabled	ISB0 - 2 — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMB.
(GPIOD10)		Schmitt		Port D GPIO — These GPIO pins can be individually programmed
ISB1 (GPIOD11)	50	Input/ Output		as input or output pins. At reset, these pins default to ISB functionality.
ISB2 (GPIOD12)	51			To deactivate the internal pullup resistor, clear the appropriate bit of the GPIOD_PUR register. For details, see Part 6.5.6 .
FAULTB0	54	Schmitt	Input,	FAULTB0 - 3 — These four fault input pins are used for disabling
FAULTB1	55	Input	pullup enabled	selected PWMB outputs in cases where fault conditions originate off-chip.
FAULTB2	56			To deactivate the internal pullup resistor, set the PWMB bit in the
FAULTB3	57			SIM_PUDR register. For details, see Part 6.5.6 .
ANA0	80	Input	Analog Input	ANA0 - 3 — Analog inputs to ADC A, channel 0
ANA1	81			
ANA2	82			
ANA3	83			
ANA4	84	Input	Analog	ANA4 - 7 — Analog inputs to ADC A, channel 1
ANA5	85		Input	
ANA6	86			
ANA7	87			
V _{REFH}	93	Input	Analog Input	V_{REFH} — Analog Reference Voltage High. V _{REFH} must be less than or equal to V _{DDA_ADC} .
V _{REFP}	92	Input/	Analog	VREFP, VREFMID & VREFN — Internal pins for voltage reference
V _{REFMID}	91	Output	Input/ Output	which are brought off-chip so they can be bypassed. Connect to a 0.1 μF low ESR capacitor.
V _{REFN}	90			
V _{REFLO}	89	Input	Analog Input	V_{REFLO} — Analog Reference Voltage Low. This should normally be connected to a low-noise V _{SSA} .

				-
Signal Name	Pin No.	Туре	State During Reset	Signal Description
ANB0	96	Input	Analog Input	ANB0 - 3 — Analog inputs to ADC B, channel 0
ANB1	97			
ANB2	98			
ANB3	99			
ANB4	100	Input	Analog Input	ANB4 - 7 — Analog inputs to ADC B, channel 1
ANB5	101			
ANB6	102			
ANB7	103			
TEMP_SENSE	88	Output	Analog Output	Temperature Sense Diode — This signal connects to an on-chip diode that can be connected to one of the ADC inputs and used to monitor the temperature of the die. Must be bypassed with a 0.01μ F capacitor.
CAN_RX	121	Schmitt Input	Input, pullup enabled	FlexCAN Receive Data — This is the CAN input. This pin has an internal pullup resistor. To deactivate the internal pullup resistor, set the CAN bit in the SIM_PUDR register.
CAN_TX	120	Open Drain Output	Open Drain Output	FlexCAN Transmit Data — This is the CAN output.
тсо	111	Schmitt Input/ Output	Input, pullup enabled	TC0 - 1 — Timer C, Channels 0 and 1
(GPIOE8)		Schmitt Input/ Output		Port E GPIO — These GPIO pins can be individually programmed
TC1 (GPIOE9)	113			as input or output pins. At reset, these pins default to Timer functionality.
				To deactivate the internal pullup resistor, clear the appropriate bit of the GPIOE_PUR register. See Part 6.5.6 for details.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
TDO	107	Schmitt Input/ Output	Input, pullup enabled	TD0 - TD3 — Timer D, Channels 0, 1, 2 and 3
(GPIOE10)		Schmitt Input/ Output		Port E GPIO — These GPIO pins can be individually programmed as input or output pins.
<i>TD1</i> (GPIOE11)	108			At reset, these pins default to Timer functionality.
<i>TD2</i> (GPIOE12)	109			To deactivate the internal pullup resistor, clear the appropriate bit of the GPIOE_PUR register. See Part 6.5.6 for details.
<i>TD3</i> (GPIOE13)	110			
IRQA	52	Schmitt	Input,	External Interrupt Request A and B — The IRQA and IRQB
IRQB	53	Input	pullup enabled	 inputs are asynchronous external interrupt requests during Stop and Wait mode operation. During other operating modes, they are synchronized external interrupt requests, which indicate an external device is requesting service. They can be programmed to be level-sensitive or negative-edge triggered. To deactivate the internal pullup resistor, set the IRQ bit in the SIM_PUDR register. See Part 6.5.6 for details.
RESET	78	Schmitt Input	Input, pullup enabled	 Reset — This input is a direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt trigger input is used for noise immunity. The internal reset signal will be deasserted synchronous with the internal clocks after a fixed number of internal clocks. To ensure complete hardware reset, RESET and TRST should be asserted together. The only exception occurs in a debugging environment when a hardware device reset is required and the JTAG/EOnCE module must not be reset. In this case, assert RESET but do not assert TRST. Note: The internal Power-On Reset will assert on initial power-up. To deactivate the internal pullup resistor, set the RESET bit in the SIM_PUDR register. See Part 6.5.6 for details.
RSTO	77	Output	Output	Reset Output — This output reflects the internal reset state of the chip.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
EXTBOOT	Internal Ground	Schmitt Input	Input, pullup enabled	External Boot — This input is tied to V_{DD} to force the device to boot from off-chip memory (assuming that the on-chip Flash memory is not in a secure state). Otherwise, it is tied to ground. For details, see Table 4-4 . Note: When this pin is tied low, the customer boot software should disable the internal pullup resistor by setting the XBOOT bit of the SIM_PUDR; see Part 6.5.6 . Note: This pin is internally tied low (to V _{SS}).
EMI_MODE	Internal Ground	Schmitt Input	Input, pullup enabled	 External Memory Mode — This device will boot from internal Flash memory under normal operation. This function is also affected by EXTBOOT and the Flash security mode; see Table 4-4 for details. Note: When this pin is tied low, the customer boot software should disable the internal pullup resistor by setting the EMI_MODE bit of the SIM_PUDR; see Part 6.5.6. Note: This pin is internally tied low (to V_{SS}).

Part 3 On-Chip Clock Synthesis (OCCS)

3.1 Introduction

Refer to the OCCS chapter of the **56F8300 Peripheral User Manual** for a full description of the OCCS. The material contained here identifies the specific features of the OCCS design. **Figure 3-1** shows the specific OCCS block diagram to reference from the OCCS chapter of the **56F8300 Peripheral User Manual**.

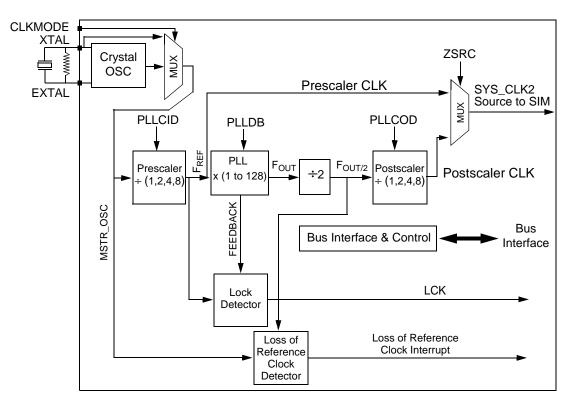
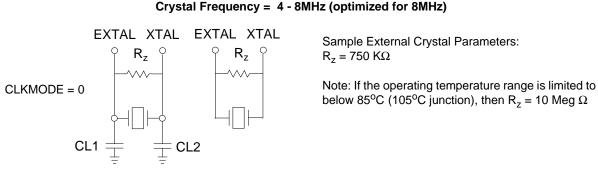


Figure 3-1 OCCS Block Diagram

3.2 External Clock Operation


The system clock can be derived from an external crystal, ceramic resonator, or an external system clock signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic resonator must be connected between the EXTAL and XTAL pins.

3.2.1 Crystal Oscillator

The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency range specified for the external crystal in **Table 10-15**. A recommended crystal oscillator circuit is shown in **Figure 3-2**. Follow the crystal supplier's recommendations when selecting a crystal, since crystal parameters determine the component values required to provide maximum stability and reliable start-up.

The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL pins to minimize output distortion and start up stabilization time.

Figure 3-2 Connecting to a Crystal Oscillator

Note: The OCCS_COHL bit must be set to 1 when a crystal oscillator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in the **56F8300 Peripheral User Manual**.

3.2.2 Ceramic Resonator (Default)

It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in **Figure 3-3**. Refer to the supplier's recommendations when selecting a ceramic resonator and associated components. The resonator and components should be mounted as near as possible to the EXTAL and XTAL pins.

Resonator Frequency = 4 - 8MHz (optimized for 8MHz)

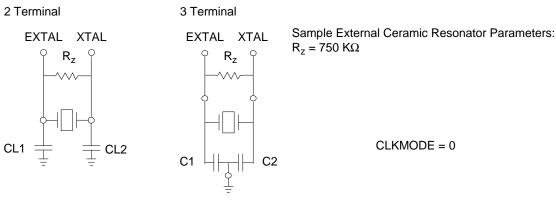
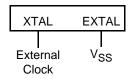


Figure 3-3 Connecting a Ceramic Resonator


Note: The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in the **56F8300 Peripheral User Manual**.

3.2.3 External Clock Source

The recommended method of connecting an external clock is illustrated in **Figure 3-4**. The external clock source is connected to XTAL and the EXTAL pin is grounded. Set OCCS_COHL bit high when using an external clock source as well.

Note: When using an external clocking source with this configuration, the input "CLKMODE" should be high and the COHL bit in the OSCTL register should be set to 1.

Figure 3-4 Connecting an External Clock Signal Register

3.3 Registers

When referring to the register definitions for the OCCS in the **56F8300 Peripheral User Manual**, use the register definitions **without** the internal Relaxation Oscillator, since the 56F8355/56F8155 devices do NOT contain this oscillator.

Part 4 Memory Map

4.1 Introduction

The 56F8355 and 56F8155 devices are 16-bit motor-control chips based on the 56800E core. These parts use a Harvard-style architecture with two independent memory spaces for Data and Program. On-chip RAM and Flash memories are used in both spaces.

This section provides memory maps for:

- Program Address Space, including the Interrupt Vector Table
- Data Address Space, including the EOnCE Memory and Peripheral Memory Maps

On-chip memory sizes for each device are summarized in **Table 4-1**. Flash memories' restrictions are identified in the "Use Restrictions" column of **Table 4-1**.

On-Chip Memory	56F8355	56F8155	Use Restrictions
Program Flash	256KB	256KB	Erase/Program via Flash interface unit and word writes to CDBW
Data Flash	8KB	_	Erase/Program via Flash interface unit and word writes to CDBW. Data Flash can be read via either CDBR or XDB2, but not by both simultaneously
Program RAM	4KB	_	None
Data RAM	16KB	16KB	None
Program Boot Flash	16KB	16KB	Erase/Program via Flash Interface unit and word writes to CDBW

Table 4-1	Chip	Memory	Configurations
-----------	------	--------	----------------

4.2 Program Map

The Program memory map is located in **Table 4-4.** The operating mode control bits (MA and MB) in the Operating Mode Register (OMR) control the Program memory map. At reset, these bits are set as indicated in **Table 4-2**.

 $EXT_BOOT = EMI_MODE = 0$ and cannot be changed in the 56F8355 or 56F8155.

OMR MB = Flash Secured State ^{2,3}	OMR MA = EXTBOOT Pin	Chip Operating Mode	
0	0	Mode 0 – Internal Boot; EMI is configured to use 16 address lines; Flash Memory is secured; external P-space is not allowed; the EOnCE is disabled	
0	1	Not valid; cannot boot externally if the Flash is secured and will actually configure to 00 state	
1	0	Mode 0 – Internal Boot; EMI is configured to use 16 address lines	
1	1	Mode 1 – External Boot; Flash Memory is not secured; EMI configuration is determined by the state of the EMI_MODE pin	

Table 4-2 OMR MB/MA Value at Reset¹

1. Information in shaded areas not applicable to 56F8355/56F8155.

2. This bit is only configured at reset. If the Flash secured state changes, this will not be reflected in MB until the next reset.

3. Changing MB in software will not affect Flash memory security.

After reset, the OMR MA bit can be changed and will have an effect on the P-space memory map, as shown in **Table 4-3**. Changing the OMR MB bit will have no effect.

OMR MA	Chip Operating Mode
0	Use internal P-space memory map configuration
1 ¹	Use external P-space memory map configuration – If MB = 0 at reset, changing this bit has no effect.

Table 4-3 Changing OMR MA Value During Normal Operation

Setting this bit can cause unpredictable results and is not recommended, since the EMI is not functional in this package.

Table 4-4 shows the memory map options of the device. The two right columns cannot be used, since the EMI pins are not provided in the package; therefore, only the Mode 0 column is relevant.

Note: Program RAM is NOT available on the 56F8155 device.

	Mode 0 (MA = 0)	Mode 1 ¹	(MA = 1)	
Begin/End	Internal Boot	External Boot		
Address	Internal Boot 16-Bit External Address Bus	EMI_MODE = 0 ^{2, 3} 16-Bit External Address Bus	EMI_MODE = 1 ⁴ 20-Bit External Address Bus	
P:\$1F FFFF P:\$10 0000	5	6	External Program Memory	
P:\$0F FFFF P:\$03 0000	External Program Memory ⁵	External Program Memory ⁶		
P:\$02 FFFF P:\$02 F800	On-Chip Program RAM 4KB	On-Chip Program RAM 4KB		
P:\$02 F7FF P:\$02 2000		erved BKB		
P:\$02 1FFF P:\$02 0000	Boot Flash 16KB COP Reset Address = 02 0002 Boot Location = 02 0000	Boot Flash 16KB (Not Used for Boot in this Mode)	External Program Memory COP Reset Address = 02 0002 Boot Location = 02 0000	
P:\$01 FFFF P:\$01 0000	7	Internal Program Flash 128KB		
P:\$00 FFFF P:\$00 0000	Internal Program Flash ⁷ 256KB	External Program RAM ⁵ COP Reset Address = 00 0002 Boot Location = 00 0000		

Table 4-4 Program Memory Map at Reset

1. Cannot be used since MA = EXTBOOT = 0 and the EMI is not available; information in shaded areas not applicable to 56F8355/56F8155.

2. This mode provides maximum compatibility with 56F80x parts while operating externally.

- 3. "EMI_MODE = 0", EMI_MODE pin is tied to ground at boot up.
- 4. "EMI_MODE = 1", EMI_MODE pin is tied to V_{DD} at boot up.

- 5. Not accessible in reset configuration, since the address is above P:\$00 FFFF. The higher bit address/GPIO (and/or chip selects) pins must be reconfigured before this external memory is accessible.
- 6. Not accessible in this part, since the EMI is not fully pinned out in this package; information in shaded areas not applicable to 56F8355/56F8155.
- 7. Two independent program flash blocks allow one to be programmed/erased while executing from another. Each block must have its own mass erase.

4.3 Interrupt Vector Table

Table 4-5 provides the reset and interrupt priority structure, including on-chip peripherals. The table is organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. The priority of an interrupt can be assigned to different levels, as indicated, allowing some control over interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority level, the lowest vector number has the highest priority.

The location of the vector table is determined by the Vector Base Address (VBA) register. Please see **Part 5.6.11** for the reset value of the VBA.

In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the interrupt vector table. In these instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR instructions.

Note: *PWMA, FlexCAN, Quadrature Decoder1, and Quad Timers B and D are NOT available on the* 56F8155 device.

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
				Reserved for Reset Overlay ²
				Reserved for COP Reset Overlay ²
core	2	3	P:\$04	Illegal Instruction
core	3	3	P:\$06	SW Interrupt 3
core	4	3	P:\$08	HW Stack Overflow
core	5	3	P:\$0A	Misaligned Long Word Access
core	6	1-3	P:\$0C	OnCE Step Counter
core	7	1-3	P:\$0E	OnCE Breakpoint Unit 0
				Reserved
core	9	1-3	P:\$12	OnCE Trace Buffer

Table 4-5 Interrupt Vector Table Contents¹

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
core	10	1-3	P:\$14	OnCE Transmit Register Empty
core	11	1-3	P:\$16	OnCE Receive Register Full
				Reserved
core	14	2	P:\$1C	SW Interrupt 2
core	15	1	P:\$1E	SW Interrupt 1
core	16	0	P:\$20	SW Interrupt 0
core	17	0-2	P:\$22	IRQA
core	18	0-2	P:\$24	IRQB
				Reserved
LVI	20	0-2	P:\$28	Low Voltage Detector (power sense)
PLL	21	0-2	P:\$2A	PLL
FM	22	0-2	P:\$2C	FM Access Error Interrupt
FM	23	0-2	P:\$2E	FM Command Complete
FM	24	0-2	P:\$30	FM Command, data and address Buffers Empty
				Reserved
FLEXCAN	26	0-2	P:\$34	FLEXCAN Bus Off
FLEXCAN	27	0-2	P:\$36	FLEXCAN Error
FLEXCAN	28	0-2	P:\$38	FLEXCAN Wake Up
FLEXCAN	29	0-2	P:\$3A	FLEXCAN Message Buffer Interrupt
GPIOF	30	0-2	P:\$3C	GPIO F
GPIOE	31	0-2	P:\$3E	GPIO E
GPIOD	32	0-2	P:\$40	GPIO D
GPIOC	33	0-2	P:\$42	GPIO C
GPIOB	34	0-2	P:\$44	GPIO B
GPIOA	35	0-2	P:\$46	GPIO A
				Reserved
SPI1	38	0-2	P:\$4C	SPI 1 Receiver Full
SPI1	39	0-2	P:\$4E	SPI 1 Transmitter Empty
SPI0	40	0-2	P:\$50	SPI 0 Receiver Full
SPI0	41	0-2	P:\$52	SPI 0 Transmitter Empty
SCI1	42	0-2	P:\$54	SCI 1 Transmitter Empty
SCI1	43	0-2	P:\$56	SCI 1 Transmitter Idle
				Reserved
SCI1	45	0-2	P:\$5A	SCI 1 Receiver Error
SCI1	46	0-2	P:\$5C	SCI 1 Receiver Full
DEC1	47	0-2	P:\$5E	Quadrature Decoder #1 Home Switch or Watchdog

Table 4-5 Interrupt Vector Table Contents¹ (Continued)

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
DEC1	48	0-2	P:\$60	Quadrature Decoder #1 INDEX Pulse
DEC0	49	0-2	P:\$62	Quadrature Decoder #0 Home Switch or Watchdog
DEC0	50	0-2	P:\$64	Quadrature Decoder #0 INDEX Pulse
				Reserved
TMRD	52	0-2	P:\$68	Timer D, Channel 0
TMRD	53	0-2	P:\$6A	Timer D, Channel 1
TMRD	54	0-2	P:\$6C	Timer D, Channel 2
TMRD	55	0-2	P:\$6E	Timer D, Channel 3
TMRC	56	0-2	P:\$70	Timer C, Channel 0
TMRC	57	0-2	P:\$72	Timer C, Channel 1
TMRC	58	0-2	P:\$74	Timer C, Channel 2
TMRC	59	0-2	P:\$76	Timer C, Channel 3
TMRB	60	0-2	P:\$78	Timer B, Channel 0
TMRB	61	0-2	P:\$7A	Timer B, Channel 1
TMRB	62	0-2	P:\$7C	Timer B, Channel 2
TMRB	63	0-2	P:\$7E	Timer B, Channel 3
TMRA	64	0-2	P:\$80	Timer A, Channel 0
TMRA	65	0-2	P:\$82	Timer A, Channel 1
TMRA	66	0-2	P:\$84	Timer A, Channel 2
TMRA	67	0-2	P:\$86	Timer A, Channel 3
SCI0	68	0-2	P:\$88	SCI 0 Transmitter Empty
SCI0	69	0-2	P:\$8A	SCI 0 Transmitter Idle
				Reserved
SCI0	71	0-2	P:\$8E	SCI 0 Receiver Error
SCI0	72	0-2	P:\$90	SCI 0 Receiver Full
ADCB	73	0-2	P:\$92	ADC B Conversion Compete / End of Scan
ADCA	74	0-2	P:\$94	ADC A Conversion Complete / End of Scan
ADCB	75	0-2	P:\$96	ADC B Zero Crossing or Limit Error
ADCA	76	0-2	P:\$98	ADC A Zero Crossing or Limit Error
PWMB	77	0-2	P:\$9A	Reload PWM B
PWMA	78	0-2	P:\$9C	Reload PWM A
PWMB	79	0-2	P:\$9E	PWM B Fault
PWMA	80	0-2	P:\$A0	PWM A Fault
core	81	- 1	P:\$A2	SW Interrupt LP
			•	· · · · · ·

Table 4-5 Interrupt Vector Table Contents¹ (Continued)

1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced from the vector table, providing only 19 bits of address.

2. If the VBA is set to \$0200 (or VBA = 0000 for Mode 1, EMI_MODE = 0), the first two locations of the vector table are the chip reset addresses; therefore, these locations are not interrupt vectors.

4.4 Data Map

Note: Data Flash is NOT available on the 56F8155 device.

Begin/End Address	$EX=0^3$	EX = 1 ⁴
X:\$FF FFFF X:\$FF FF00	EOnCE 256 locations allocated	EOnCE 256 locations allocated
X:\$FF FEFF X:\$01 0000	External Memory	External Memory
X:\$00 FFFF X:\$00 F000	On-Chip Peripherals 4096 locations allocated	On-Chip Peripherals 4096 locations allocated
X:\$00 EFFF X:\$00 3000	External Memory	
X:\$00 2FFF X:\$00 2000	On-Chip Data Flash 8KB	External Memory
X:\$00 1FFF X:\$00 0000	On-Chip Data RAM 16KB ⁵	

Table 4-6 Data Memory Map^{1, 2}

1. Information in shaded areas not applicable to 56F8355/56F8155.

2. All addresses are 16-bit Word addresses, not byte addresses.

3. In the Operating Mode Register.

4. Setting EX = 1 is not recommended in the 56F8355/56F8155, since the EMI is not functional in this package.

5. The Data RAM is organized as a 2K x 32-bit memory to allow single-cycle, long-word operations.

4.5 Flash Memory Map

Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.

The Flash Memory is divided into three functional blocks. The Program and boot memories reside on the Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides on the Data Memory buses and is controlled separately by its own set of banked registers.

The top nine words of the Program Memory Flash are treated as special memory locations. The content of these words is used to control the operation of the Flash Controller. Because these words are part of the Flash Memory content, their state is maintained during power-down and reset. During chip initialization, the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash Memory chapter of the **56F8300 Peripheral User Manual**. These configuration parameters are located between \$01_FFF7 and \$01_FFFF.

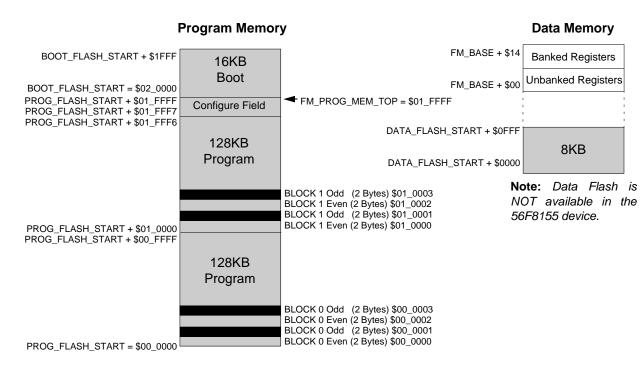


Figure 4-1 Flash Array Memory Maps

Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip.

Note: Data Flash is NOT available on the 56F8155 device.

Table 4-7 Flash	Memory	Partitions
-----------------	--------	------------

	Flash Size	Sectors	Sector Size	Page Size
Program Flash	256KB	16	8K x 16 bits	512 x 16 bits
Data Flash	8KB	16	256 x 16 bits	256 x 16 bits
Boot Flash	16KB	4	2K x 16 bits	256 x 16 bits

Please see 56F8300 Peripheral User Manual for additional Flash information.

4.6 EOnCE Memory Map

Table 4-8 EOnCE Memory Map

Address	Register Acronym	Register Name
		Reserved

Address	Register Acronym	Register Name	
X:\$FF FF8A	OESCR	External Signal Control Register	
		Reserved	
X:\$FF FF8E	OBCNTR	Breakpoint Unit [0] Counter	
		Reserved	
X:\$FF FF90	OBMSK (32 bits)	Breakpoint 1 Unit [0] Mask Register	
X:\$FF FF91	_	Breakpoint 1 Unit [0] Mask Register	
X:\$FF FF92	OBAR2 (32 bits)	Breakpoint 2 Unit [0] Address Register	
X:\$FF FF93	—	Breakpoint 2 Unit [0] Address Register	
X:\$FF FF94	OBAR1 (24 bits)	Breakpoint 1 Unit [0] Address Register	
X:\$FF FF95	—	Breakpoint 1 Unit [0] Address Register	
X:\$FF FF96	OBCR (24 bits)	Breakpoint Unit [0] Control Register	
X:\$FF FF97	_	Breakpoint Unit [0] Control Register	
X:\$FF FF98	OTB (21-24 bits/stage)	Trace Buffer Register Stages	
X:\$FF FF99	—	Trace Buffer Register Stages	
X:\$FF FF9A	OTBPR (8 bits)	Trace Buffer Pointer Register	
X:\$FF FF9B	OTBCR	Trace Buffer Control Register	
X:\$FF FF9C	OBASE (8 bits)	Peripheral Base Address Register	
X:\$FF FF9D	OSR	Status Register	
X:\$FF FF9E	OSCNTR (24 bits)	Instruction Step Counter	
X:\$FF FF9F	_	Instruction Step Counter	
X:\$FF FFA0	OCR (bits)	Control Register	
		Reserved	
X:\$FF FFFC	OCLSR (8 bits)	Core Lock / Unlock Status Register	
X:\$FF FFFD	OTXRXSR (8 bits)	Transmit and Receive Status and Control Register	
X:\$FF FFFE	OTX / ORX (32 bits)	Transmit Register / Receive Register	
X:\$FF FFFF	OTX1 / ORX1	Transmit Register Upper Word Receive Register Upper Word	

Table 4-8 EOnCE Memory Map (Continued)

4.7 Peripheral Memory Mapped Registers

On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may be accessed with the same addressing modes used for ordinary Data memory, except all peripheral registers should be read/written using word accesses only.

Table 4-9 summarizes base addresses for the set of peripherals on the 56F8355 and 56F8155 devices.

Peripherals are listed in order of the base address.

The following tables list all of the peripheral registers required to control or access the peripherals. **Note:** *Features in italics are NOT available in the 56F8155 device.*

Peripheral	Prefix	Base Address	Table Number
External Memory Interface	EMI	X:\$00 F020	4-10
Timer A	TMRA	X:\$00 F040	4-11
Timer B	TMRB	X:\$00 F080	4-12
Timer C	TMRC	X:\$00 F0C0	4-13
Timer D	TMRD	X:\$00 F100	4-14
PWM A	PWMA	X:\$00 F140	4-15
PWM B	PWMB	X:\$00 F160	4-16
Quadrature Decoder 0	DEC0	X:\$00 F180	4-17
Quadrature Decoder 1	DEC1	X:\$00 F190	4-18
ITCN	ITCN	X:\$00 F1A0	4-19
ADC A	ADCA	X:\$00 F200	4-20
ADC B	ADCB	X:\$00 F240	4-21
Temperature Sensor	TSENSOR	X:\$00 F270	4-22
SCI #0	SCI0	X:\$00 F280	4-23
SCI #1	SCI1	X:\$00 F290	4-24
SPI #0	SPI0	X:\$00 F2A0	4-25
SPI #1	SPI1	X:\$00 F2B0	4-26
COP	COP	X:\$00 F2C0	4-27
PLL, OSC	CLKGEN	X:\$00 F2D0	4-28
GPIO Port A	GPIOA	X:\$00 F2E0	4-29
GPIO Port B	GPIOB	X:\$00 F300	4-30
GPIO Port C	GPIOC	X:\$00 F310	4-31
GPIO Port D	GPIOD	X:\$00 F320	4-32
GPIO Port E	GPIOE	X:\$00 F330	4-33
GPIO Port F	GPIOF	X:\$00 F340	4-34
SIM	SIM	X:\$00 F350	4-35
Power Supervisor	LVI	X:\$00 F360	4-36
FM	FM	X:\$00 F400	4-37
FlexCAN	FC	X:\$00 F800	4-38

 Table 4-9 Data Memory Peripheral Base Address Map Summary

Register Acronym	Address Offset	Register Description	Reset Values	
CSBAR 0	\$0	Chip Select Base Address Register 0	0 x 0004 = 64K since EXTBOOT = EMI_MODE = 0	al
CSBAR 1	\$1	Chip Select Base Address Register 1	0 x 0004 = 64K since EMI_MODE = 0	This table added to provide complete information, but this periphera is not functional in the 56F8355/56F8155 package
CSBAR 2	\$2	Chip Select Base Address Register 2		eri
CSBAR 3	\$3	Chip Select Base Address Register 3		s p
CSBAR 4	\$4	Chip Select Base Address Register 4		this kaç
CSBAR 5	\$5	Chip Select Base Address Register 5		but this packag
CSBAR 6	\$6	Chip Select Base Address Register 6		, ե 1, ե
CSBAR 7	\$7	Chip Select Base Address Register 7		tior 815
CSOR 0	\$8	Chip Select Option Register 0		added to provide complete information, is not functional in the 56F8355/56F8155
CSOR 1	\$9	Chip Select Option Register 1		fori 5/5
CSOR 2	\$A	Chip Select Option Register 2		inf 335
CSOR 3	\$B	Chip Select Option Register 3		ete 6F8
CSOR 4	\$C	Chip Select Option Register 4		npl e 5
CSOR 5	\$D	Chip Select Option Register 5		th
CSOR 6	\$E	Chip Select Option Register 6		de (
CSOR 7	\$F	Chip Select Option Register 7		ovic
CSTC 0	\$10	Chip Select Timing Control Register 0		pro
CSTC 1	\$11	Chip Select Timing Control Register 1		to
CSTC 2	\$12	Chip Select Timing Control Register 2		led ot f
CSTC 3	\$13	Chip Select Timing Control Register 3		add S ne
CSTC 4	\$14	Chip Select Timing Control Register 4		le a is
CSTC 5	\$15	Chip Select Timing Control Register 5		tab
CSTC 6	\$16	Chip Select Timing Control Register 6		is
CSTC 7	\$17	Chip Select Timing Control Register 7		È
BCR	\$18	Bus Control Register		

Table 4-10 External Memory Integration Registers Address Map (EMI_BASE = \$00 F020)

Table 4-11 Quad Timer A Registers Address Map (TMRA_BASE = \$00 F040)

Register Acronym	Address Offset	Register Description
TMRA0_CMP1	\$0	Compare Register 1

Table 4-11 Quad Timer A Registers Address Map (Continued) (TMRA_BASE = \$00 F040)

Register Acronym	Address Offset	Register Description
TMRA0_CMP2	\$1	Compare Register 2
TMRA0_CAP	\$2	Capture Register
TMRA0_LOAD	\$3	Load Register
TMRA0_HOLD	\$4	Hold Register
TMRA0_CNTR	\$5	Counter Register
TMRA0_CTRL	\$6	Control Register
TMRA0_SCR	\$7	Status and Control Register
TMRA0_CMPLD1	\$8	Comparator Load Register 1
TMRA0_CMPLD2	\$9	Comparator Load Register 2
TMRA0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRA1_CMP1	\$10	Compare Register 1
TMRA1_CMP2	\$11	Compare Register 2
TMRA1_CAP	\$12	Capture Register
TMRA1_LOAD	\$13	Load Register
TMRA1_HOLD	\$14	Hold Register
TMRA1_CNTR	\$15	Counter Register
TMRA1_CTRL	\$16	Control Register
TMRA1_SCR	\$17	Status and Control Register
TMRA1_CMPLD1	\$18	Comparator Load Register 1
TMRA1_CMPLD2	\$19	Comparator Load Register 2
TMRA1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRA2_CMP1	\$20	Compare Register 1
TMRA2_CMP2	\$21	Compare Register 2
TMRA2_CAP	\$22	Capture Register
TMRA2_LOAD	\$23	Load Register
TMRA2_HOLD	\$24	Hold Register

Register Acronym	Address Offset	Register Description
TMRA2_CNTR	\$25	Counter Register
TMRA2_CTRL	\$26	Control Register
TMRA2_SCR	\$27	Status and Control Register
TMRA2_CMPLD1	\$28	Comparator Load Register 1
TMRA2_CMPLD2	\$29	Comparator Load Register 2
TMRA2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRA3_CMP1	\$30	Compare Register 1
TMRA3_CMP2	\$31	Compare Register 2
TMRA3_CAP	\$32	Capture Register
TMRA3_LOAD	\$33	Load Register
TMRA3_HOLD	\$34	Hold Register
TMRA3_CNTR	\$35	Counter Register
TMRA3_CTRL	\$36	Control Register
TMRA3_SCR	\$37	Status and Control Register
TMRA3_CMPLD1	\$38	Comparator Load Register 1
TMRA3_CMPLD2	\$39	Comparator Load Register 2
TMRA3_COMSCR	\$3A	Comparator Status and Control Register

Table 4-11 Quad Timer A Registers Address Map (Continued) (TMRA_BASE = \$00 F040)

Table 4-12 Quad Timer B Registers Address Map (TMRB_BASE = \$00 F080) Quad Timer B is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
TMRB0_CMP1	\$0	Compare Register 1
TMRB0_CMP2	\$1	Compare Register 2
TMRB0_CAP	\$2	Capture Register
TMRB0_LOAD	\$3	Load Register
TMRB0_HOLD	\$4	Hold Register
TMRB0_CNTR	\$5	Counter Register
TMRB0_CTRL	\$6	Control Register
TMRB0_SCR	\$7	Status and Control Register
TMRB0_CMPLD1	\$8	Comparator Load Register 1

Table 4-12 Quad Timer B Registers Address Map (Continued) (TMRB_BASE = \$00 F080) Quad Timer B is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
TMRB0_CMPLD2	\$9	Comparator Load Register 2
TMRB0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRB1_CMP1	\$10	Compare Register 1
TMRB1_CMP2	\$11	Compare Register 2
TMRB1_CAP	\$12	Capture Register
TMRB1_LOAD	\$13	Load Register
TMRB1_HOLD	\$14	Hold Register
TMRB1_CNTR	\$15	Counter Register
TMRB1_CTRL	\$16	Control Register
TMRB1_SCR	\$17	Status and Control Register
TMRB1_CMPLD1	\$18	Comparator Load Register 1
TMRB1_CMPLD2	\$19	Comparator Load Register 2
TMRB1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRB2_CMP1	\$20	Compare Register 1
TMRB2_CMP2	\$21	Compare Register 2
TMRB2_CAP	\$22	Capture Register
TMRB2_LOAD	\$23	Load Register
TMRB2_HOLD	\$24	Hold Register
TMRB2_CNTR	\$25	Counter Register
TMRB2_CTRL	\$26	Control Register
TMRB2_SCR	\$27	Status and Control Register
TMRB2_CMPLD1	\$28	Comparator Load Register 1
TMRB2_CMPLD2	\$29	Comparator Load Register 2
TMRB2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRB3_CMP1	\$30	Compare Register 1
TMRB3_CMP2	\$31	Compare Register 2
TMRB3_CAP	\$32	Capture Register
TMRB3_LOAD	\$33	Load Register
TMRB3_HOLD	\$34	Hold Register

Table 4-12 Quad Timer B Registers Address Map (Continued) (TMRB_BASE = \$00 F080) Quad Timer B is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
TMRB3_CNTR	\$35	Counter Register
TMRB3_CTRL	\$36	Control Register
TMRB3_SCR	\$37	Status and Control Register
TMRB3_CMPLD1	\$38	Comparator Load Register 1
TMRB3_CMPLD2	\$39	Comparator Load Register 2
TMRB3_COMSCR	\$3A	Comparator Status and Control Register

Table 4-13 Quad Timer C Registers Address Map (TMRC_BASE = \$00 F0C0)

Register Acronym	Address Offset	Register Description
TMRC0_CMP1	\$0	Compare Register 1
TMRC0_CMP2	\$1	Compare Register 2
TMRC0_CAP	\$2	Capture Register
TMRC0_LOAD	\$3	Load Register
TMRC0_HOLD	\$4	Hold Register
TMRC0_CNTR	\$5	Counter Register
TMRC0_CTRL	\$6	Control Register
TMRC0_SCR	\$7	Status and Control Register
TMRC0_CMPLD1	\$8	Comparator Load Register 1
TMRC0_CMPLD2	\$9	Comparator Load Register 2
TMRC0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRC1_CMP1	\$10	Compare Register 1
TMRC1_CMP2	\$11	Compare Register 2
TMRC1_CAP	\$12	Capture Register
TMRC1_LOAD	\$13	Load Register
TMRC1_HOLD	\$14	Hold Register
TMRC1_CNTR	\$15	Counter Register
TMRC1_CTRL	\$16	Control Register
TMRC1_SCR	\$17	Status and Control Register
TMRC1_CMPLD1	\$18	Comparator Load Register 1
TMRC1_CMPLD2	\$19	Comparator Load Register 2

56F8355 Technical Data, Rev. 17

Table 4-13 Quad Timer C Registers Address Map (Continued) (TMRC_BASE = \$00 F0C0)

Register Acronym	Address Offset	Register Description
TMRC1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRC2_CMP1	\$20	Compare Register 1
TMRC2_CMP2	\$21	Compare Register 2
TMRC2_CAP	\$22	Capture Register
TMRC2_LOAD	\$23	Load Register
TMRC2_HOLD	\$24	Hold Register
TMRC2_CNTR	\$25	Counter Register
TMRC2_CTRL	\$26	Control Register
TMRC2_SCR	\$27	Status and Control Register
TMRC2_CMPLD1	\$28	Comparator Load Register 1
TMRC2_CMPLD2	\$29	Comparator Load Register 2
TMRC2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRC3_CMP1	\$30	Compare Register 1
TMRC3_CMP2	\$31	Compare Register 2
TMRC3_CAP	\$32	Capture Register
TMRC3_LOAD	\$33	Load Register
TMRC3_HOLD	\$34	Hold Register
TMRC3_CNTR	\$35	Counter Register
TMRC3_CTRL	\$36	Control Register
TMRC3_SCR	\$37	Status and Control Register
TMRC3_CMPLD1	\$38	Comparator Load Register 1
TMRC3_CMPLD2	\$39	Comparator Load Register 2
TMRC3_COMSCR	\$3A	Comparator Status and Control Register

Table 4-14 Quad Timer D Registers Address Map (TMRD_BASE = \$00 F100) Quad Timer D is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
TMRD0_CMP1	\$0	Compare Register 1
TMRD0_CMP2	\$1	Compare Register 2
TMRD0_CAP	\$2	Capture Register

56F8355 Technical Data, Rev. 17

Table 4-14 Quad Timer D Registers Address Map (Continued)
(TMRD_BASE = \$00 F100)
Quad Timer D is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
TMRD0_LOAD	\$3	Load Register
TMRD0_HOLD	\$4	Hold Register
TMRD0_CNTR	\$5	Counter Register
TMRD0_CTRL	\$6	Control Register
TMRD0_SCR	\$7	Status and Control Register
TMRD0_CMPLD1	\$8	Comparator Load Register 1
TMRD0_CMPLD2	\$9	Comparator Load Register 2
TMRD0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRD1_CMP1	\$10	Compare Register 1
TMRD1_CMP2	\$11	Compare Register 2
TMRD1_CAP	\$12	Capture Register
TMRD1_LOAD	\$13	Load Register
TMRD1_HOLD	\$14	Hold Register
TMRD1_CNTR	\$15	Counter Register
TMRD1_CTRL	\$16	Control Register
TMRD1_SCR	\$17	Status and Control Register
TMRD1_CMPLD1	\$18	Comparator Load Register 1
TMRD1_CMPLD2	\$19	Comparator Load Register 2
TMRD1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRD2_CMP1	\$20	Compare Register 1
TMRD2_CMP2	\$21	Compare Register 2
TMRD2_CAP	\$22	Capture Register
TMRD2_LOAD	\$23	Load Register
TMRD2_HOLD	\$24	Hold Register
TMRD2_CNTR	\$25	Counter Register
TMRD2_CTRL	\$26	Control Register
TMRD2_SCR	\$27	Status and Control Register
TMRD2_CMPLD1	\$28	Comparator Load Register 1

Table 4-14 Quad Timer D Registers Address Map (Continued)(TMRD_BASE = \$00 F100)Quad Timer D is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
TMRD2_CMPLD2	\$29	Comparator Load Register 2
TMRD2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRD3_CMP1	\$30	Compare Register 1
TMRD3_CMP2	\$31	Compare Register 2
TMRD3_CAP	\$32	Capture Register
TMRD3_LOAD	\$33	Load Register
TMRD3_HOLD	\$34	Hold Register
TMRD3_CNTR	\$35	Counter Register
TMRD3_CTRL	\$36	Control Register
TMRD3_SCR	\$37	Status and Control Register
TMRD3_CMPLD1	\$38	Comparator Load Register 1
TMRD3_CMPLD2	\$39	Comparator Load Register 2
TMRD3_COMSCR	\$3A	Comparator Status and Control Register

Table 4-15 Pulse Width Modulator A Registers Address Map (PWMA_BASE = \$00 F140) PWMA is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
PWMA_PMCTL	\$0	Control Register
PWMA_PMFCTL	\$1	Fault Control Register
PWMA_PMFSA	\$2	Fault Status Acknowledge Register
PWMA_PMOUT	\$3	Output Control Register
PWMA_PMCNT	\$4	Counter Register
PWMA_PWMCM	\$5	Counter Modulo Register
PWMA_PWMVAL0	\$6	Value Register 0
PWMA_PWMVAL1	\$7	Value Register 1
PWMA_PWMVAL2	\$8	Value Register 2
PWMA_PWMVAL3	\$9	Value Register 3
PWMA_PWMVAL4	\$A	Value Register 4
PWMA_PWMVAL5	\$B	Value Register 5

Table 4-15 Pulse Width Modulator A Registers Address Map (Continued) (PWMA_BASE = \$00 F140) PWMA is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
PWMA_PMDEADTM	\$C	Dead Time Register
PWMA_PMDISMAP1	\$D	Disable Mapping Register 1
PWMA_PMDISMAP2	\$E	Disable Mapping Register 2
PWMA_PMCFG	\$F	Configure Register
PWMA_PMCCR	\$10	Channel Control Register
PWMA_PMPORT	\$11	Port Register
PWMA_PMICCR	\$12	PWM Internal Correction Control Register

Table 4-16 Pulse Width Modulator B Registers Address Map (PWMB_BASE = \$00 F160)

Register Acronym	Address Offset	Register Description
PWMB_PMCTL	\$0	Control Register
PWMB_PMFCTL	\$1	Fault Control Register
PWMB_PMFSA	\$2	Fault Status Acknowledge Register
PWMB_PMOUT	\$3	Output Control Register
PWMB_PMCNT	\$4	Counter Register
PWMB_PWMCM	\$5	Counter Modulo Register
PWMB_PWMVAL0	\$6	Value Register 0
PWMB_PWMVAL1	\$7	Value Register 1
PWMB_PWMVAL2	\$8	Value Register 2
PWMB_PWMVAL3	\$9	Value Register 3
PWMB_PWMVAL4	\$A	Value Register 4
PWMB_PWMVAL5	\$B	Value Register 5
PWMB_PMDEADTM	\$C	Dead Time Register
PWMB_PMDISMAP1	\$D	Disable Mapping Register 1
PWMB_PMDISMAP2	\$E	Disable Mapping Register 2
PWMB_PMCFG	\$F	Configure Register
PWMB_PMCCR	\$10	Channel Control Register
PWMB_PMPORT	\$11	Port Register
PWMB_PMICCR	\$12	PWM Internal Correction Control Register

Register Acronym	Address Offset	Register Description
DEC0_DECCR	\$0	Decoder Control Register
DEC0_FIR	\$1	Filter Interval Register
DEC0_WTR	\$2	Watchdog Timeout Register
DEC0_POSD	\$3	Position Difference Counter Register
DEC0_POSDH	\$4	Position Difference Counter Hold Register
DEC0_REV	\$5	Revolution Counter Register
DEC0_REVH	\$6	Revolution Hold Register
DEC0_UPOS	\$7	Upper Position Counter Register
DEC0_LPOS	\$8	Lower Position Counter Register
DEC0_UPOSH	\$9	Upper Position Hold Register
DEC0_LPOSH	\$A	Lower Position Hold Register
DEC0_UIR	\$B	Upper Initialization Register
DEC0_LIR	\$C	Lower Initialization Register
DEC0_IMR	\$D	Input Monitor Register

Table 4-17 Quadrature Decoder 0 Registers Address Map (DEC0_BASE = \$00 F180)

Table 4-18 Quadrature Decoder 1 Registers Address Map (DEC1_BASE = \$00 F190) Quadrature Decoder 1 is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
DEC1_DECCR	\$0	Decoder Control Register
DEC1_FIR	\$1	Filter Interval Register
DEC1_WTR	\$2	Watchdog Timeout Register
DEC1_POSD	\$3	Position Difference Counter Register
DEC1_POSDH	\$4	Position Difference Counter Hold Register
DEC1_REV	\$5	Revolution Counter Register
DEC1_REVH	\$6	Revolution Hold Register
DEC1_UPOS	\$7	Upper Position Counter Register
DEC1_LPOS	\$8	Lower Position Counter Register
DEC1_UPOSH	\$9	Upper Position Hold Register
DEC1_LPOSH	\$A	Lower Position Hold Register
DEC1_UIR	\$B	Upper Initialization Register

Table 4-18 Quadrature Decoder 1 Registers Address Map (Continued) (DEC1_BASE = \$00 F190) Quadrature Decoder 1 is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
DEC1_LIR	\$C	Lower Initialization Register
DEC1_IMR	\$D	Input Monitor Register

Table 4-19 Interrupt Control Registers Address Map (ITCN_BASE = \$00 F1A0)

Register Acronym	Address Offset	Register Description
IPR 0	\$0	Interrupt Priority Register 0
IPR 1	\$1	Interrupt Priority Register 1
IPR 2	\$2	Interrupt Priority Register 2
IPR 3	\$3	Interrupt Priority Register 3
IPR 4	\$4	Interrupt Priority Register 4
IPR 5	\$5	Interrupt Priority Register 5
IPR 6	\$6	Interrupt Priority Register 6
IPR 7	\$7	Interrupt Priority Register 7
IPR 8	\$8	Interrupt Priority Register 8
IPR 9	\$9	Interrupt Priority Register 9
VBA	\$A	Vector Base Address Register
FIM0	\$B	Fast Interrupt Match Register 0
FIVAL0	\$C	Fast Interrupt Vector Address Low 0 Register
FIVAH0	\$D	Fast Interrupt Vector Address High 0 Register
FIM1	\$E	Fast Interrupt Match Register 1
FIVAL1	\$F	Fast Interrupt Vector Address Low 1 Register
FIVAH1	\$10	Fast Interrupt Vector Address High 1 Register
IRQP 0	\$11	IRQ Pending Register 0
IRQP 1	\$12	IRQ Pending Register 1
IRQP 2	\$13	IRQ Pending Register 2
IRQP 3	\$14	IRQ Pending Register 3
IRQP 4	\$15	IRQ Pending Register 4
IRQP 5	\$16	IRQ Pending Register 5
		Reserved
ICTL	\$1D	Interrupt Control Register

56F8355 Technical Data, Rev. 17

Register Acronym	Address Offset	Register Description
ADCA_CR 1	\$0	Control Register 1
ADCA_CR 2	\$1	Control Register 2
ADCA_ZCC	\$2	Zero Crossing Control Register
ADCA_LST 1	\$3	Channel List Register 1
ADCA_LST 2	\$4	Channel List Register 2
ADCA_SDIS	\$5	Sample Disable Register
ADCA_STAT	\$6	Status Register
ADCA_LSTAT	\$7	Limit Status Register
ADCA_ZCSTAT	\$8	Zero Crossing Status Register
ADCA_RSLT 0	\$9	Result Register 0
ADCA_RSLT 1	\$A	Result Register 1
ADCA_RSLT 2	\$B	Result Register 2
ADCA_RSLT 3	\$C	Result Register 3
ADCA_RSLT 4	\$D	Result Register 4
ADCA_RSLT 5	\$E	Result Register 5
ADCA_RSLT 6	\$F	Result Register 6
ADCA_RSLT 7	\$10	Result Register 7
ADCA_LLMT 0	\$11	Low Limit Register 0
ADCA_LLMT 1	\$12	Low Limit Register 1
ADCA_LLMT 2	\$13	Low Limit Register 2
ADCA_LLMT 3	\$14	Low Limit Register 3
ADCA_LLMT 4	\$15	Low Limit Register 4
ADCA_LLMT 5	\$16	Low Limit Register 5
ADCA_LLMT 6	\$17	Low Limit Register 6
ADCA_LLMT 7	\$18	Low Limit Register 7
ADCA_HLMT 0	\$19	High Limit Register 0

Table 4-20 Analog-to-Digital Converter Registers Address Map (ADCA_BASE = \$00 F200)

Table 4-20 Analog-to-Digital Converter Registers Address Map (Continued) (ADCA_BASE = \$00 F200)

Register Acronym	Address Offset	Register Description
ADCA_HLMT 1	\$1A	High Limit Register 1
ADCA_HLMT 2	\$1B	High Limit Register 2
ADCA_HLMT 3	\$1C	High Limit Register 3
ADCA_HLMT 4	\$1D	High Limit Register 4
ADCA_HLMT 5	\$1E	High Limit Register 5
ADCA_HLMT 6	\$1F	High Limit Register 6
ADCA_HLMT 7	\$20	High Limit Register 7
ADCA_OFS 0	\$21	Offset Register 0
ADCA_OFS 1	\$22	Offset Register 1
ADCA_OFS 2	\$23	Offset Register 2
ADCA_OFS 3	\$24	Offset Register 3
ADCA_OFS 4	\$25	Offset Register 4
ADCA_OFS 5	\$26	Offset Register 5
ADCA_OFS 6	\$27	Offset Register 6
ADCA_OFS 7	\$28	Offset Register 7
ADCA_POWER	\$29	Power Control Register
ADCA_CAL	\$2A	ADC Calibration Register

Table 4-21 Analog-to-Digital Converter Registers Address Map (ADCB_BASE = \$00 F240)

Register Acronym	Address Offset	Register Description
ADCB_CR 1	\$0	Control Register 1
ADCB_CR 2	\$1	Control Register 2
ADCB_ZCC	\$2	Zero Crossing Control Register
ADCB_LST 1	\$3	Channel List Register 1
ADCB_LST 2	\$4	Channel List Register 2
ADCB_SDIS	\$5	Sample Disable Register
ADCB_STAT	\$6	Status Register
ADCB_LSTAT	\$7	Limit Status Register
ADCB_ZCSTAT	\$8	Zero Crossing Status Register
ADCB_RSLT 0	\$9	Result Register 0
ADCB_RSLT 1	\$A	Result Register 1

Table 4-21 Analog-to-Digital Converter Registers Address Map (Continued) (ADCB_BASE = \$00 F240)

Register Acronym	Address Offset	Register Description
ADCB_RSLT 2	\$B	Result Register 2
ADCB_RSLT 3	\$C	Result Register 3
ADCB_RSLT 4	\$D	Result Register 4
ADCB_RSLT 5	\$E	Result Register 5
ADCB_RSLT 6	\$F	Result Register 6
ADCB_RSLT 7	\$10	Result Register 7
ADCB_LLMT 0	\$11	Low Limit Register 0
ADCB_LLMT 1	\$12	Low Limit Register 1
ADCB_LLMT 2	\$13	Low Limit Register 2
ADCB_LLMT 3	\$14	Low Limit Register 3
ADCB_LLMT 4	\$15	Low Limit Register 4
ADCB_LLMT 5	\$16	Low Limit Register 5
ADCB_LLMT 6	\$17	Low Limit Register 6
ADCB_LLMT 7	\$18	Low Limit Register 7
ADCB_HLMT 0	\$19	High Limit Register 0
ADCB_HLMT 1	\$1A	High Limit Register 1
ADCB_HLMT 2	\$1B	High Limit Register 2
ADCB_HLMT 3	\$1C	High Limit Register 3
ADCB_HLMT 4	\$1D	High Limit Register 4
ADCB_HLMT 5	\$1E	High Limit Register 5
ADCB_HLMT 6	\$1F	High Limit Register 6
ADCB_HLMT 7	\$20	High Limit Register 7
ADCB_OFS 0	\$21	Offset Register 0
ADCB_OFS 1	\$22	Offset Register 1
ADCB_OFS 2	\$23	Offset Register 2
ADCB_OFS 3	\$24	Offset Register 3
ADCB_OFS 4	\$25	Offset Register 4
ADCB_OFS 5	\$26	Offset Register 5
ADCB_OFS 6	\$27	Offset Register 6
ADCB_OFS 7	\$28	Offset Register 7
ADCB_POWER	\$29	Power Control Register
ADCB_CAL	\$2A	ADC Calibration Register

Table 4-22 Temperature Sensor Register Address Map (TSENSOR_BASE = \$00 F270) Temperature Sensor is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
TSENSOR_CNTL	\$0	Control Register

Table 4-23 Serial Communication Interface 0 Registers Address Map (SCI0_BASE = \$00 F280)

Register Acronym	Address Offset	Register Description
SCI0_SCIBR	\$0	Baud Rate Register
SCI0_SCICR	\$1	Control Register
		Reserved
SCI0_SCISR	\$3	Status Register
SCI0_SCIDR	\$4	Data Register

Table 4-24 Serial Communication Interface 1 Registers Address Map (SCI1_BASE = \$00 F290)

Register Acronym	Address Offset	Register Description
SCI1_SCIBR	\$0	Baud Rate Register
SCI1_SCICR	\$1	Control Register
		Reserved
SCI1_SCISR	\$3	Status Register
SCI1_SCIDR	\$4	Data Register

Table 4-25 Serial Peripheral Interface 0 Registers Address Map (SPI0_BASE = \$00 F2A0)

Register Acronym	Address Offset	Register Description
SPI0_SPSCR	\$0	Status and Control Register
SPI0_SPDSR	\$1	Data Size Register
SPI0_SPDRR	\$2	Data Receive Register
SPI0_SPDTR	\$3	Data Transmitter Register

Table 4-26 Serial Peripheral Interface 1 Registers Address Map (SPI1_BASE = \$00 F2B0)

Register Acronym	Address Offset	Register Description
SPI1_SPSCR	\$0	Status and Control Register
SPI1_SPDSR	\$1	Data Size Register
SPI1_SPDRR	\$2	Data Receive Register
SPI1_SPDTR	\$3	Data Transmitter Register

Table 4-27 Computer Operating Properly Registers Address Map (COP_BASE = \$00 F2C0)

Register Acronym	Address Offset	Register Description	
COPCTL	\$0	Control Register	
СОРТО	\$1	Time Out Register	
COPCTR	\$2	Counter Register	

Table 4-28 Clock Generation Module Registers Address Map (CLKGEN_BASE = \$00 F2D0)

Register Acronym	Address Offset	Register Description
PLLCR	\$0	Control Register
PLLDB	\$1	Divide-By Register
PLLSR	\$2	Status Register
		Reserved
SHUTDOWN	\$4	Shutdown Register
OSCTL	\$5	Oscillator Control Register

Register Acronym	Address Offset	Register Description	Reset Value
GPIOA_PUR	\$0	Pullup Enable Register	0 x 3FFF
GPIOA_DR	\$1	Data Register	0 x 0000
GPIOA_DDR	\$2	Data Direction Register	0 × 0000
GPIOA_PER	\$3	Peripheral Enable Register	0 x 3FFF
GPIOA_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOA_IENR	\$5	Interrupt Enable Register	0 × 0000
GPIOA_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOA_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOA_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOA_PPMODE	\$9	Push-Pull Mode Register	0 x 3FFF
GPIOA_RAWDATA	\$A	Raw Data Input Register	

Table 4-29 GPIOA Registers Address Map (GPIOA_BASE = \$00 F2E0)

Table 4-30 GPIOB Registers Address Map (GPIOB_BASE = \$00 F300)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOB_PUR	\$0	Pullup Enable Register	0 x 00FF
GPIOB_DR	\$1	Data Register	0 x 0000
GPIOB_DDR	\$2	Data Direction Register	0 x 0000
GPIOB_PER	\$3	Peripheral Enable Register	0 x 0000
GPIOB_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOB_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOB_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOB_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOB_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOB_PPMODE	\$9	Push-Pull Mode Register	0 x 00FF
GPIOB_RAWDATA	\$A	Raw Data Input Register	—

Register Acronym	Address Offset	Register Description	Reset Value
GPIOC_PUR	\$0	Pullup Enable Register	0 x 07FF
GPIOC_DR	\$1	Data Register	0 x 0000
GPIOC_DDR	\$2	Data Direction Register	0 x 0000
GPIOC_PER	\$3	Peripheral Enable Register	0 x 07FF
GPIOC_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOC_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOC_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOC_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOC_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOC_PPMODE	\$9	Push-Pull Mode Register	0 x 07FF
GPIOC_RAWDATA	\$A	Raw Data Input Register	—

Table 4-31 GPIOC Registers Address Map (GPIOC_BASE = \$00 F310)

Table 4-32 GPIOD Registers Address Map (GPIOD_BASE = \$00 F320)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOD_PUR	\$0	Pullup Enable Register	0 x 1FFF
GPIOD_DR	\$1	Data Register	0 x 0000
GPIOD_DDR	\$2	Data Direction Register	0 x 0000
GPIOD_PER	\$3	Peripheral Enable Register	0 x 1FC0
GPIOD_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOD_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOD_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOD_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOD_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOD_PPMODE	\$9	Push-Pull Mode Register	0 x 1FFF
GPIOD_RAWDATA	\$A	Raw Data Input Register	—

Register Acronym	Address Offset	Register Description	Reset Value
GPIOE_PUR	\$0	Pullup Enable Register	0 x 3FFF
GPIOE_DR	\$1	Data Register	0 x 0000
GPIOE_DDR	\$2	Data Direction Register	0 x 0000
GPIOE_PER	\$3	Peripheral Enable Register	0 x 3FFF
GPIOE_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOE_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOE_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOE_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOE_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOE_PPMODE	\$9	Push-Pull Mode Register	0 x 3FFF
GPIOE_RAWDATA	\$A	Raw Data Input Register	_

Table 4-33 GPIOE Registers Address Map (GPIOE_BASE = \$00 F330)

Table 4-34 GPIOF Registers Address Map (GPIOF_BASE = \$00 F340)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOF_PUR	\$0	Pullup Enable Register	0 x FFFF
GPIOF_DR	\$1	Data Register	0 x 0000
GPIOF_DDR	\$2	Data Direction Register	0 x 0000
GPIOF_PER	\$3	Peripheral Enable Register	0 x FFFF
GPIOF_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOF_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOF_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOF_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOF_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOF_PPMODE	\$9	Push-Pull Mode Register	0 x FFFF
GPIOF_RAWDATA	\$A	Raw Data Input Register	—

Register Acronym	Address Offset	Register Description
SIM_CONTROL	\$0	Control Register
SIM_RSTSTS	\$1	Reset Status Register
SIM_SCR0	\$2	Software Control Register 0
SIM_SCR1	\$3	Software Control Register 1
SIM_SCR2	\$4	Software Control Register 2
SIM_SCR3	\$5	Software Control Register 3
SIM_MSH_ID	\$6	Most Significant Half JTAG ID
SIM_LSH_ID	\$7	Least Significant Half JTAG ID
SIM_PUDR	\$8	Pullup Disable Register
		Reserved
SIM_CLKOSR	\$A	Clock Out Select Register
SIM_GPS	\$B	Quad Decoder 1 / Timer B / SPI 1 Select Register
SIM_PCE	\$C	Peripheral Clock Enable Register
SIM_ISALH	\$D	I/O Short Address Location High Register
SIM_ISALL	\$E	I/O Short Address Location Low Register

Table 4-35 System Integration Module Registers Address Map (SIM_BASE = \$00 F350)

Table 4-36 Power Supervisor Registers Address Map (LVI_BASE = \$00 F360)

Register Acronym	Address Offset	Register Description
LVI_CONTROL	\$0	Control Register
LVI_STATUS	\$1	Status Register

Table 4-37 Flash Module Registers Address Map (FM_BASE = \$00 F400)

Register Acronym	Address Offset	Register Description
FMCLKD	\$0	Clock Divider Register
FMMCR	\$1	Module Control Register
		Reserved
FMSECH	\$3	Security High Half Register
FMSECL	\$4	Security Low Half Register

Register Acronym	Address Offset	Register Description
		Reserved
		Reserved
FMPROT	\$10	Protection Register (Banked)
FMPROTB	\$11	Protection Boot Register (Banked)
		Reserved
FMUSTAT	\$13	User Status Register (Banked)
FMCMD	\$14	Command Register (Banked)
		Reserved
		Reserved
FMOPT 0	\$1A	16-Bit Information Option Register 0 Hot temperature ADC reading of Temperature Sensor; value set during factory test
FMOPT 1	\$1B	16-Bit Information Option Register 1 Not used
FMOPT 2	\$1C	16-Bit Information Option Register 2 Room temperature ADC reading of Temperature Sensor; value set during factory test

Table 4-37 Flash Module Registers Address Map (Continued) (FM_BASE = \$00 F400)

Table 4-38 FlexCAN Registers Address Map (FC_BASE = \$00 F800) FlexCAN is NOT available in the 56F8155 device

Register Acronym	Address Offset	Register Description
FCMCR	\$0	Module Configuration Register
		Reserved
FCCTL0	\$3	Control Register 0 Register
FCCTL1	\$4	Control Register 1 Register
FCTMR	\$5	Free-Running Timer Register
FCMAXMB	\$6	Maximum Message Buffer Configuration Register
		Reserved
FCRXGMASK_H	\$8	Receive Global Mask High Register
FCRXGMASK_L	\$9	Receive Global Mask Low Register
FCRX14MASK_H	\$A	Receive Buffer 14 Mask High Register
FCRX14MASK_L	\$B	Receive Buffer 14 Mask Low Register
FCRX15MASK_H	\$C	Receive Buffer 15 Mask High Register

Register Acronym	Address Offset	Register Description
FCRX15MASK_L	\$D	Receive Buffer 15 Mask Low Register
		Reserved
FCSTATUS	\$10	Error and Status Register
FCIMASK1	\$11	Interrupt Masks 1 Register
FCIFLAG1	\$12	Interrupt Flags 1 Register
FCR/T_ERROR_CNTRS	\$13	Receive and Transmit Error Counters Register
		Reserved
		Reserved
		Reserved
FCMB0_CONTROL	\$40	Message Buffer 0 Control / Status Register
FCMB0_ID_HIGH	\$41	Message Buffer 0 ID High Register
FCMB0_ID_LOW	\$42	Message Buffer 0 ID Low Register
FCMB0_DATA	\$43	Message Buffer 0 Data Register
FCMB0_DATA	\$44	Message Buffer 0 Data Register
FCMB0_DATA	\$45	Message Buffer 0 Data Register
FCMB0_DATA	\$46	Message Buffer 0 Data Register
		Reserved
FCMSB1_CONTROL	\$48	Message Buffer 1 Control / Status Register
FCMSB1_ID_HIGH	\$49	Message Buffer 1 ID High Register
FCMSB1_ID_LOW	\$4A	Message Buffer 1 ID Low Register
FCMB1_DATA	\$4B	Message Buffer 1 Data Register
FCMB1_DATA	\$4C	Message Buffer 1 Data Register
FCMB1_DATA	\$4D	Message Buffer 1 Data Register
FCMB1_DATA	\$4E	Message Buffer 1 Data Register
		Reserved
FCMB2_CONTROL	\$50	Message Buffer 2 Control / Status Register
FCMB2_ID_HIGH	\$51	Message Buffer 2 ID High Register
FCMB2_ID_LOW	\$52	Message Buffer 2 ID Low Register
FCMB2_DATA	\$53	Message Buffer 2 Data Register
FCMB2_DATA	\$54	Message Buffer 2 Data Register
FCMB2_DATA	\$55	Message Buffer 2 Data Register

Register Acronym	Address Offset	Register Description
FCMB2_DATA	\$56	Message Buffer 2 Data Register
		Reserved
FCMB3_CONTROL	\$58	Message Buffer 3 Control / Status Register
FCMB3_ID_HIGH	\$59	Message Buffer 3 ID High Register
FCMB3_ID_LOW	\$5A	Message Buffer 3 ID Low Register
FCMB3_DATA	\$5B	Message Buffer 3 Data Register
FCMB3_DATA	\$5C	Message Buffer 3 Data Register
FCMB3_DATA	\$5D	Message Buffer 3 Data Register
FCMB3_DATA	\$5E	Message Buffer 3 Data Register
		Reserved
FCMB4_CONTROL	\$60	Message Buffer 4 Control / Status Register
FCMB4_ID_HIGH	\$61	Message Buffer 4 ID High Register
FCMB4_ID_LOW	\$62	Message Buffer 4 ID Low Register
FCMB4_DATA	\$63	Message Buffer 4 Data Register
FCMB4_DATA	\$64	Message Buffer 4 Data Register
FCMB4_DATA	\$65	Message Buffer 4 Data Register
FCMB4_DATA	\$66	Message Buffer 4 Data Register
		Reserved
FCMB5_CONTROL	\$68	Message Buffer 5 Control / Status Register
FCMB5_ID_HIGH	\$69	Message Buffer 5 ID High Register
FCMB5_ID_LOW	\$6A	Message Buffer 5 ID Low Register
FCMB5_DATA	\$6B	Message Buffer 5 Data Register
FCMB5_DATA	\$6C	Message Buffer 5 Data Register
FCMB5_DATA	\$6D	Message Buffer 5 Data Register
FCMB5_DATA	\$6E	Message Buffer 5 Data Register
		Reserved
FCMB6_CONTROL	\$70	Message Buffer 6 Control / Status Register
FCMB6_ID_HIGH	\$71	Message Buffer 6 ID High Register
FCMB6_ID_LOW	\$72	Message Buffer 6 ID Low Register
FCMB6_DATA	\$73	Message Buffer 6 Data Register
FCMB6_DATA	\$74	Message Buffer 6 Data Register
FCMB6_DATA	\$75	Message Buffer 6 Data Register
FCMB6_DATA	\$76	Message Buffer 6 Data Register

56F8355 Technical Data, Rev. 17

Register Acronym	Address Offset	Register Description
		Reserved
FCMB7_CONTROL	\$78	Message Buffer 7 Control / Status Register
FCMB7_ID_HIGH	\$79	Message Buffer 7 ID High Register
FCMB7_ID_LOW	\$7A	Message Buffer 7 ID Low Register
FCMB7_DATA	\$7B	Message Buffer 7 Data Register
FCMB7_DATA	\$7C	Message Buffer 7 Data Register
FCMB7_DATA	\$7D	Message Buffer 7 Data Register
FCMB7_DATA	\$7E	Message Buffer 7 Data Register
		Reserved
FCMB8_CONTROL	\$80	Message Buffer 8 Control / Status Register
FCMB8_ID_HIGH	\$81	Message Buffer 8 ID High Register
FCMB8_ID_LOW	\$82	Message Buffer 8 ID Low Register
FCMB8_DATA	\$83	Message Buffer 8 Data Register
FCMB8_DATA	\$84	Message Buffer 8 Data Register
FCMB8_DATA	\$85	Message Buffer 8 Data Register
FCMB8_DATA	\$86	Message Buffer 8 Data Register
		Reserved
FCMB9_CONTROL	\$88	Message Buffer 9 Control / Status Register
FCMB9_ID_HIGH	\$89	Message Buffer 9 ID High Register
FCMB9_ID_LOW	\$8A	Message Buffer 9 ID Low Register
FCMB9_DATA	\$8B	Message Buffer 9 Data Register
FCMB9_DATA	\$8C	Message Buffer 9 Data Register
FCMB9_DATA	\$8D	Message Buffer 9 Data Register
FCMB9_DATA	\$8E	Message Buffer 9 Data Register
		Reserved
FCMB10_CONTROL	\$90	Message Buffer 10 Control / Status Register
FCMB10_ID_HIGH	\$91	Message Buffer 10 ID High Register
FCMB10_ID_LOW	\$92	Message Buffer 10 ID Low Register
FCMB10_DATA	\$93	Message Buffer 10 Data Register
FCMB10_DATA	\$94	Message Buffer 10 Data Register
FCMB10_DATA	\$95	Message Buffer 10 Data Register

Register Acronym	Address Offset	Register Description
FCMB10_DATA	\$96	Message Buffer 10 Data Register
		Reserved
FCMB11_CONTROL	\$98	Message Buffer 11 Control / Status Register
FCMB11_ID_HIGH	\$99	Message Buffer 11 ID High Register
FCMB11_ID_LOW	\$9A	Message Buffer 11 ID Low Register
FCMB11_DATA	\$9B	Message Buffer 11 Data Register
FCMB11_DATA	\$9C	Message Buffer 11 Data Register
FCMB11_DATA	\$9D	Message Buffer 11 Data Register
FCMB11_DATA	\$9E	Message Buffer 11 Data Register
		Reserved
FCMB12_CONTROL	\$A0	Message Buffer 12 Control / Status Register
FCMB12_ID_HIGH	\$A1	Message Buffer 12 ID High Register
FCMB12_ID_LOW	\$A2	Message Buffer 12 ID Low Register
FCMB12_DATA	\$A3	Message Buffer 12 Data Register
FCMB12_DATA	\$A4	Message Buffer 12 Data Register
FCMB12_DATA	\$A5	Message Buffer 12 Data Register
FCMB12_DATA	\$A6	Message Buffer 12 Data Register
		Reserved
FCMB13_CONTROL	\$A8	Message Buffer 13 Control / Status Register
FCMB13_ID_HIGH	\$A9	Message Buffer 13 ID High Register
FCMB13_ID_LOW	\$AA	Message Buffer 13 ID Low Register
FCMB13_DATA	\$AB	Message Buffer 13 Data Register
FCMB13_DATA	\$AC	Message Buffer 13 Data Register
FCMB13_DATA	\$AD	Message Buffer 13 Data Register
FCMB13_DATA	\$AE	Message Buffer 13 Data Register
		Reserved
FCMB14_CONTROL	\$B0	Message Buffer 14 Control / Status Register
FCMB14_ID_HIGH	\$B1	Message Buffer 14 ID High Register
FCMB14_ID_LOW	\$B2	Message Buffer 14 ID Low Register
FCMB14_DATA	\$B3	Message Buffer 14 Data Register
FCMB14_DATA	\$B4	Message Buffer 14 Data Register

Register Acronym	Address Offset	Register Description
FCMB14_DATA	\$B5	Message Buffer 14 Data Register
FCMB14_DATA	\$B6	Message Buffer 14 Data Register
		Reserved
FCMB15_CONTROL	\$B8	Message Buffer 15 Control / Status Register
FCMB15_ID_HIGH	\$B9	Message Buffer 15 ID High Register
FCMB15_ID_LOW	\$BA	Message Buffer 15 ID Low Register
FCMB15_DATA	\$BB	Message Buffer 15 Data Register
FCMB15_DATA	\$BC	Message Buffer 15 Data Register
FCMB15_DATA	\$BD	Message Buffer 15 Data Register
FCMB15_DATA	\$BE	Message Buffer 15 Data Register
		Reserved

4.8 Factory Programmed Memory

4.8.1 Serial Bootloader

The Boot Flash memory block is programmed during manufacturing with a default Serial Bootloader program. The Serial Bootloader application can be used to load a user application into the Program and *Data Flash (NOT available in the 56F8155)* memories of the device. The **56F83xx SCI/CAN Bootloader User Manual (MC56F83xxBLUM)** provides detailed information on this firmware. An application note, **Production Flash Programming (AN1973)**, details how the Serial Bootloader program can be used to perform production Flash programming of the on board flash memories as well as other potential methods.

Like all the Flash memory blocks, the Boot Flash can be erased and programmed by the user. The Serial Bootloader application is programmed as an aid to the end user, but is not required to be used or maintained in the Boot Flash memory.

The Boot Flash memory block also includes the ADC calibration vector.

Part 5 Interrupt Controller (ITCN)

5.1 Introduction

The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in order to service this interrupt.

5.2 Features

The ITCN module design includes these distinctive features:

- Programmable priority levels for each IRQ
- Two programmable Fast Interrupts
- Notification to SIM module to restart clocks out of Wait and Stop modes
- Drives initial address on the address bus after reset

For further information, see Table 4-5, Interrupt Vector Table Contents.

5.3 Functional Description

The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the active interrupt requests for that level. Within a given priority level, 0 is the highest priority, while number 81 is the lowest.

5.3.1 Normal Interrupt Handling

Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the vector number to determine the vector address. In this way, an offset is generated into the vector table for each interrupt.

5.3.2 Interrupt Nesting

Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be serviced. The following tables define the nesting requirements for each priority level.

SR[9] ¹	SR[8] ¹	Permitted Exceptions	Masked Exceptions
0	0	Priorities 0, 1, 2, 3	None
0	1	Priorities 1, 2, 3	Priority 0
1	0	Priorities 2, 3	Priorities 0, 1
1	1	Priority 3	Priorities 0, 1, 2

1. Core status register bits indicating current interrupt mask within the core.

Table 5-2	Interrupt	Priority	Encoding
-----------	-----------	-----------------	----------

IPIC_LEVEL[1:0] ¹	Current Interrupt Priority Level	Required Nested Exception Priority
00	No Interrupt or SWILP	Priorities 0, 1, 2, 3

Current Interrupt Priority Level	Required Nested Exception Priority
Priority 0	Priorities 1, 2, 3
Priority 1	Priorities 2, 3
Priorities 2 or 3	Priority 3
	Priority Level Priority 0 Priority 1

Table 5-2 Interrupt Priority Encoding

1. See IPIC field definition in Part 5.6.30.2

5.3.3 Fast Interrupt Handling

Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes fast interrupts before the core does.

A fast interrupt is defined (to the ITCN) by:

- 1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers
- 2. Setting the FIMn register to the appropriate vector number
- 3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt

When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an offset from the VBA.

The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts its fast interrupt handling.

5.4 Block Diagram

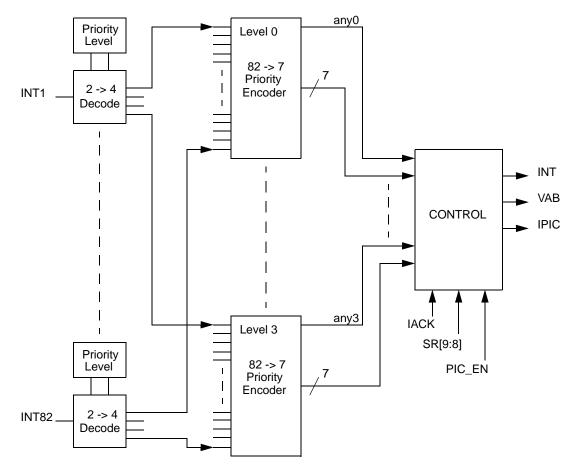


Figure 5-1 Interrupt Controller Block Diagram

5.5 Operating Modes

The ITCN module design contains two major modes of operation:

• Functional Mode

The ITCN is in this mode by default.

• Wait and Stop Modes

During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ can <u>only</u> wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode. Also, the IRQA and IRQB signals automatically become low-level sensitive in these modes even if the control register bits are set to make them falling-edge sensitive. This is because there is no clock available to detect the falling edge.

A peripheral which requires a clock to generate interrupts will not be able to generate interrupts during Stop mode. The FlexCAN module can wake the device from Stop mode, and a reset will do just that, or IRQA and IRQB can wake it up.

5.6 Register Descriptions

A register address is the sum of a base address and an address offset. The base address is defined at the system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.

Register Acronym	Base Address +	Register Name	Section Location
IPR0	\$0	Interrupt Priority Register 0	5.6.1
IPR1	\$1	Interrupt Priority Register 1	5.6.2
IPR2	\$2	Interrupt Priority Register 2	5.6.3
IPR3	\$3	Interrupt Priority Register 3	5.6.4
IPR4	\$4	Interrupt Priority Register 4	5.6.5
IPR5	\$5	Interrupt Priority Register 5	5.6.6
IPR6	\$6	Interrupt Priority Register 6	5.6.7
IPR7	\$7	Interrupt Priority Register 7	5.6.8
IPR8	\$8	Interrupt Priority Register 8	5.6.9
IPR9	\$9	Interrupt Priority Register 9	5.6.10
VBA	\$A	Vector Base Address Register	5.6.11
FIM0	\$B	Fast Interrupt 0 Match Register	5.6.12
FIVAL0	\$C	Fast Interrupt 0 Vector Address Low Register	5.6.13
FIVAH0	\$D	Fast Interrupt 0 Vector Address High Register	5.6.14
FIM1	\$E	Fast Interrupt 1 Match Register	5.6.15
FIVAL1	\$F	Fast Interrupt 1 Vector Address Low Register	5.6.16
FIVAH1	\$10	Fast Interrupt 1 Vector Address High Register	5.6.17
IRQP0	\$11	IRQ Pending Register 0	5.6.18
IRQP1	\$12	IRQ Pending Register 1	5.6.19
IRQP2	\$13	IRQ Pending Register 2	5.6.20
IRQP3	\$14	IRQ Pending Register 3	5.6.21
IRQP4	\$15	IRQ Pending Register 4	5.6.22
IRQP5	\$16	IRQ Pending Register 5	5.6.23
Reserved			
ICTL	\$1D	Interrupt Control Register	5.6.30

Table 5-3 ITCN Register Summary (ITCN_BASE = \$00F1A0)

Table 5-3 ITCN Register Summary (ITCN_BASE = \$00F1A0) (Continued)

	Regist Acrony		Base Address + Register Name Section Lo									Loca	tion									
Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
\$0	IPR0	R W	0	0	BKPT_	U0 IPL	STPC	NT IPL	0	0	0	0	0	0	0	0	0	0				
\$1	IPR1	R W	0	0	0	0	0	0	0	0	0	0	RX_RE	G IPL	TX_REG IPL		TRB	UF IPL				
\$2	IPR2	R W	FMCE	BE IPL	FMC	C IPL	FMEF	RR IPL	LOC	K IPL	LVI	IPL	0 0		IRQ	IRQB IPL		A IPL				
\$3	IPR3	R W		IOD PL		IOE PL		IOF PL	FCMSG	BUF IPL	FCWK	UP IPL	FCERF	RIPL	FCBO	FF IPL	0	0				
\$4	IPR4	R W	SPI0_F	RCV IPL	SPI1_X	MIT IPL		_RCV PL	0	0	0	0	GPIOA IPL		GPIOA IPL		PL GPIOB IPL		GPI	OC IPL		
\$5	IPR5	R W	DEC1_>	(IRQ IPL	DEC1_H	HRQ IPL	SCI1	_RCV PL	SCI1_R	ERR IPL	0	0	SCI1_TIDL IPL S		SCI1_TIDL IPL		SCI1_TIDL IPL		.IPL SCI1_XMIT IP		SPI0_2	XMIT IPL
\$6	IPR6	R W	TMRC	CO IPL	TMRI	03 IPL	TMRI	D2 IPL	TMRI	D1 IPL	TMR	D0 IPL	0 0 DE		0 0		0 0		DEC0_>	DEC0_	HIRQ IPL	
\$7	IPR7	R W	TMRA	A0 IPL	TMRB3 IPL			32 IPL	TMR	31 IPL	TMRB0 IPL		TMRC3 IPL		TMRC2 IPL		IPL TMRC1 I					
\$8	IPR8	R W	SCI0_F	RCV IPL	SCI0_R	ERR IPL	0	0	SCI0_TIDL IPL		SCI0_XMIT IPL		TMRA3 IPL		TMRA2 IPL		TMRA1 IPI					
\$9	IPR9	R W	PWMA	_F IPL	PWME	3_F IPL		IA_RL PL	PWMB	_RL IPL	ADCA_	_ZC IPL	ABCB_Z	_		_CC IPL	ADCB	_CC IPL				
\$A	VBA	R	0	0	0						VECTO	R BASE	ADDRESS									
•		W					~															
\$B	VBA0	RW	0	0	0	0	0	0	0	0	0			FAST	INTERR	UPT 0						
\$C	FIVAL0	R W						FAS	T INTER	RUPT 0 \	ECTOR	ADDRES	SS LOW									
\$D	FIVAH0	R W	0	0	0	0	0	0	0	0	0	0	0			T INTERF R ADDRE		н				
\$E	FIM1	R W	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0			FAST	INTERR	UPT 1						
\$F	FIVAL1	R W								FAST IN CTOR A												
\$10	FIVAH1	R W	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	FAST INTERRUPT 1 VECTOR ADDRESS HIGH								
\$11	IRQP0	R W							PE	NDING [16:2]					1						
\$12	IRQP1	R W								PENDI	NG [32:1]	7]										
\$13	IRQP2	R W								PENDI	NG [48:3:	3]										

Figure 5-2 ITCN Register Map Summary

Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$14	IRQP3	R								PENDI	NG [64:49	9]						
Ψ14	inter 5	W																
\$15	IRQP4	R								PENDI	VG [80:65	5]						
φ15	II/QF4	W																
\$16	IRQP5	R	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
		W																
	Reserved																	
\$1D	ICTL	R	INT	IF	PIC				VAB				INT_DIS	1	IRQB STATE	IRQA STATE	IRQB EDG	IRQA EDG
		W															250	200

= Reserved

5.6.1 Interrupt Priority Register 0 (IPR0)

Base + \$0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	BKPT		STPCI		0	0	0	0	0	0	0	0	0	0
Write			DRF1_		3170											
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-3 Interrupt Priority Register 0 (IPR0)

5.6.1.1 Reserved—Bits 15–14

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.1.2 EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)— Bits13–12

This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.3 EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.

It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.4 Reserved—Bits 9–0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.2 Interrupt Priority Register 1 (IPR1)

Base + \$1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	RX_RI				тррі	
Write												EG IFL	TX_REG IPL		TRBUF IPL	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-4 Interrupt Priority Register 1 (IPR1)

5.6.2.1 Reserved—Bits 15–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.2.2 EOnCE Receive Register Full Interrupt Priority Level (RX_REG IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.2.3 EOnCE Transmit Register Empty Interrupt Priority Level (TX_REG IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2

• 11 = IRQ is priority level 3

5.6.2.4 EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)— Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.3 Interrupt Priority Register 2 (IPR2)

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	EMCE		FMC		FMERR IPL				1.1/1	IDI	0	0	IRQ	וסו פ	IRQ	
Write	FMCBE IPL		FIVIC				LOCK IPL		LVI IPL						INQA	
RESET	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-5 Interrupt Priority Register 2 (IPR2)

5.6.3.1 Flash Memory Command, Data, Address Buffers Empty Interrupt Priority Level (FMCBE IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.2 Flash Memory Command Complete Priority Level (FMCC IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.3 Flash Memory Error Interrupt Priority Level (FMERR IPL)—Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.4 PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.5 Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.6 Reserved—Bits 5-4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.3.7 External IRQ B Interrupt Priority Level (IRQB IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0

- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.8 External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4 Interrupt Priority Register 3 (IPR3)

Base + \$3	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	GRIO	D IPL	GRIO		GRIC		ECMSG		ECWK		ECER	FCERR IPL		FCBOFF IPL		0
Write	GFIO		GFIO		GPIOFIPL		T CIVISO	FCMSGBUF IPL		FCWKUP IPL			I CBO			
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-6 Interrupt Priority Register 3 (IPR3)

5.6.4.1 GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.2 GPIOE Interrupt Priority Level (GPIOE IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.3 GPIOF Interrupt Priority Level (GPIOF IPL)—Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

• 00 = IRQ disabled (default)

- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.4 FlexCAN Message Buffer Interrupt Priority Level (FCMSGBUF IPL)—Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.5 FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)— Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.6 FlexCAN Error Interrupt Priority Level (FCERR IPL)— Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.7 FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)— Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1

• 11 = IRQ is priority level 2

5.6.4.8 Reserved—Bits 1–0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.5 Interrupt Priority Register 4 (IPR4)

Base + \$4	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	SPI0	_RCV	SPI1_	_XMIT			0	0	0	0	GRIO	A IPL	GPIO		GPIO	
Write	1	۶L	IF	۳L	IF	۳L					GFIC		GFIO	DIFL	GFIO	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-7 Interrupt Priority Register 4 (IPR4)

5.6.5.1 SPI0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)— Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.2 SPI1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.3 SPI1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.4 Reserved—Bits 9–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.5.5 GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.6 GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.7 GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6 Interrupt Priority Register 5 (IPR5)

Base + \$5	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	DEC1	_XIRQ	DEC1	DEC1_HIRQ IPL		_RCV	SCI1_	RERR	0	0	SCI1	TIDL	SCI1_	XMIT	SPI0_	_XMIT
Write	IF	۳L	IF			Ľ	IF	Ľ			IF	Ľ	IF	Ľ	IF	۳L
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-8 Interrupt Priority Register 5 (IPR5)

5.6.6.1 Quadrature Decoder 1 INDEX Pulse Interrupt Priority Level (DEC1_XIRQ IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.2 Quadrature Decoder 1 HOME Signal Transition or Watchdog Timer Interrupt Priority Level (DEC1_HIRQ IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.3 SCI1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.4 SCI1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)— Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.5 Reserved—Bits 7–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.6.6 SCI1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)— Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.7 SCI1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)— Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.8 SPI0 Transmitter Empty Interrupt Priority Level (SPI_XMIT IPL)— Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7 Interrupt Priority Register 6 (IPR6)

Base + \$6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	TMRC	ופו הכ	TMR	וםו גי	TMRE	וםו כנ	TMRE		TMRE		0	0	DEC0	_XIRQ	DEC0	_HIRQ
Write			TIVIT	JUL	TIVITE		TWINE		TWINE				IF	ռ	IF	۳L
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-9 Interrupt Priority Register 6 (IPR6)

5.6.7.1 Timer C, Channel 0 Interrupt Priority Level (TMRC0 IPL)— Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.2 Timer D, Channel 3 Interrupt Priority Level (TMRD3 IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.3 Timer D, Channel 2 Interrupt Priority Level (TMRD2 IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.4 Timer D, Channel 1 Interrupt Priority Level (TMRD1 IPL)— Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.5 Timer D, Channel 0 Interrupt Priority Level (TMRD0 IPL)— Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.6 Reserved—Bits 5-4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.7.7 Quadrature Decoder 0, INDEX Pulse Interrupt Priority Level (DEC0_XIRQ IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.8 Quadrature Decoder 0, HOME Signal Transition or Watchdog Timer Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8 Interrupt Priority Register 7 (IPR7)

Base + \$7	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	TMD	A0 IPL	тире	TMRB3 IPL		32 IPL	TMRE	וחו 1	TMRE	וחו	TMRC	וחו כי	TMRC	וחו כי	TMDC	C1 IPL
Write				TMRB3 IPL			TIVIRE					5 IFL	INIKC		TWICC)
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-10 Interrupt Priority Register (IPR7)

56F8355 Technical Data, Rev. 17

5.6.8.1 Timer A, Channel 0 Interrupt Priority Level (TMRA0 IPL)— Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.2 Timer B, Channel 3 Interrupt Priority Level (TMRB3 IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.3 Timer B, Channel 2 Interrupt Priority Level (TMRB2 IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.4 Timer B, Channel 1 Interrupt Priority Level (TMRB1 IPL)—Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.5 Timer B, Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.6 Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.7 Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.8 Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9 Interrupt Priority Register 8 (IPR8)

Base + \$8	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	SCI0	_RCV	SCI0_RERR		0	0	SCI0	_TIDL	SCI0_	_XMIT	TMRA	וחו מ	TMRA	וחו גע	TMRA	
Write	IF	۶L					IF	۲L	IF	۳L	I WIK	A3 IPL	I IVIR <i>F</i>	AZ IPL	T WIR	AT IPL
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-11 Interrupt Priority Register 8 (IPR8)

5.6.9.1 SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)— Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.2 SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.3 Reserved—Bits 11–10

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.9.4 SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)— Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.5 SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)— Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.6 Timer A, Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.7 Timer A, Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.8 Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10 Interrupt Priority Register 9 (IPR9)

Base + \$9	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		FIPL		-		A_RL	PWM	B_RL		ZC IPL	ARCR		ADC	A_CC	ADCE	B_CC
Write				PWMB_F IPL		۳L	IF	Ľ	ADCA_	_20 IF L	ADCD_		IF	Ľ	IP	۲L
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-12 Interrupt Priority Register 9 (IPR9)

5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

• 00 = IRQ disabled (default)

- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.4 Reload PWM B Interrupt Priority Level (PWMB_RL IPL)—Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.5 ADC A Zero Crossing or Limit Error Interrupt Priority Level (ADCA_ZC IPL)—Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

Register Descriptions

5.6.10.6 ADC B Zero Crossing or Limit Error Interrupt Priority Level (ADCB_ZC IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.7 ADC A Conversion Complete Interrupt Priority Level (ADCA_CC IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.8 ADC B Conversion Complete Interrupt Priority Level (ADCB_CC IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.11 Vector Base Address Register (VBA)

Base + \$A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0					V	ECTOR	BASE A		<u>د</u>				
Write								v	ECTOR	DAGE P	DDRES	3				
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-13 Vector Base Address Register (VBA)

5.6.11.1 Reserved—Bits 15-13

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)— Bits 12–0

The contents of this register determine the location of the Vector Address Table. The value in this register is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower eight bits are determined based upon the highest-priority interrupt. They are then appended onto VBA before presenting the full interrupt address to the 56800E core; see **Part 5.3.1** for details.

5.6.12 Fast Interrupt 0 Match Register (FIM0)

Base + \$B	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0			EAST	INTERR			
Write												1 431		UFIU		
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-14 Fast Interrupt 0 Match Register (FIM0)

5.6.12.1 Reserved—Bits 15–7

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0

This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a service routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table first; see **Part 5.3.3**. IRQs used as fast interrupts *must* be set to priority level 2. Unexpected results will occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to **Table 4-5**.

5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0)

Base + \$C	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		FAST INTERRUPT 0 VECTOR ADDRESS LOW														
Write																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0)

5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0

The lower 16 bits of the vector address are used for Fast Interrupt 0. This register is combined with FIVAH0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.

5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0)

Base + \$D	15	14	13	12	11	10	9	8	7	6	5	4	3 2 1 0 FAST INTERRUPT 0 ECTOR ADDRESS HIGH 0 0 0 0				
Read	0	0	0	0	0	0	0	0	0	0	0	FAST INTERRUPT 0 VECTOR ADDRESS HIGH					
Write												V					
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0)

5.6.14.1 Reserved—Bits 15-5

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0

The upper five bits of the vector address are used for Fast Interrupt 0. This register is combined with FIVAL0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.

5.6.15 Fast Interrupt 1 Match Register (FIM1)

Base + \$E	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Read	0	0	0	0	0	0	0	0	0			EAST						
Write										FAST INTERRUPT 1								
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Figure 5-17 Fast Interrupt 1 Match Register (FIM1)

5.6.15.1 Reserved—Bits 15–7

This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing.

5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0

This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a service routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table first; see **Part 5.3.3**. IRQs used as fast interrupts *must* be set to priority level 2. Unexpected results will occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared as fast interrupt. Fast interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to Table 4-5.

5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1)

Base + \$F	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FAST INTERRUPT 1 VECTOR ADDRESS LOW														
Read																
Write																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1)

5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0

The lower 16 bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAH1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.

5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1)

Base + \$10	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	0		FAST	INTERR	UPT 1	
Write												V	ECTOR	ADDRE	SS HIG	Н
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1)

5.6.17.1 Reserved—Bits 15–5

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0

The upper five bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAL1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.

5.6.18 IRQ Pending 0 Register (IRQP0)

Base + \$11	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read							PEN	IDING [1	6:2]							1
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-20 IRQ Pending 0 Register (IRQP0)

5.6.18.1 IRQ Pending (PENDING)—Bits 16–2

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number

5.6.18.2 Reserved—Bit 0

This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.

5.6.19 IRQ Pending 1 Register (IRQP1)

\$Base + \$12	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read							F	PENDIN	G [32:17]						
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-21 IRQ Pending 1 Register (IRQP1)

5.6.19.1 IRQ Pending (PENDING)—Bits 32–17

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number

5.6.20 IRQ Pending 2 Register (IRQP2)

Base + \$13	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read							F	PENDIN	G [48:33]						
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-22 IRQ Pending 2 Register (IRQP2)

5.6.20.1 IRQ Pending (PENDING)—Bits 48–33

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number

5.6.21 IRQ Pending 3 Register (IRQP3)

Base + \$14	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read							F	PENDIN	G [64:49]						
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-23 IRQ Pending 3 Register (IRQP3)

5.6.21.1 IRQ Pending (PENDING)—Bits 64–49

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number

5.6.22 IRQ Pending 4 Register (IRQP4)

Base + \$15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read							F	PENDIN	G [80:65]						
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-24 IRQ Pending 4 Register (IRQP4)

5.6.22.1 IRQ Pending (PENDING)—Bits 80–65

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 =No IRQ pending for this vector number

5.6.23 IRQ Pending 5 Register (IRQP5)

Base + \$16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-25 IRQ Pending Register 5 (IRQP5)

5.6.23.1 Reserved—Bits 96-82

This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.

5.6.23.2 IRQ Pending (PENDING)—Bit 81

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number
- 5.6.24 Reserved—Base + 17
- 5.6.25 Reserved—Base + 18
- 5.6.26 Reserved—Base + 19
- 5.6.27 Reserved—Base + 1A
- 5.6.28 Reserved—Base + 1B
- 5.6.29 Reserved—Base + 1C

5.6.30 ITCN Control Register (ICTL)

Base + \$1D	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	INT	IP	IC				VAB				INT_DIS	1	IRQB STATE	IRQA STATE	IRQB	IRQA
Write															EDG	EDG
RESET	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0	0

Figure 5-26 ITCN Control Register (ICTL)

5.6.30.1 Interrupt (INT)—Bit 15

This *read-only* bit reflects the state of the interrupt to the 56800E core.

- 0 = No interrupt is being sent to the 56800E core
- 1 = An interrupt is being sent to the 56800E core

5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13

These *read-only* bits reflect the state of the new interrupt priority level bits being presented to the 56800E core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new interrupt service routine.

Note: Nested interrupts may cause this field to be updated before the original interrupt service routine can read it.

- 00 = Required nested exception priority levels are 0, 1, 2, or 3
- 01 = Required nested exception priority levels are 1, 2, or 3
- 10 = Required nested exception priority levels are 2 or 3

56F8355 Technical Data, Rev. 17

• 11 = Required nested exception priority level is 3

5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6

This *read-only* field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new interrupt service routine.

Note: Nested interrupts may cause this field to be updated before the original interrupt service routine can read it.

5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5

This bit allows all interrupts to be disabled.

- 0 = Normal operation (default)
- 1 = All interrupts disabled

5.6.30.5 Reserved—Bit 4

This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.

5.6.30.6 IRQB State Pin (IRQB STATE)—Bit 3

This *read-only* bit reflects the state of the external IRQB pin.

5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2

This *read-only* bit reflects the state of the external \overline{IRQA} pin.

5.6.30.8 IRQB Edge Pin (IRQB Edg)—Bit 1

This bit controls whether the external IRQB interrupt is edge or level sensitive. During Stop and Wait modes, it is automatically level sensitive.

- $0 = \overline{IRQB}$ interrupt is a low-level sensitive (default)
- $1 = \overline{IRQB}$ interrupt is falling-edge sensitive.

5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0

This bit controls whether the external \overline{IRQA} interrupt is edge- or level-sensitive. During Stop and Wait modes, it is automatically level-sensitive.

- $0 = \overline{IRQA}$ interrupt is a low-level sensitive (default)
- $1 = \overline{IRQA}$ interrupt is falling-edge sensitive.

5.7 Resets

5.7.1 Reset Handshake Timing

The ITCN provides the 56800E core with a reset vector address whenever $\overline{\text{RESET}}$ is asserted. The reset vector will be presented until the second rising clock edge after $\overline{\text{RESET}}$ is released.

5.7.2 ITCN After Reset

After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled except the core IRQs with fixed priorities:

- Illegal Instruction
- SW Interrupt 3
- HW Stack Overflow
- Misaligned Long Word Access
- SW Interrupt 2
- SW Interrupt 1
- SW Interrupt 0
- SW Interrupt LP

These interrupts are enabled at their fixed priority levels.

Part 6 System Integration Module (SIM)

6.1 Overview

The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls distribution of resets and clocks and provides a number of control features. The system integration module is responsible for the following functions:

- Reset sequencing
- Clock generation & distribution
- Stop/Wait control
- Pullup enables for selected peripherals
- System status registers
- Registers for software access to the JTAG ID of the chip
- Enforcing Flash security

These are discussed in more detial in the sections that follow.

6.2 Features

The SIM has the following features:

- Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory
- Power-saving clock gating for peripheral
- Three power modes (Run, Wait, Stop) to control power utilization
 - Stop mode shuts down the 56800E core, system clock, peripheral clock, and PLL operation
 - Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be explicitly done
 - Wait mode shuts down 56800E core and unnecessary system clock operation
 - Run mode supports full part operation
- Controls to enable/disable the 56800E core WAIT and STOP instructions
- Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will be 3 x 32 clocks (phased release of reset) for reset, except for POR, which is 2²¹ clock cycles.
- Controls reset sequencing after reset
- Software-initiated reset
- Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control
- System Control Register
- Registers for software access to the JTAG ID of the chip

6.3 Operating Modes

Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the various chip operating modes and take appropriate action. These are:

56F8355 Technical Data, Rev. 17

- **Reset Mode,** which has two submodes:
 - POR and RESET operation
 The 56800E core and all peripherals are reset. This occurs when the internal POR is asserted or the RESET pin is asserted.
 - COP reset and software reset operation
 The 56800E core and all peripherals are reset. The MA bit within the OMR is not changed. This allows the software to determine the boot mode (internal or external boot) to be used on the next reset.
- Run Mode

This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation

• Debug Mode

The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP and PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to disable any motor from being driven; see the PWM chapter in the **56F8300 Peripheral User Manual** for details.

• Wait Mode

In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped. Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other peripherals continue to run.

• Stop Mode

When in Stop mode, the 56800E core, memory and most peripheral clocks are shut down. Optionally, the COP and CAN can be stopped. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. The CAN (along with any non-gated interrupt) is capable of waking the chip up from Stop mode, but is not fully functional in Stop mode.

6.4 Operating Mode Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	NL							СМ	XP	SD	R	SA	EX	0	MB	MA
Туре	R/W							R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х

Figure 6-1 OMR

The reset state for MB and MA will depend on the Flash secured state. See **Part 4.2** and **Part 7** for detailed information on how the Operating Mode Register (OMR) MA and MB bits operate in this device. For additional information on the EX bit, see **Part 4.4**. For all other bits, see the **DSP56800E Reference Manual**.

Note: The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR.

6.5 Register Descriptions

Address Offset	Address Acronym	Register Name	Section Location
Base + \$0	SIM_CONTROL	Control Register	6.5.1
Base + \$1	SIM_RSTSTS	Reset Status Register	6.5.2
Base + \$2	SIM_SCR0	Software Control Register 0	6.5.3
Base + \$3	SIM_SCR1	Software Control Register 1	6.5.3
Base + \$4	SIM_SCR2	Software Control Register 2	6.5.3
Base + \$5	SIM_SCR3	Software Control Register 3	6.5.3
Base + \$6	SIM_MSH_ID	Most Significant Half of JTAG ID	6.5.4
Base + \$7	SIM_LSH_ID	Least Significant Half of JTAG ID	6.5.5
Base + \$8	SIM_PUDR	Pullup Disable Register	6.5.6
		Reserved	
Base + \$A	SIM_CLKOSR	CLKO Select Register	6.5.7
Base + \$B	SIM_GPS	GPIO Peripheral Select Register	6.5.8
Base + \$C	SIM_PCE	Peripheral Clock Enable Register	6.5.9
Base + \$D	SIM_ISALH	I/O Short Address Location High Register	6.5.10
Base + \$E	SIM_ISALL	I/O Short Address Location Low Register	6.5.10

Table 6-1 SIM Registers (SIM_BASE = \$00 F350)

NP				7	
		Δ	\mathbf{A}		

Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$0	SIM_ CONTROL	R	0	0	0	0	0	0	0	0	0	0	ONCE	SW RST	STO DISA	DP_		AT_ ABLE
		W											EBL	K21	DISA	ABLE		
\$1	SIM_ RSTSTS	R W	0	0	0	0	0	0	0	0	0	0	SWR	COPR	EXTR	POR	0	0
		R																
\$2	SIM_SCR0	W								FIE	ELD							
\$3	SIM_SCR1	R W								FIE	ELD							
\$4	SIM_SCR2	R W								FIE	ELD							
\$5	SIM_SCR3	R W								FIE	ELD							
\$6	SIM_MSH_ ID	R W	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0
		R	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1
\$7	SIM_LSH_ID	W	0		0	0	0	0	0	0	0	0	0	-			0	
\$8	SIM_PUDR	R W	0	PWMA1	CAN	EMI_ MODE	RESET	IRQ	хвоот	PWMB	PWMA0	0	CTRL	0	JTAG	0	0	0
	Reserved																	
\$A	SIM	R	0	0	0	0	0	0	A23	A22	A21	A20	CLKDIS		(CLKOSE		
φ/ τ	CLKOSR	W							-			-					-	-
\$B	SIM_GPS	R	0	0	0	0	0	0	0	0	0	0	0	0	C3	C2	C1	C0
		W																
\$C	SIM_PCE	R W	EMI	ADCB	ADCA	CAN	DEC1	DEC 0	TMRD	TMRC	TMRB	TMRA	SCI1	SCI0	SPI1	SPI0	PWMB	PWMA
\$D	SIM ISALH	R	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ISALI	23:22]
		W															- · · - [1
\$E	SIM_ISALL	R W								ISAL	[21:6]							

= Reserved

Figure 6-2 SIM Register Map Summary

6.5.1 SIM Control Register (SIM_CONTROL)

Base + \$0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	ONCE	SW	STOP_ DISABLE		WAIT_ DISABLE	
Write											EBL	RST				
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-3 SIM Control Register (SIM_CONTROL)

6.5.1.1 Reserved—Bits 15–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.1.2 OnCE Enable (OnCE EBL)—Bit 5

- 0 = OnCE clock to 56800E core enabled when core TAP is enabled
- 1 = OnCE clock to 56800E core is always enabled

6.5.1.3 Software Reset (SWRST)—Bit 4

This bit is always read as 0. Writing 1 to this field will cause the part to reset.

6.5.1.4 Stop Disable (STOP_DISABLE)—Bits 3–2

- 00 STOP mode will be entered when the 56800E core executes a STOP instruction
- 01 The 56800E STOP instruction will not cause entry into Stop mode; stop_disable can be reprogrammed in the future
- 10 The 56800E STOP instruction will not cause entry into Stop mode; stop_disable can then only be changed by resetting the device
- 11 Same operation as 10

6.5.1.5 Wait Disable (WAIT_DISABLE)—Bits 1–0

- 00 WAIT mode will be entered when the 56800E core executes a WAIT instruction
- 01 The 56800E WAIT instruction will not cause entry into Wait mode; wait_disable can be reprogrammed in the future
- 10 The HawkV2 WAIT instruction will not cause entry into Wait mode; wait_disable can then only be changed by resetting the device
- 11 Same operation as 10

6.5.2 SIM Reset Status Register (SIM_RSTSTS)

Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A reset (other than POR) will only set bits in the register; bits are not cleared. Only software should clear this register.

Base + \$1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	SWR	COPR	EXTR	POR	0	0
Write											SWK	COFK	LAIR	FUR		
RESET	0	0	0	0	0	0	0	0	0	0					0	0

Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)

6.5.2.1 Reserved—Bits 15–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.2.2 Software Reset (SWR)—Bit 5

When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SW RST bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.

6.5.2.3 COP Reset (COPR)—Bit 4

When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.

6.5.2.4 External Reset (EXTR)—Bit 3

If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit position will clear it. Basically, when the EXTR bit is 1, the previous system reset was caused by the external RESET pin being asserted low.

6.5.2.5 Power-On Reset (POR)—Bit 2

When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can be cleared only by software or by another type of reset. Writing a 0 to this bit will set the bit, while writing a 1 to the bit position will clear the bit. In summary, if the bit is 1, the previous system reset was due to a Power-On Reset.

6.5.2.6 Reserved—Bits 1–0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.3 SIM Software Control Registers (SIM_SCR0, SIM_SCR1, SIM_SCR2, and SIM_SCR3)

Only SIM_SCR0 is shown below. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in functionality.

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read								FIEL								
Write									D							
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)

6.5.3.1 Software Control Data 1 (FIELD)—Bits 15–0

This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is intended for use by a software developer to contain data that will be unaffected by the other reset sources (RESET pin, software reset, and COP reset).

6.5.4 Most Significant Half of JTAG ID (SIM_MSH_ID)

This read-only register displays the most significant half of the JTAG ID for the chip. This register reads \$01F4.

Base + \$6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0
Write																
RESET	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0

Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)

6.5.5 Least Significant Half of JTAG ID (SIM_LSH_ID)

This read-only register displays the least significant half of the JTAG ID for the chip. This register reads \$601D.

Base + \$7	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	1	1	0	0	0	0	0	0	0	0	1	1	1	0	1
Write																
RESET	0	1	1	0	0	0	0	0	0	0	0	1	1	1	0	1

Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)

6.5.6 SIM Pullup Disable Register (SIM_PUDR)

Most of the pins on the chip have on-chip pullup resistors. Pins which can operate as GPIO can have these resistors disabled via the GPIO function. Non-GPIO pins can have their pullups disabled by setting the appropriate bit in this register. Disabling pullups is done on a peripheral-by-peripheral basis (for pins not muxed with GPIO). Each bit in the register (see Figure 6-8) corresponds to a functional group of pins. See

Table 2-2 to identify which pins can deactivate the internal pullup resistor.

Base + \$8	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	PWMA1	CAN	EMI_	RESET	IRQ	XBOOT	PWMB	PWMA0	0	CTRL	0	JTAG	0	0	0
Write			0AN	MODE	NEOL I	ii (Q	XB001		1 WINAU		OTIL		3170			
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-8 SIM Pullup Disable Register (SIM_PUDR)

6.5.6.1 Reserved—Bit 15

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.6.2 **PWMA1—Bit 14**

This bit controls the pullup resistors on the FAULTA3 pin.

6.5.6.3 CAN—Bit 13

This bit controls the pullup resistors on the CAN_RX pin.

6.5.6.4 EMI_MODE—Bit 12

This bit controls the pullup resistors on the EMI_MODE pin

Note: In this package, this input pin is double-bonded with the adjacent V_{SS} pin and this bit should be changed to a 1 in order to reduce power consumption.

6.5.6.5 RESET—Bit 11

This bit controls the pullup resistors on the $\overline{\text{RESET}}$ pin.

6.5.6.6 IRQ—Bit 10

This bit controls the pullup resistors on the \overline{IRQA} and \overline{IRQB} pins.

6.5.6.7 XBOOT—Bit 9

This bit controls the pullup resistors on the EXTBOOT pin.

Note: In this package, this input pin is double-bonded with the adjacent V_{SS} pin and this bit should be changed to a 1 in order to reduce power consumption.

6.5.6.8 **PWMB**—Bit 8

This bit controls the pullup resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3 pins.

6.5.6.9 PWMA0—Bit 7

This bit controls the pullup resistors on the FAULTA0, FAULTA1, and FAULTA2 pins.

6.5.6.10 Reserved—Bit 6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.6.11 CTRL—Bit 5

This bit controls the pullup resistors on the \overline{WR} and \overline{RD} pins.

6.5.6.12 Reserved—Bit 4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.6.13 JTAG—Bit 3

This bit controls the pullup resistors on the $\overline{\text{TRST}}$, TMS and TDI pins.

6.5.6.14 Reserved—Bit 2–0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.7 CLKO Select Register (SIM_CLKOSR)

The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock generation and SIM modules. The default value is SYS_CLK. This path has been optimized in order to minimize any delay and clock duty cycle distortion. All other clocks primarily muxed out are for test purposes only, and are subject to significant phase shift at high frequencies.

The upper four bits of the GPIOB register can function as GPIO, A[23:20], or as additional clock output signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIOB[7:4] are programmed to operate as peripheral outputs, then the choice between A[23:20] and additional clock outputs is done here in the CLKOSR. The default state is for the peripheral function of GPIOB[7:4] to be programmed as A[23:20]. This can be changed by altering A[23:20], as shown in **Figure 6-9**.

Base + \$A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	A23	A22	A21	A20	CLK		C	LKOSEL		
Write							A23	AZZ	AZ I	A20	DIS			LNUGLI	-	
RESET	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

Figure 6-9 CLKO Select Register (SIM_CLKOSR)

6.5.7.1 Reserved—Bits 15–10

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.7.2 Alternate GPIOB Peripheral Function for A23 (A23)—Bit 9

• 0 = Peripheral output function of GPIOB7 is defined to be A23

• 1 = Peripheral output function of GPIOB7 is defined to be the oscillator clock (MSTR_OSC, see Figure 3-4)

6.5.7.3 Alternate GPIOB Peripheral Function for A22 (A22)—Bit 8

- 0 = Peripheral output function of GPIOB6 is defined to be A22
- 1 = Peripheral output function of GPIOB6 is defined to be SYS_CLK2

6.5.7.4 Alternate GPIOB Peripheral Function for A21 (A21)—Bit 7

- 0 = Peripheral output function of GPIOB5 is defined to be A21
- 1 = Peripheral output function of GPIOB5 is defined to be SYS_CLK

6.5.7.5 Alternate GPIOB Peripheral Function for A20 (A20)—Bit 6

- 0 = Peripheral output function of GPIOB4 is defined to be A20
- 1 = Peripheral output function of GPIOB4 is defined to be the prescaler clock

6.5.7.6 Clockout Disable (CLKDIS)—Bit 5

- 0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL
- 1 = CLKOUT is tri-stated

6.5.7.7 CLockout Select (CLKOSEL)—Bits 4–0

Selects clock to be muxed out on the CLKO pin.

- 00000 = SYS_CLK (from OCCS DEFAULT)
- 00001 = Reserved for factory test—56800E clock
- 00010 = Reserved for factory test—XRAM clock
- 00011 = Reserved for factory test—PFLASH odd clock
- 00100 = Reserved for factory test—PFLASH even clock
- 00101 = Reserved for factory test—BFLASH clock
- 00110 = Reserved for factory test—DFLASH clock
- 00111 = Oscillator output
- $01000 = F_{out}$ (from OCCS)
- 01001 = Reserved for factory test—IPB clock
- 01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)
- 01011 = Reserved for factory test—Prescaler clock (from OCCS)
- 01100 = Reserved for factory test—Postscaler clock (from OCCS)
- 01101 = Reserved for factory test—SYS_CLK2 (from OCCS)
- 01110 = Reserved for factory test—SYS_CLK_DIV2
- 01111 = Reserved for factory test—SYS_CLK_D
- 10000 = ADCA clock
- 10001 = ADCB clock

6.5.8 GPIO Peripheral Select Register (SIM_GPS)

The GPIO Peripheral Select register can be used to multiplex out any one of the three alternate peripherals for GPIOC. The default peripheral is *Quad Decoder 1* and *Quad Decoder 1*, (NOT available in the 56F8155 device); these peripherals work together.

The four I/O pins associated with GPIOC can function as GPIO, *Quad Decoder 1/Quad Decoder 1*, or as SPI 1 signals. GPIO is not the default and is enabled/disabled via the GPIOC_PER, as shown in **Figure 6-10** and **Table 6-2**. When GPIOC[3:0] are programmed to operate as peripheral I/O, then the choice between decoder/timer and SPI inputs/outputs is made in the SIM_GPS register and in conjunction with the Quad Timer Status and Control Registers (SCR). The default state is for the peripheral function of GPIOC[3:0] to be programmed as decoder functions. This can be changed by altering the appropriate controls in the indicated registers.

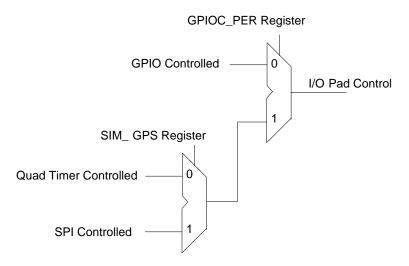


Figure 6-10 Overall Control of Pads Using SIM_GPS Control

		Contro	ol Registers		
Pin Function	GPIOC_PER	GPIOC_DTR	SIM_GPS	Quad Timer SCR Register OEN bits	Comments
GPIO Input	0	0	_	—	
GPIO Output	0	1	—	—	
Quad Timer Input / Quad Decoder Input ²	1	—	0	0	See the "Switch Matrix for Inputs to the Timer" table in the 56F8300 Peripheral User Manual for the definition of timer inputs based on the
Quad Timer Output / Quad Decoder Input ³	1	—	0	1	for the definition of timer inputs based on the Quad Decoder mode configuration.

Table 6-2 Control of Pads Using SIM_GPS Control ¹

Table 6-2 Control of Pads Using SIM_GPS Control ¹ (Continued)

		Contro	ol Registers		
Pin Function	GPIOC_PER	GPIOC_DTR	SIM_GPS	Quad Timer SCR Register OEN bits	Comments
SPI input	1	—	1	—	See SPI controls for determining the direction
SPI output	1	_	1	_	of each of the SPI pins.

1. This applies to the four pins that serve as Quad Decoder / Quad Timer / SPI / GPIOC functions. A separate set of control bits is used for each pin.

2. Reset configuration

3. Quad Decoder pins are always inputs and function in conjunction with the Quad Timer pins.

Base + \$B	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	0	0	C3	C2	C1	C0
Write													03	02	CI	CU
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-11 GPIO Peripheral Select Register (SIM_GPS)

6.5.8.1 Reserved—Bits 15-4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.8.2 GPIOC3 (C3)—Bit 3

This bit selects the alternate function for GPIOC3.

- 0 = HOME1/TB3 (default see "Switch Matrix Mode" bits of the Quad Decoder DECCR register in the **56F8300 Peripheral User Manual**)
- $1 = \overline{SS1}$

6.5.8.3 GPIOC2 (C2)—Bit 2

This bit selects the alternate function for GPIOC2.

- 0 = INDEX1/TB2 (default)
- 1 = MISO1

6.5.8.4 GPIOC1 (C1)—Bit 1

This bit selects the alternate function for GPIOC1.

- 0 = PHASEB1/TB1 (default)
- 1 = MOSI1

6.5.8.5 GPIOC0 (C0)—Bit 0

This bit selects the alternate function for GPIOCO.

- 0 = PHASEA1/TB0 (default)
- 1 = SCLK1

6.5.9 Peripheral Clock Enable Register (SIM_PCE)

The Peripheral Clock Enable register is used enable or disable clocks to the peripherals as a power savings feature. The clocks can be individually controlled for each peripheral on the chip.

Base + \$C	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	EMI		ADCA	CAN		DECO	TMRD	TMRC	TMRB	TMRA	SCI 1	SCI 0	SPI 1	SPI 0	PWMB	PWMA
Write		ADCD	ADCA	CAN	DLUI	DLCO	TWIND	TIVING	TIMIND	TIVITA	3011	3010	SFIT	3610		
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 6-12 Peripheral Clock Enable Register (SIM_PCE)

6.5.9.1 External Memory Interface Enable (EMI)—Bit 15

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.2 Analog-to-Digital Converter B Enable (ADCB)—Bit 14

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.3 Analog-to-Digital Converter A Enable (ADCA)—Bit 13

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.4 FlexCAN Enable (CAN)—Bit 12

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.5 Decoder 1 Enable (DEC1)—Bit 11

Each bit controls clocks to the indicated peripheral.

• 1 =Clocks are enabled

• 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.6 Decoder 0 Enable (DEC0)—Bit 10

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.7 Quad Timer D Enable (TMRD)—Bit 9

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.8 Quad Timer C Enable (TMRC)—Bit 8

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.9 Quad Timer B Enable (TMRB)—Bit 7

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.10 Quad Timer A Enable (TMRA)—Bit 6

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.11 Serial Communications Interface 1 Enable (SCI1)—Bit 5

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.12 Serial Communications Interface 0 Enable (SCI0)—Bit 4

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.13 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.14 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.15 Pulse Width Modulator B Enable (PWMB)—Bit 1

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.16 Pulse Width Modulator A Enable (PWMA)—Bit 0

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.10 I/O Short Address Location Register (SIM_ISALH and SIM_ISALL)

The I/O Short Address Location registers are used to specify the memory referenced via the I/O short address mode. The I/O short address mode allows the instruction to specify the lower six bits of address; the upper address bits are not directly controllable. This register set allows limited control of the full address, as shown in **Figure 6-13**.

Note: If this register is set to something other than the top of memory (EOnCE register space) and the EX bit in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers, and debug functions will be affected.

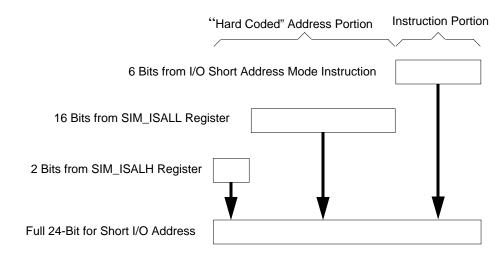


Figure 6-13 I/O Short Address Determination

With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its peripheral registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register to its previous contents prior to returning from interrupt.

- **Note:** The default value of this register set points to the EOnCE registers.
- **Note:** The pipeline delay between setting this register set and using short I/O addressing with the new value is three cycles.

Base + \$D	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ISAL[10.001
Write															юлц	23.22]
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 6-14 I/O Short Address Location High Register (SIM_ISALH)

6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0

This field represents the upper two address bits of the "hard coded" I/O short address.

Base + \$E	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read								1941	_[21:6]							
Write								IGAL	_[21.0]							
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 6-15 I/O Short Address Location Low Register (SIM_ISALL)

6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0

This field represents the lower 16 address bits of the "hard coded" I/O short address.

6.6 Clock Generation Overview

The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the peripheral and system (core and memory) clocks. The maximum master clock frequency is 120MHz. Peripheral and system clocks are generated at half the master clock frequency and therefore at a maximum 60MHz. The SIM provides power modes (Stop, Wait) and clock enables (SIM_PCE register, CLK_DIS, ONCE_EBL) to control which clocks are in operation. The OCCS, power modes, and clock enables provide a flexible means to manage power consumption.

Power utilization can be minimized in several ways. In the OCCS, crystal oscillator, and PLL may be shut down when not in use. When the PLL is in use, its prescaler and postscaler can be used to limit PLL and master clock frequency. Power modes permit system and/or peripheral clocks to be disabled when unused. Clock enables provide the means to disable individual clocks. Some peripherals provide further controls to disable unused subfunctions. Refer to **Part 3 On-Chip Clock Synthesis (OCCS)**, and the **56F8300 Peripheral User Manual** for further details.

6.7 Power Down Modes Overview

The 56F8355/56F8155 operate in one of three power-down modes, as shown in Table 6-3.

Mode	Core Clocks	Peripheral Clocks	Description
Run	Active	Active	Device is fully functional
Wait	Core and memory clocks disabled	Active	Peripherals are active and can produce interrupts if they have not been masked off. Interrupts will cause the core to come out of its suspended state and resume normal operation. Typically used for power-conscious applications.

Table 6-3 Clock Operation in Power-Down Modes

Mode	Core Clocks	Peripheral Clocks	Description
Stop	System clocks contin the SIM, but most are reaching memory, co		The only possible recoveries from Stop mode are: 1. CAN traffic (1st message will be lost) 2. Non-clocked interrupts 3. COP reset 4. External reset 5. Power-on reset

 Table 6-3 Clock Operation in Power-Down Modes (Continued)

All peripherals, except the COP/watchdog timer, run off the IPBus clock frequency, which is the same as the main processor frequency in this architecture. The maximum frequency of operation is $SYS_CLK = 60MHz$.

6.8 Stop and Wait Mode Disable Function

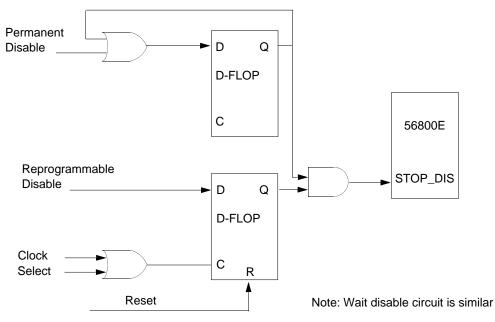


Figure 6-16 Stop Disable Circuit

The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E system clock must be set equal to the oscillator output.

Some applications require the 56800E STOP and WAIT instructions to be disabled. To disable those instructions, write to the SIM control register (SIM_CONTROL), described in **Part 6.5.1**. This procedure can be on either a permanent or temporary basis. Permanently assigned applications last only until their next reset.

6.9 Resets

The SIM supports four sources of reset. The two asynchronous sources are the external $\overline{\text{RESET}}$ pin and the Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within the SIM itself by writing to the SIM_CONTROL register, and the COP reset.

Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced to permit proper operation of the device. A POR reset is first extended for 2^{21} clock cycles to permit stabilization of the clock source, followed by a 32 clock window in which SIM clocking is initiated. It is then followed by a 32 clock window in which peripherals are released to implement Flash security, and, finally, followed by a 32 clock window in which the core is initialized. After completion of the described reset sequence, application code will begin execution.

Resets may be asserted asynchronously, but are always released internally on a rising edge of the system clock.


Part 7 Security Features

The 56F8355/56F8155 offer security features intended to prevent unauthorized users from reading the contents of the Flash Memory (FM) array. The Flash security consists of several hardware interlocks that block the means by which an unauthorized user could gain access to the Flash array.

However, part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program, as this code would defeat the purpose of security. At the same time, the user may also wish to put a "backdoor" in his program. As an example, the user downloads a security key through the SCI, allowing access to a programming routine that updates parameters stored in another section of the Flash.

7.1 Operation with Security Enabled

Once the user has programmed the Flash with his application code, the device can be secured by programming the security bytes located in the FM configuration field, which occupies a portion of the FM array. These non-volatile bytes will keep the part secured through reset and through power-down of the device. Only two bytes within this field are used to enable or disable security. Refer to the Flash Memory section in the **56F8300 Peripheral User Manual** for the state of the security bytes and the resulting state

of security. When Flash security mode is enabled in accordance with the method described in the Flash Memory module specification, the device will disable the core EOnCE debug capabilities. Normal program execution is otherwise unaffected.

7.2 Flash Access Blocking Mechanisms

The 56F8355/56F8155 have several operating functional and test modes. Effective Flash security must address operating mode selection and anticipate modes in which the on-chip Flash can be compromised and read without explicit user permission. Methods to block these are outlined in the next subsections.

7.2.1 Forced Operating Mode Selection

At boot time, the SIM determines in which functional modes the device will operate. These are:

- Unsecured Mode
- Secure Mode (EOnCE disabled)

When Flash security is enabled as described in the Flash Memory module specification, the device will disable the EOnCE debug interface.

7.2.2 Disabling EOnCE Access

On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the EOnCE port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port) is active and provides the chip's boundary scan capability and access to the ID register.

Proper implementation of Flash security requires that no access to the EOnCE port is provided when security is enabled. The 56800E core has an input which disables reading of internal memory via the JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the FM security bytes.

7.2.3 Flash Lockout Recovery

If a user inadvertently enables Flash security on the device, a built-in lockout recovery mechanism can be used to reenable access to the device. This mechanism completely reases all on-chip Flash, thus disabling Flash security. Access to this recovery mechanism is built into CodeWarrior via an instruction in memory configuration (.cfg) files. Add, or uncomment the following configuration command:

unlock_flash_on_connect 1

For more information, please see CodeWarrior MC56F83xx/DSP5685x Family Targeting Manual.

The LOCKOUT_RECOVERY instruction has an associated 7-bit Data Register (DR) that is used to control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control the period of the clock used for timed events in the FM erase algorithm. This register must be set with appropriate values before the lockout sequence can begin. Refer to the JTAG section of the **56F8300 Peripheral User Manual** for more details on setting this register value.

The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides down the system clock for timed events, as illustrated in **Figure 7-1**. FM_CLKDIV[6] will map to the PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV must divide the FM input clock down to a frequency of 150kHz-200kHz. The **"Writing the FMCLKD Register"** section in the Flash Memory chapter of the **56F8300 Peripheral User Manual** gives specific equations for calculating the correct values.

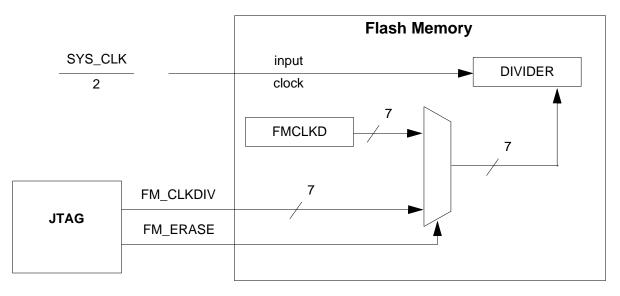


Figure 7-1 JTAG to FM Connection for Lockout Recovery

Two examples of FM_CLKDIV calculations follow.

EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up, the input clock will be below 12.8MHz, so PRDIV8 = $FM_CLKDIV[6] = 0$. Using the following equation yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This translates into an $FM_CLKDIV[6:0]$ value of \$13 or \$14, respectively.

$$150[kHz] < \frac{\left(\frac{SYS_CLK}{(2)}\right)}{(DIV+1)} < 200[kHz]$$

EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM

input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8 = FM_CLKDIV[6] = 1. Using the following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of 181kHz. This translates to an FM_CLKDIV[6:0] value of \$49 or \$4A, respectively.

$$150[kHz] < \frac{\left(\frac{SYS_CLK}{(2)}\right)}{(DIV+1)} < 200[kHz]$$

Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock divider value must be shifted into the corresponding 7-bit data register. After the data register has been updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout sequence to commence. The controller must remain in this state until the erase sequence has completed. For details, see the JTAG Section in the **56F8300 Peripheral User Manual**.

Note: When the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller (by asserting $\overline{\text{TRST}}$) and the device (by asserting external chip reset) to return to normal unsecured operation.

7.2.4 Product Analysis

The recommended method of unsecuring a programmed device for product analysis of field failures is via the backdoor key access. The customer would need to supply Technical Support with the backdoor key and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows backdoor key access must be set.

An alternative method for performing analysis on a secured hybrid controller would be to mass-erase and reprogram the Flash with the original code, but modify the security bytes.

To insure that a customer does not inadvertently lock himself out of the device during programming, it is recommended that he program the backdoor access key first, his application code second, and the security bytes within the FM configuration field last.

Part 8 General Purpose Input/Output (GPIO)

8.1 Introduction

This section is intended to supplement the GPIO information found in the **56F8300 Peripheral User Manual** and contains only chip-specific information. This information supercedes the generic information

in the 56F8300 Peripheral User Manual.

8.2 Memory Maps

The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and GPIOx_PER registers will change from port to port. Tables 4-29 through 4-34 define the actual reset values of these registers for these devices.

8.3 Configuration

There are six GPIO ports defined on the 56F8355/56F8155. The width of each port and the associated peripheral function is shown in **Table 8-1** and **Table 8-2**. The specific mapping of GPIO port pins is shown in **Table 8-2**.

GPIO Port	Port Width	Available Pins in 56F8355	Peripheral Function	Reset Function
A	14	6	6 pins - EMI Address pins - Can only be used as GPIO 8 pins - EMI Address pins - Not available in this package	EMI Address N/A
В	8	5	5 pins - EMI Address pins - Can only be used as GPIO 3 pins - EMI Address pins - Not available in this package	GPIO N/A
С	11	11	4 pins - DEC1 / TMRB / SPI1 4 pins - DEC0 / TMRA 3 pins - PWMA current sense	DEC1 / TMRB DEC0 / TMRA PWMA current sense

Table 8-1 56F8355 GPIO Ports Configuration

Table 8-1 56	F8355 GPIO Po	rts Configuration
--------------	---------------	-------------------

GPIO Port	Port Width	Available Pins in 56F8355	Peripheral Function	Reset Function
D	13	11	2 pins - EMI CSn 4 pins - EMI CSn - Can only be used as GPIO 2 pins - SCI1 2 pins - EMI CSn - Not available in this package 3 pins - PWMB current sense	EMI Chip Selects EMI Chip Selects SCI1 N/A PWMB current sense
E	14	12	2 pins - SCI0 2 pins - EMI Address pins - Not available in this package 4 pins - SPI0 2 pins - TMRC 4 pins - TMRD	SCI0 N/A SPI0 TMRC TMRD
F	16	4	4 pins - EMI Data - Can only be used as GPIO 12 pins - EMI Data - Not available in this package	EMI Data N/A

Table 8-2 56F8155 GPIO Ports Configuration

GPIO Port	Port Width	Available Pins in 56F8155	Peripheral Function	Reset Function
A	14	6	6 pins - EMI Address pins - Can only be used as GPIO 8 pins - EMI Address pins - Not available in this package	EMI Address N/A
В	8	5	5 pins - EMI Address pins - Can only be used as GPIO 3 pins - EMI Address pins - Not available in this package	GPIO N/A
С	11	11	4 pins - SPI1 4 pins - DEC0 / TMRA 3 pins - Dedicated GPIO	DEC1 / TMRB DEC0 / TMRA GPIO
D	13	11	6 pins - EMI CSn - Can only be used as GPIO 2 pins - SCI1 2 pins - EMI CSn - Not available in this package 3 pins - PWMB current sense	EMI Chip Selects SCI1 N/A PWMB current sense
E	14	12	2 pins - SCI0 2 pins - EMI Address pins - Not available in this package 4 pins - SPI0 2 pins - TMRC 4 pins - Dedicated GPIO	SCI0 N/A SPI0 TMRC GPIO
F	16	4	4 pins - EMI Data - Can only be used as GPIO 12 pins - EMI Data - Not available in this package	EMI Data N/A

Table 8-3 GPIO External Signals MapPins in shaded rows are not available in 56F8355 / 56F8155Pins in italics are NOT available in the 56F8155 device

GPIO Port	GPIO Bit	Reset Function	Functional Signal	Package Pin #
	0	Peripheral	A8 ¹	15
	1	Peripheral	A9 ¹	16
	2	Peripheral	A10 ¹	17
	3	Peripheral	A11 ¹	18
	4	Peripheral	A12 ¹	19
	5	Peripheral	A13 ¹	20
GPIOA	6	N/A		
	7	N/A		
	8	N/A		
	9	N/A		
	10	N/A		
	11	N/A		
	12	N/A		
	13	N/A		
	0	GPIO	A16 ¹	27
	1	GPIO	A17 ¹	28
	2	GPIO	A18 ¹	29
GPIOB	3	GPIO	A19 ¹	30
0.100	4	GPIO	A20 / Prescaler_clock	31
	5	N/A	A11 ¹ 18 A12 ¹ 19 A13 ¹ 20 A16 ¹ 27 A16 ¹ 27 A17 ¹ 28 A18 ¹ 29 A19 ¹ 30	
	6	N/A		
	7	N/A		

Table 8-3 GPIO External Signals Map (Continued)Pins in shaded rows are not available in 56F8355 / 56F8155Pins in italics are NOT available in the 56F8155 device

GPIO Port	GPIO Bit	Reset Function	Functional Signal	Package Pin #
	0	Peripheral	PHASEA1 / TB0 / SCLK1 ²	9
	1	Peripheral	PHASEB1 / TB1 / MOSI1 ²	10
	2	Peripheral	INDEX1 / TB2 / MISO1 ²	11
	3	Peripheral	HOME1 / TB3 / SS1 ²	12
	4	Peripheral	PHASEA0 / TA0	SEA1 / TB0 / SCLK12 9 SEB1 / TB1 / MOSI12 10 EX1 / TB2 / MISO12 11 DME1 / TB3 / SS12 12 PHASEA0 / TA0 127 PHASEB0 / TA1 128
GPIOC	5	Peripheral	PHASEB0 / TA1	128
	6	Peripheral	INDEX0 / TA2	1
	7	Peripheral	HOME0 / TA3	2
	8	Peripheral	ISA0	104
	9	Peripheral	ISA1	105
	10	Peripheral	ISA2	106
	0	GPIO	CS2 ¹	42
	1	GPIO	CS3 ¹	43
	2	GPIO	eripheral $PHASEA1 / TB0 / SCLK1^2$ 9eripheral $PHASEB1 / TB1 / MOSI1^2$ 10eripheral $INDEX1 / TB2 / MISO1^2$ 11eripheral $HOME1 / TB3 / \overline{SS1}^2$ 12eripheralPHASEA0 / TA0127eripheralPHASEB0 / TA1128eripheralPHASEB0 / TA1128eripheralINDEX0 / TA21eripheralINDEX0 / TA21eripheralINDEX0 / TA32eripheralISA0104eripheralISA2106GPIO $\overline{CS2}^1$ 42GPIO $\overline{CS3}^1$ 43GPIO $\overline{CS6}^1$ 46GPIO $\overline{CS7}^1$ 47eripheralTXD140eripheralRXD141N/A48eripheralISB150	44
	3	GPIO		45
	4	GPIO		
	5	GPIO	CS7 ¹	47
GPIOD	6	Peripheral	TXD1	40
	7	Peripheral	RXD1	41
	8	N/A		
	9	N/A		
	10	Peripheral	ISB0	48
	11	Peripheral	ISB1	50
	12	Peripheral	ISB2	51

Table 8-3 GPIO External Signals Map (Continued)Pins in shaded rows are not available in 56F8355 / 56F8155Pins in italics are NOT available in the 56F8155 device

GPIO Port	GPIO Bit	Reset Function	Functional Signal	Package Pin #
	0	Peripheral	TXD0	7
	1	Peripheral	RXD0	8
	2	N/A		
	3	N/A		
	4	Peripheral	SCLK0	124
	5	Peripheral	MOSIO	126
GPIOE	6	Peripheral	MISO0	125
GFIOE	7	Peripheral	SSO	123
	8	Peripheral	TC0	111
	9	Peripheral	TC1	113
	10	Peripheral	TD0	107
	11	Peripheral	TD1	108
	12	Peripheral	TD2	109
	13	Peripheral	TD3	110
	0	Peripheral	D7 ¹	22
	1	Peripheral	D8 ¹	23
	2	Peripheral	D9 ¹	24
	3	Peripheral	D10 ¹	26
	4	N/A		
	5	N/A		
	6	N/A		
GPIOF	7	N/A		
	8	N/A		
	9	N/A		
	10	N/A		
	11	N/A		
	12	N/A		
	13	N/A		
	14	N/A		
	15	N/A		

- 1. Not useful in reset configuration in this package reconfigure as GPIO
- 2. See Part 6.5.8 to determine how to select peripherals from this set; DEC1 is the selected peripheral at reset

Part 9 Joint Test Action Group (JTAG)

9.1 56F8355 Information

Please contact your Freescale marketing representative or authorized distributor for device/package-specific BSDL information.

Part 10 Specifications

10.1 General Characteristics

The 56F8355/56F8155 are fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term "5V-tolerant" refers to the capability of an I/O pin, built on a 3.3V-compatible process technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices designed for 3.3V and 5V power supplies. In such sytems, a bus may carry both 3.3V- and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V \pm 10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the power savings of 3.3V I/O levels combined with the ability to receive 5V levels without damage.

Absolute maximum ratings in **Table 10-1** are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to the device.

Note: All specifications meet both Automotive and Industrial requirements unless individual specifications are listed.

Note: The 56F8155 device is guaranteed to 40MHz and specified to meet Industrial requirements only.

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Note: The 56F8155 device is specified to meet Industrial requirements only; CAN is NOT available on the 56F8155 device.

Table 10-1 Absolute Maximum Ratings

 $(V_{SS} = V_{SSA_ADC} = 0)$

Characteristic	Symbol	Notes	Min	Max	Unit
Supply voltage	V _{DD_IO}		- 0.3	4.0	V
ADC Supply Voltage	V _{DDA_ADC} , V _{REFH}	V _{REFH} must be less than or equal to V _{DDA_ADC}	- 0.3	4.0	V
Oscillator / PLL Supply Voltage	V _{DDA_OSC_PLL}		- 0.3	4.0	V
Internal Logic Core Supply Voltage	V _{DD_CORE}	OCR_DIS is High	- 0.3	3.0	V
Input Voltage (digital)	V _{IN}	Pin Groups 1, 2, 5, 6, 9, 10	-0.3	6.0	V
Input Voltage (analog)	V _{INA}	Pin Groups 11, 12, 13	-0.3	4.0	V
Output Voltage	V _{OUT}	Pin Groups 1, 2, 3, 4, 5, 6, 7, 8	-0.3	4.0 6.0 ¹	V
Output Voltage (open drain)	V _{OD}	Pin Group 4	-0.3	6.0	V
Ambient Temperature (Automotive)	T _A		-40	125	°C
Ambient Temperature (Industrial)	T _A		-40	105	°C
Junction Temperature (Automotive)	Τ _J		-40	150	°C
Junction Temperature (Industrial)	ТJ		-40	125	°C
Storage Temperature (Automotive)	T _{STG}		-55	150	°C
Storage Temperature (Industrial)	T _{STG}		-55	150	°C

1. If corresponding GPIO pin is configured as open drain.

Note: Pins in italics are NOT available on the 56F8155 device.

Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0

Pin Group 2: PHASEA0, PHASEA1, PHASEB0, PHASEB1, INDEX0, INDEX1, HOME0, HOME1, ISB0-2, ISA0-2, TD2-3, TC0-1, TDO, SCLK0

Pin Group 3: RSTO, TDO

Pin Group 4: CAN_TX

Pin Group 5: D0-15, GPIOD0-5

Pin Group 6: A8-15, GPIOB0-4, TD0-1

Pin Group 7: CLKO

Pin Group 8: PWMA0-5, PWMB0-5

Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST, TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3

Pin Group 10: TCK

Pin Group 11: XTAL, EXTAL

Pin Group 12: ANA0-7, ANB0-7

Pin Group 13: OCR_DIS, CLKMODE

Characteristic	Min	Тур	Мах	Unit
ESD for Human Body Model (HBM)	2000	—	_	V
ESD for Machine Model (MM)	200	—	—	V
ESD for Charge Device Model (CDM)	500	—	—	V

Table 10-2 56F8355/56F8155 ElectroStatic Discharge (ESD) Protection

Table 10-3 Thermal Characteristics⁶

Characteristic	Comments	Symbol	Value	Unit	Notes
Characteristic	Comments	Symbol	128-pin LQFP	Unit	Notes
Junction to ambient Natural convection		R _{θJA}	50.8	°C/W	2
Junction to ambient (@1m/sec)		R _{θJMA}	46.5	°C/W	2
Junction to ambient Natural convection	Four layer board (2s2p)	R _{θJMA} (2s2p)	43.9	°C/W	1,2
Junction to ambient (@1m/sec)	Four layer board (2s2p)	R _{θJMA}	41.7	°C/W	1,2
Junction to case		$R_{ extsf{ heta}JC}$	13.9	°C/W	3
Junction to center of case		Ψ_{JT}	1.2	°C/W	4, 5
I/O pin power dissipation		P _{I/O}	User-determined	W	
Power dissipation		P _D	$P_{D} = (I_{DD} \times V_{DD} + P_{I/O})$	W	
Maximum allowed P _D		P _{DMAX}	(TJ - TA) / RθJA ⁷	W	

1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p thermal test board.

- 2. Junction to ambient thermal resistance, Theta-JA (R_{θJA}) was simulated to be equivalent to the JEDEC specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes (2s2p where "s" is the number of signal layers and "p" is the number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.
- 3. Junction to case thermal resistance, Theta-JC (R_{θJC}), was simulated to be equivalent to the measured values using the cold plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when the package is being used with a heat sink.
- 4. Thermal Characterization Parameter, Psi-JT (Ψ_{JT}), is the "resistance" from junction to reference point thermocouple on top center of case as defined in JESD51-2. Ψ_{JT} is a useful value to use to estimate junction temperature in steady state customer environments.
- 5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 6. See Part 12.1 for more details on thermal design considerations.

7. TJ = Junction temperature

56F8355 Technical Data, Rev. 17

TA = Ambient temperature

Note: *The 56F8155 device is guaranteed to 40MHz and specified to meet Industrial requirements only; CAN is NOT available on the 56F8155 device.*

Characteristic	Symbol	Notes	Min	Тур	Max	Unit
Supply voltage	V _{DD_IO}		3	3.3	3.6	V
ADC Supply Voltage	V _{DDA_ADC} , V _{REFH}	V _{REFH} must be less than or equal to V _{DDA_ADC}	3	3.3	3.6	V
Oscillator / PLL Supply Voltage	V _{DDA_OSC_PLL}		3	3.3	3.6	V
Internal Logic Core Supply Voltage	V _{DD_CORE}	OCR_DIS is High	2.25	2.5	2.75	V
Device Clock Frequency	FSYSCLK		0		60	MHz
Input High Voltage (digital)	V _{IN}	Pin Groups 1, 2, 5, 6, 9, 10	2		5.5	V
Input High Voltage (analog)	V _{IHA}	Pin Group 13	2	_	V _{DDA} +0.3	V
Input High Voltage (XTAL/EXTAL, XTAL is not driven by an external clock)	V _{IHC}	Pin Group 11	V _{DDA} - 0.8		V _{DDA} +0.3	V
Input high voltage (XTAL/EXTAL, XTAL is driven by an external clock)	V _{IHC}	Pin Group 11	2		V _{DDA} +0.3	V
Input Low Voltage	V _{IL}	Pin Groups 1, 2, 5, 6, 9, 10, 11, 13	-0.3		.8	V
Output High Source Current	I _{ОН}	Pin Groups 1, 2, 3	—		-4	mA
$V_{OH} = 2.4V (V_{OH} min.)$		Pin Groups 5, 6, 7	—		-8	
		Pin Groups 8	—	_	-12	
Output Low Sink Current	I _{OL}	Pin Groups 1, 2, 3, 4	—	_	4	mA
$V_{OL} = 0.4V (V_{OL} max)$		Pin Groups 5, 6, 7	—		8	
		Pin Group 8	—	_	12	
Ambient Operating Temperature (Automotive)	T _A		-40	_	125	°C
Ambient Operating Temperature (Industrial)	T _A		-40		105	°C
Flash Endurance (Automotive) (Program Erase Cycles)	N _F	$T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$	10,000		—	Cycles
Flash Endurance (Industrial) (Program Erase Cycles)	N _F	T _A = -40°C to 105°C	10,000		-	Cycles
Flash Data Retention (Automotive)	T _R	T _J <= 85°C avg	15		_	Years

Table 10-4 Recommended Operating Conditions

 $(V_{REFLO} = 0V, V_{SS} = V_{SSA_ADC} = 0V, V_{DDA} = V_{DDA_ADC} = V_{DDA_OSC_PLL})$

Note: Total chip source or sink current cannot exceed 200mA.

See Pin Groups in Table 10-1.

10.2 DC Electrical Characteristics

Note: The 56F8155 device is specified to meet Industrial requirements only; CAN is NOT available on the 56F8155 device.

Table 10-5 DC Electrical Characteristics

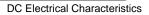
Characteristic	Symbol	Notes	Min	Тур	Мах	Unit	Test Conditions
Output High Voltage	V _{OH}		2.4	—	—	V	I _{OH} = I _{OHmax}
Output Low Voltage	V _{OL}			—	0.4	V	I _{OL} = I _{OLmax}
Digital Input Current High pullup enabled or disabled	Ι _{ΙΗ}	Pin Groups 1, 2, 5, 6, 9	_	0	+/- 2.5	μA	V _{IN} = 3.0V to 5.5V
Digital Input Current High with pull-down	Ι _{ΙΗ}	Pin Group 10	40	80	160	μA	V _{IN} = 3.0V to 5.5V
Analog Input Current High	I _{IHA}	Pin Group 13		0	+/- 2.5	μA	V _{IN} = V _{DDA}
ADC Input Current High	I _{IHADC}	Pin Group 12		0	+/- 3.5	μA	V _{IN} = V _{DDA}
Digital Input Current Low pullup enabled	Ι _{ΙL}	Pin Groups 1, 2, 5, 6, 9	-200	-100	-50	μA	V _{IN} = 0V
Digital Input Current Low pullup disabled	I _{IL}	Pin Groups 1, 2, 5, 6, 9		0	+/- 2.5	μA	V _{IN} = 0V
Digital Input Current Low with pull-down	I _{IL}	Pin Group 10		0	+/- 2.5	μA	V _{IN} = 0V
Analog Input Current Low	I _{ILA}	Pin Group 13	_	0	+/- 2.5	μA	$V_{IN} = 0V$
ADC Input Current Low	I _{ILADC}	Pin Group 12	_	0	+/- 3.5	μA	$V_{IN} = 0V$
EXTAL Input Current Low clock input	I _{EXTAL}		_	0	+/- 2.5	μA	$V_{IN} = V_{DD} \text{ or } 0V$
XTAL Input Current Low	I _{XTAL}	CLKMODE = High		0	+/- 2.5	μA	$V_{IN} = V_{DDA} \text{ or } 0V$
clock input		CLKMODE = Low		—	200	μA	$V_{IN} = V_{DDA} \text{ or } 0V$
Output Current High Impedance State	I _{OZ}	Pin Groups 1, 2, 3, 4, 5, 6, 7, 8	_	0	+/- 2.5	μA	V _{OUT} = 3.0V to 5.5V or 0V
Schmitt Trigger Input Hysteresis	V _{HYS}	Pin Groups 2, 6, 9,10		0.3		V	—
Input Capacitance (EXTAL/XTAL)	C _{INC}		_	4.5		pF	_
Output Capacitance (EXTAL/XTAL)	C _{OUTC}			5.5	_	pF	_
Input Capacitance	C _{IN}		_	6	—	pF	—
Output Capacitance	C _{OUT}		_	6	—	pF	_

At Recommended Operating Conditions; see Table 10-4

See Pin Groups in Table 10-1.

Figure 10-1 Maximum Current — Schmitt Input DC Response –40 °C, 3.6 V

Characteristic	Symbol	Min	Тур	Мах	Units
POR Trip Point	POR	1.75	1.8	1.9	V
LVI, 2.5 volt Supply, trip point ¹	V _{EI2.5}	—	2.14	—	V
LVI, 3.3 volt supply, trip point ²	V _{EI3.3}	—	2.7	—	V
Bias Current	l _{bias}	—	110	130	μA


Table 10-6 Power-On Reset Low Voltage Parameters

1. When $V_{DD_{CORE}}$ drops below $V_{EI2.5}$, an interrupt is generated.

2. When $V_{DD \ CORE}$ drops below $V_{EI3.3}$, an interrupt is generated.

Table 10-7 Current Consumption per Power Supply Pin (Typical)
On-Chip Regulator Enabled (OCR_DIS = Low)

Mode	I _{DD_IO} 1	I _{DD_ADC}	I _{DD_OSC_PLL}	Test Conditions
RUN1_MAC	155mA	50mA	2.5mA	 60MHz Device Clock All peripheral clocks are enabled All peripherals running Continuous MAC instructions with fetches from Data RAM ADC powered on and clocked
Wait3	91mA	70uA	2.5mA	 60MHz Device Clock All peripheral clocks are enabled ADC powered off

Mode	I _{DD_IO} 1	I _{DD_ADC}	I _{DD_OSC_PLL}	Test Conditions
Stop1	6mA	0uA	155uA	 8MHz Device Clock All peripheral clocks are off ADC powered off PLL powered off
Stop2	5.1mA	0uA	145uA	 External Clock is off All peripheral clocks are off ADC powered off PLL powered off

Table 10-7 Current Consumption per Power Supply Pin (Typical) On-Chip Regulator Enabled (OCR_DIS = Low)

1. No Output Switching

2. Includes Processor Core current supplied by internal voltage regulator

Table 10-8 Current Consumption per Power Supply Pin (Typical) On-Chip Regulator Disabled (OCR_DIS = High)

Mode	I _{DD_Core}	I _{DD_IO} 1	I _{DD_ADC}	I _{DD_OSC_PLL}	Test Conditions
RUN1_MAC	150 mA	13μΑ	50mA	2.5mA	 60MHz Device Clock All peripheral clocks are enabled All peripherals running Continuous MAC instructions with fetches from Data RAM ADC powered on and clocked
Wait3	86mA	13μΑ	70μΑ	2.5mA	 60MHz Device Clock All peripheral clocks are enabled ADC powered off
Stop1	900μΑ	13μΑ	ΟμΑ	155μΑ	 8MHz Device Clock All peripheral clocks are off ADC powered off PLL powered off
Stop2	100μΑ	13µА	ΟμΑ	145μΑ	 External Clock is off All peripheral clocks are off ADC powered off PLL powered off

1. No Output Switching

Characteristic	Symbol	Min	Typical	Max	Unit
Unloaded Output Voltage (0mA Load)	V _{RNL}	2.25	_	2.75	V
Loaded Output Voltage (200mA load)	V _{RL}	2.25	—	2.75	V
Line Regulation @ 250mA load (V _{DD} 33 ranges from 3.0V to 3.6V)	V _R	2.25	—	2.75	V
Short Circuit Current (output shorted to ground)	lss	_	_	700	mA
Bias Current	I _{bias}	—	5.8	7	mA
Power-down Current	I _{pd}	—	0	2	μΑ
Short-Circuit Tolerance (output shorted to ground)	T _{RSC}	—	—	30	minutes

Table 10-10. PLL Parameters

Characteristics	Symbol	Min	Typical	Мах	Unit
PLL Start-up time	T _{PS}	0.3	0.5	10	ms
Resonator Start-up time	T _{RS}	0.1	0.18	1	ms
Min-Max Period Variation	T _{PV}	120	—	200	ps
Peak-to-Peak Jitter	T _{PJ}	—	—	175	ps
Bias Current	I _{BIAS}	—	1.5	2	mA
Quiescent Current, power-down mode	I _{PD}	—	100	150	μA

10.2.1 Temperature Sense

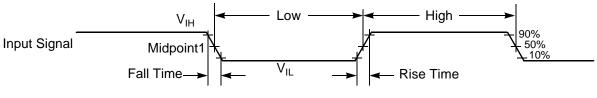
Note: Temperature Sensor is NOT available in the 56F8155 device.

Characteristics	Symbol	Min	Typical	Max	Unit
Slope (Gain) ¹	m		7.762		mV/°C

Characteristics	Symbol	Min	Typical	Мах	Unit
Room Trim Temp. ^{1, 2}	T _{RT}	24	26	28	°C
Hot Trim Temp. (Industrial) ^{1,2}	T _{HT}	122	125	128	°C
Hot Trim Temp. (Automotive) ^{1,2}	T _{HT}	147	150	153	°C
Output Voltage @ V _{DDA_ADC} = 3.3V, T _J =0°C ¹	V _{TS0}	_	1.370	_	V
Supply Voltage	V _{DDA_ADC}	3.0	3.3	3.6	V
Supply Current - OFF	I _{DD-OFF}	—	—	10	μΑ
Supply Current - ON	I _{DD-ON}		_	250	μΑ
Accuracy ^{3,1} from -40°C to 150°C Using $V_{TS} = mT + V_{TS0}$	T _{ACC}	-6.7	0	6.7	°C
Resolution ^{4, 5,1}	R _{ES}	_	0.104	_	°C / bit

1. Includes the ADC conversion of the analog Temperature Sense voltage.

2. The ADC is not calibrated for the conversion of the Temperature Sensor trim value stored in the Flash Memory at FMOPT0 and FMOPT1.


3. See Application Note, AN1980, for methods to increase accuracy.

4. Assuming a 12-bit range from 0V to 3.3V.

5. Typical resolution calculated using equation,

10.3 AC Electrical Characteristics

Tests are conducted using the input levels specified in **Table 10-5**. Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured between the 10% and 90% points, as shown in **Figure 10-2**.

Note: The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

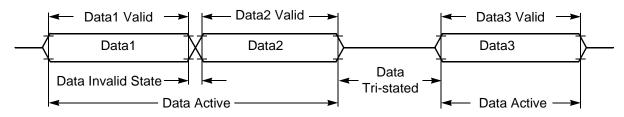

Figure 10-2 Input Signal Measurement References

Figure 10-3 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state

- Data Valid state, when a signal level has reached V_{OL} or V_{OH}
- Data Invalid state, when a signal level is in transition between V_{OL} and V_{OH}

10.4 Flash Memory Characteristics

Characteristic	Symbol	Min	Тур	Мах	Unit
Program time ¹	Tprog	20	_	_	μs
Erase time ²	Terase	20	_	—	ms
Mass erase time	Tme	100	—	—	ms

Table 10-12 Flash Timing Parameters

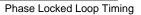
1. There is additional overhead which is part of the programming sequence. See the **56F8300 Peripheral User Manual** for details. Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Program Flash module, as it contains two interleaved memories.

2. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash module uses two interleaved Flash memories, increasing the effective page size to 1024 bytes.

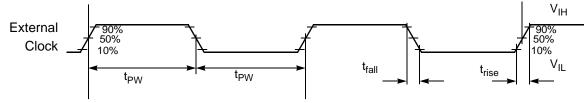
10.5 External Clock Operation Timing

Characteristic	Symbol	Min	Тур	Мах	Unit
Frequency of operation (external clock driver) ²	f _{osc}	0	—	120	MHz
Clock Pulse Width ³	t _{PW}	3.0	—	—	ns
External clock input rise time ⁴	t _{rise}	—	—	10	ns
External clock input fall time ⁵	t _{fall}	—	—	10	ns

Table 10-13 External Clock Operation Timing Requirements¹


1. Parameters listed are guaranteed by design.

2. See Figure 10-4 for details on using the recommended connection of an external clock driver.


3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.

4. External clock input rise time is measured from 10% to 90%.

5. External clock input fall time is measured from 90% to 10%.

Note: The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

10.6 Phase Locked Loop Timing

Table 10-14 PLL Timing

Characteristic	Symbol	Min	Тур	Max	Unit
External reference crystal frequency for the PLL ¹	f _{osc}	4	8	8.4	MHz
PLL output frequency ² (f _{OUT})	f _{op}	160	_	260	MHz
PLL stabilization time ³ -40° to +125°C	t _{plls}	_	1	10	ms

1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8MHz input crystal.

 ZCLK may not exceed 60MHz. For additional information on ZCLK and (f_{OUT}/2), please refer to the OCCS chapter in the 56F8300 Peripheral User Manual.

3. This is the minimum time required after the PLL set up is changed to ensure reliable operation.

10.7 Crystal Oscillator Timing

Characteristic	Symbol	Min	Тур	Мах	Unit
Crystal Start-up time	T _{CS}	4	5	10	ms
Resonator Start-up time	T _{RS}	0.1	0.18	1	ms
Crystal ESR	R _{ESR}	_	—	120	ohms
Crystal Peak-to-Peak Jitter	T _D	70	—	250	ps
Crystal Min-Max Period Variation	T _{PV}	0.12	—	1.5	ns
Resonator Peak-to-Peak Jitter	T _{RJ}	_	—	300	ps
Resonator Min-Max Period Variation	T _{RP}	—	—	300	ps

Table 10-15 Crystal Oscillator Parameters

Characteristic	Symbol	Min	Тур	Мах	Unit
Bias Current, high-drive mode	I _{BIASH}	_	250	290	μΑ
Bias Current, low-drive mode	I _{BIASL}	—	80	110	μA
Quiescent Current, power-down mode	I _{PD}	_	0	1	μA

Table 10-15 Crystal Oscillator Parameters

10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing

Table 10-16 Reset, Stop, Wait, Mode Select, and Interrupt Timing^{1,2}

Characteristic	Symbol	Typical Min	Typical Max	Unit	See Figure
Minimum RESET Assertion Duration	t _{RA}	16T	_	ns	10-5
Edge-sensitive Interrupt Request Width	t _{IRW}	1.5T	_	ns	10-6
IRQA, IRQB Assertion to General Purpose Output Valid, caused by first instruction	t _{IG}	18T	_	ns	10-7
execution in the interrupt service routine	t _{IG} - FAST	14T	_		
IRQA Width Assertion to Recover from Stop State ³	t _{IW}	1.5T	_	ns	10-9

1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and Stop modes), T = 125ns.

2. Parameters listed are guaranteed by design.

3. The interrupt instruction fetch is visible on the pins only in Mode 3.

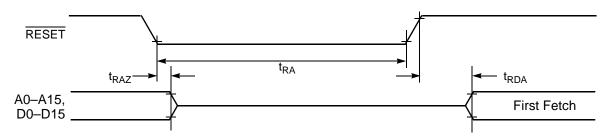
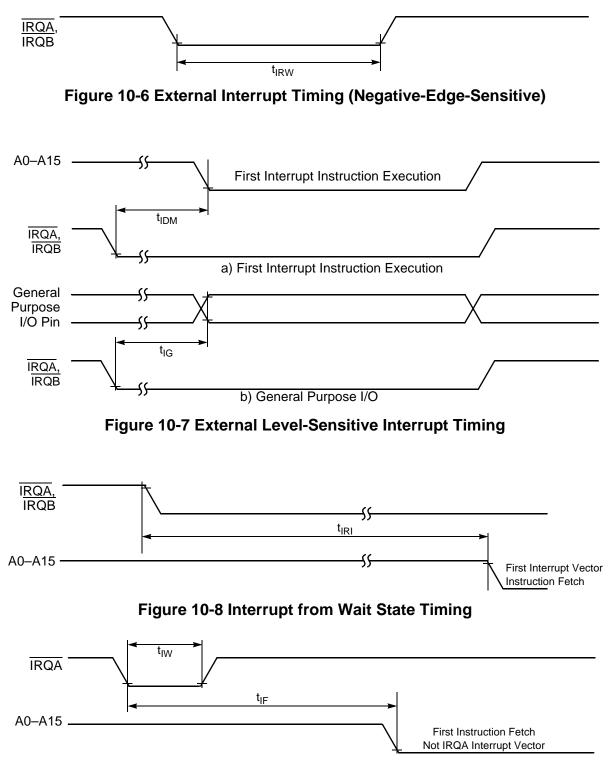



Figure 10-5 Asynchronous Reset Timing

10.9 Serial Peripheral Interface (SPI) Timing

Table	10-17	SPI	Timing ¹
		- · · ·	

Characteristic	Symbol	Min	Max	Unit	See Figure
Cycle time Master Slave	t _C	50 50		ns ns	10-10, 10-11, 10-12, 10-13
Enable lead time Master Slave	t _{ELD}	 25		ns ns	10-13
Enable lag time Master Slave	t _{ELG}	 100		ns ns	10-13
Clock (SCK) high time Master Slave	t _{CH}	17.6 25		ns ns	10-10, 10-11, 10-12, 10-13
Clock (SCK) low time Master Slave	t _{CL}	24.1 25		ns ns	10-13
Data set up time required for inputs Master Slave	t _{DS}	20 0		ns ns	10-10, 10-11, 10-12, 10-13
Data hold time required for inputs Master Slave	t _{DH}	0 2		ns ns	10-10, 10-11, 10-12, 10-13
Access time (time to data active from high-impedance state) Slave	t _A	4.8	15	ns	10-13
Disable time (hold time to high-impedance state) Slave	t _D	3.7	15.2	ns	10-13
Data Valid for outputs Master Slave (after enable edge)	t _{DV}		4.5 20.4	ns ns	10-10, 10-11, 10-12, 10-13
Data invalid Master Slave	t _{DI}	0 0		ns ns	10-10, 10-11, 10-12
Rise time Master Slave	t _R		11.5 10.0	ns ns	10-10, 10-11, 10-12, 10-13
Fall time Master Slave	t _F		9.7 9.0	ns ns	10-10, 10-11, 10-12, 10-13

1. Parameters listed are guaranteed by design.

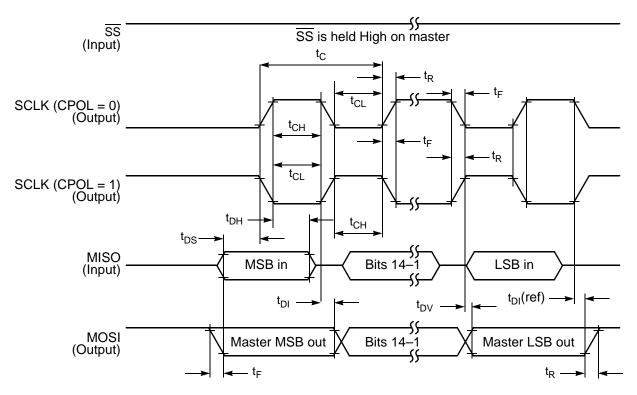
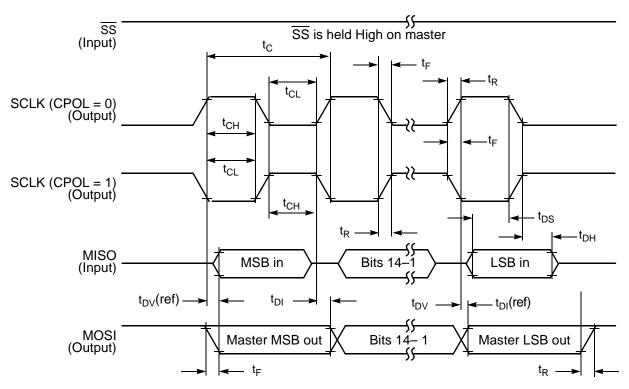



Figure 10-10 SPI Master Timing (CPHA = 0)

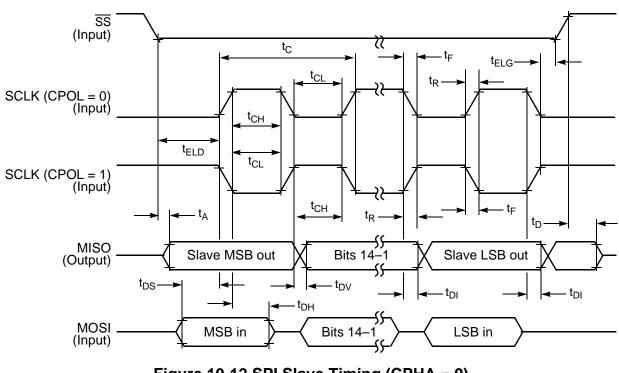


Figure 10-12 SPI Slave Timing (CPHA = 0)

56F8355 Technical Data, Rev. 17

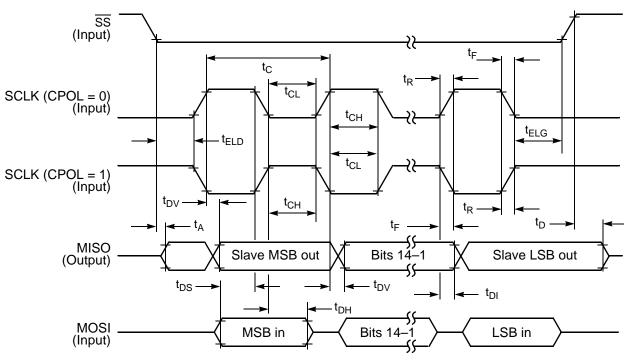


Figure 10-13 SPI Slave Timing (CPHA = 1)

10.10 Quad Timer Timing

Characteristic	Symbol	Min	Мах	Unit	See Figure
Timer input period	P _{IN}	2T + 6	_	ns	10-14
Timer input high / low period	P _{INHL}	1T + 3	_	ns	10-14
Timer output period	P _{OUT}	1T - 3	_	ns	10-14
Timer output high / low period	P _{OUTHL}	0.5T - 3	_	ns	10-14

Table 10-18 Timer Timing^{1, 2}

1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.

2. Parameters listed are guaranteed by design.

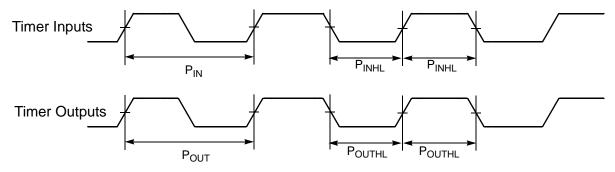


Figure 10-14 Timer Timing

10.11 Quadrature Decoder Timing

Characteristic	Symbol	Min	Max	Unit	See Figure
Quadrature input period	P _{IN}	4T + 12	_	ns	10-15
Quadrature input high / low period	P _{HL}	2T + 6	_	ns	10-15
Quadrature phase period	P _{PH}	1T + 3	_	ns	10-15

Table 10-19 Quadrature Decoder Timing^{1, 2}

1. In the formulas listed, T = the clock cycle. For 60MHz operation, T=16.67ns.

2. Parameters listed are guaranteed by design.

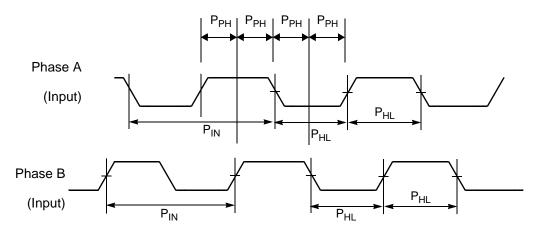
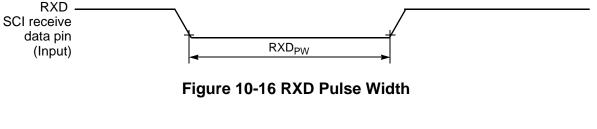


Figure 10-15 Quadrature Decoder Timing

10.12 Serial Communication Interface (SCI) Timing

Characteristic	Symbol	Min	Мах	Unit	See Figure
Baud Rate ²	BR	_	(f _{MAX} /16)	Mbps	—
RXD ³ Pulse Width	RXD _{PW}	0.965/BR	1.04/BR	ns	10-16
TXD ⁴ Pulse Width	TXD _{PW}	0.965/BR	1.04/BR	ns	10-17


Table 10-20 SCI Timing¹

1. Parameters listed are guaranteed by design.

 f_{MAX} is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8355 device and 40MHz for the 56F8155 device.

3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.

4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.

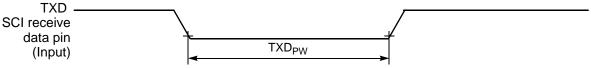


Figure 10-17 TXD Pulse Width

10.13 Controller Area Network (CAN) Timing

Note: CAN is NOT available in the 56F8155 device.

Table 10-21 CAN Timing¹

Characteristic	Symbol	Min	Max	Unit	See Figure
Baud Rate	BR _{CAN}	_	1	Mbps	—
Bus Wake Up detection	T _{WAKEUP}	5	—	μs	10-18

1. Parameters listed are guaranteed by design

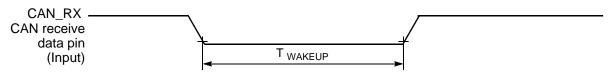
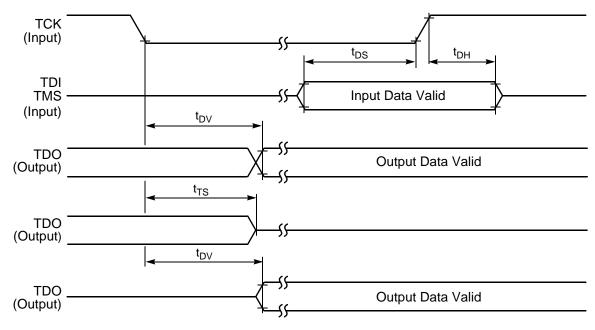


Figure 10-18 Bus Wake Up Detection

10.14 JTAG Timing

Characteristic	Symbol	Min	Мах	Unit	See Figure
TCK frequency of operation using EOnCE ¹	f _{OP}	DC	SYS_CLK/8	MHz	10-19
TCK frequency of operation not using EOnCE ¹	f _{OP}	DC	SYS_CLK/4	MHz	10-19
TCK clock pulse width	t _{PW}	50	—	ns	10-19
TMS, TDI data set-up time	t _{DS}	5	—	ns	10-20
TMS, TDI data hold time	t _{DH}	5	—	ns	10-20
TCK low to TDO data valid	t _{DV}	—	30	ns	10-20
TCK low to TDO tri-state	t _{TS}	—	30	ns	10-20
TRST assertion time	t _{TRST}	2T ²	—	ns	10-21

Table 10-22 JTAG Timing


1. TCK frequency of operation must be less than 1/8 the processor rate.


2. T = processor clock period (nominally 1/60MHz)

Figure 10-19 Test Clock Input Timing Diagram

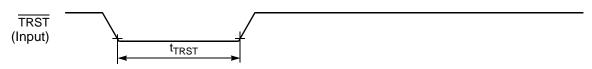


Figure 10-21 TRST Timing Diagram

10.15 Analog-to-Digital Converter (ADC) Parameters

Characteristic	Symbol	Min	Тур	Max	Unit
Input voltages	V _{ADIN}	V _{REFL}		V _{REFH}	V
Resolution	R _{ES}	12	—	12	Bits
Integral Non-Linearity ¹	INL	— 1	+/- 2.4	+/- 3.2	LSB ²
Differential Non-Linearity	DNL	— 1	+/- 0.7	< +1	LSB ²
Monotonicity			GUARANTEED		·
ADC internal clock	f _{ADIC}	0.5	_	5	MHz
Conversion range	R _{AD}	V _{REFL}	—	V _{REFH}	V
ADC channel power-up time	t _{ADPU}	5	6	16	t _{AIC} cycles ³
ADC reference circuit power-up time ⁴	t _{VREF}	_	_	25	ms

Table 10-23 ADC Parameters

56F8355 Technical Data, Rev. 17

Characteristic	Symbol	Min	Тур	Мах	Unit
Conversion time	t _{ADC}	—	6		t _{AIC} cycles ³
Sample time	t _{ADS}	—	1	—	t _{AIC} cycles ³
Input capacitance	C _{ADI}	—	5		pF
Input injection current ⁵ , per pin	I _{ADI}	—	—	3	mA
Input injection current, total	I _{ADIT}	—	—	20	mA
V _{REFH} current	I _{VREFH}	—	1.2	3	mA
ADC A current	I _{ADCA}	—	25	—	mA
ADC B current	I _{ADCB}	—	25	—	mA
Quiescent current	I _{ADCQ}	—	0	10	μΑ
Uncalibrated Gain Error (ideal = 1)	E _{GAIN}	—	+/004	+/015	—
Uncalibrated Offset Voltage	V _{OFFSET}	_	+/- 15	+/- 35	mV
Calibrated Absolute Error ⁶	AE _{CAL}	—	See Figure 10-22	—	LSBs
Calibration Factor 1 ⁷	CF1	—	TBD	0.010380	—
Calibration Factor 2 ⁷	CF2	—	TBD	-31.7	—
Crosstalk between channels	—	—	-60	_	dB
Common Mode Voltage	V _{common}	_	(V _{REFH} - V _{REFLO}) / 2	—	V
Signal-to-noise ratio	SNR	—	64.6	_	db
Signal-to-noise plus distortion ratio	SINAD	—	59.1	—	db
Total Harmonic Distortion	THD	—	60.6	—	db
Spurious Free Dynamic Range	SFDR	—	61.1	_	db
Effective Number Of Bits ⁸	ENOB	—	9.6	—	Bits
Non-averaged DC drift of error over temperature from 27° C ⁹	—	—	_	3	LSB

Table 10-23 ADC Parameters (Continued)

INL measured from V_{in} = .1V_{REFH} to V_{in} = .9V_{REFH}
 10% to 90% Input Signal Range

2. LSB = Least Significant Bit

3. ADC clock cycles

4. Assumes each voltage reference pin is bypassed with $0.1\mu F$ ceramic capacitors to ground

5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.

6. Absolute error includes the effects of both gain error and offset error.

7. Please see the 56F8300 Peripheral User's Manual for additional information on ADC calibration.

8. ENOB = (SINAD - 1.76)/6.02

9. Temperature range –40° C to 150° C

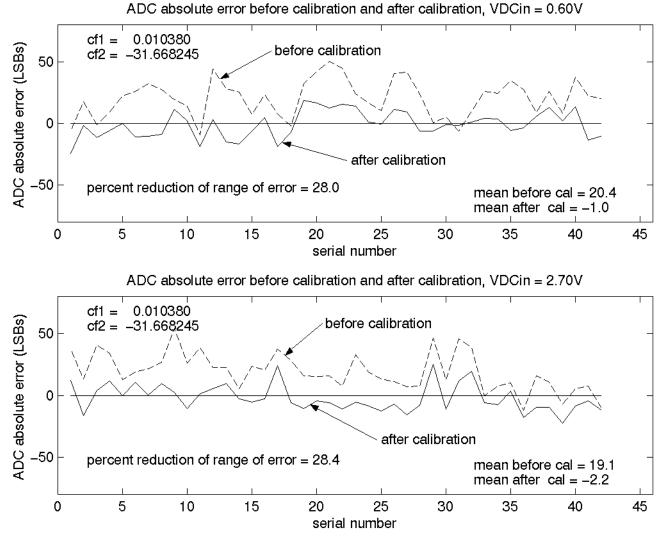
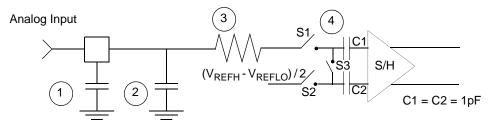


Figure 10-22 ADC Absolute Error Over Processing and Temperature Extremes Before and After Calibration for VDC_{in} = 0.60V and 2.70V


Note: The absolute error data shown in the graphs above reflects the effects of both gain error and offset error. The data was taken on 14 parts: three each from three processing corner lots and two from the fourth processing corner lot, as well as three from one nominally processed lot, each at three temperatures: -40°C, 27°C, and 150°C (giving the 42 data points shown above), for two input DC voltages: 0.60V and 2.70V. The data indicates that for the given population of parts, calibration significantly reduced (by as much as 28%) the collective variation (spread) of the absolute error of the population. It also significantly reduced (by as much as 80%) the mean (average) of the absolute error and thereby brought it significantly closer to the ideal value of zero. Although not guaranteed, it is believed that calibration will produce results similar to those shown above for any population of parts, including those which represent processing and temperature extremes.

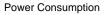
10.16 Equivalent Circuit for ADC Inputs

Figure 10-23 illustrates the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3 is closed/open. When S1/S2 are closed and S3 is open, one input of the sample and hold circuit moves to $V_{REFH} - V_{REFH}/2$, while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended analog input is switched to a differential voltage centered about $V_{REFH} - V_{REFH}/2$. The switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides isolation during the charge-sharing phase.

One aspect of this circuit is that there is an on-going input current, which is a function of the analog input voltage, V_{REF} and the ADC clock frequency.

- 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf
- 3. Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms
- 4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1pf

Figure 10-23 Equivalent Circuit for A/D Loading


10.17 Power Consumption

This section provides additional detail which can be used to optimize power consumption for a given application.

Power consumption is given by the following equation:

- Total power = A: internal [static component]
 - +B: internal [state-dependent component]
 - +C: internal [dynamic component]
 - +D: external [dynamic component]
 - +E: external [static]

A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage current,

NP

PLL, and voltage references. These sources operate independently of processor state or operating frequency.

B, the internal [state-dependent component], reflects the supply current required by certain on-chip resources only when those resources are in use. These include RAM, Flash memory and the ADCs.

C, the internal [dynamic component], is classic $C^*V^{2*}F$ CMOS power dissipation corresponding to the 56800E core and standard cell logic.

D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading on the external pins of the chip. This is also commonly described as $C*V^{2*}F$, although simulations on two of the IO cell types used on the device reveal that the power-versus-load curve does have a non-zero Y-intercept.

	Intercept Slope			
PDU08DGZ_ME	1.3	0.11mW / pF		
PDU04DGZ_ME	1.15mW	0.11mW / pF		

Table 10-24 IO Loading Coefficients at 10MHz

Power due to capacitive loading on output pins is (first order) a function of the capacitive load and frequency at which the outputs change. Table 10-24 provides coefficients for calculating power dissipated in the IO cells as a function of capacitive load. In these cases:

 $TotalPower = \Sigma((Intercept + Slope*Cload)*frequency/10MHz)$

where:

- Summation is performed over all output pins with capacitive loads
- TotalPower is expressed in mW
- Cload is expressed in pF

Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found to be fairly low when averaged over a period of time.

E, the external [static component], reflects the effects of placing resistive loads on the outputs of the device. Sum the total of all V²/R or IV to arrive at the resistive load contribution to power. Assume V = 0.5 for the purposes of these rough calculations. For instance, if there is a total of eight PWM outputs driving 10mA into LEDs, then P = 8*.5*.01 = 40mW.

In previous discussions, power consumption due to parasitics associated with pure input pins is ignored, as it is assumed to be negligible.

Part 11 Packaging

11.1 56F8355 Package and Pin-Out Information

This section contains package and pin-out information for the 56F8355. This device comes in a 128-pin low-profile quad flat pack (LQFP). **Figure 11-1** shows the package outline for the 128-pin LQFP case, **Figure 11-3** shows the mechanical parameters for the 128-pin LQFP case, and **Table 11-1** lists the pin-out for the 128-pin LQFP.

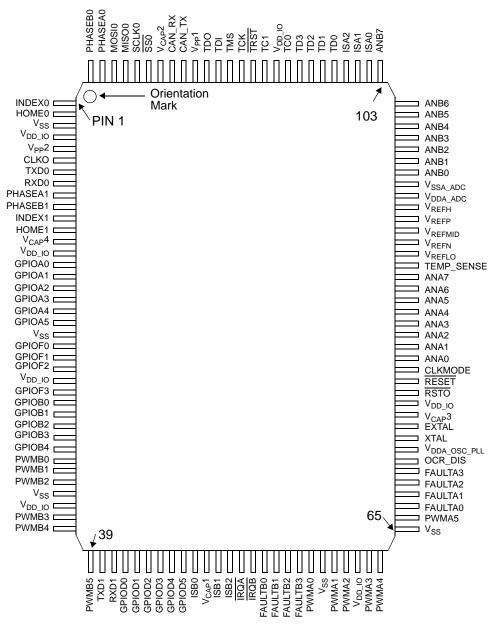


Figure 11-1 Top View, 56F8355 128-Pin LQFP Package

56F8355 Technical Data, Rev. 17

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	INDEX0	33	PWMB1	65	V _{SS}	97	ANB1
2	HOME0	34	PWMB2	66	PWMA5	98	ANB2
3	V _{SS}	35	V _{SS}	67	FAULTA0	99	ANB3
4	V _{DD_IO}	36	V _{DD_IO}	68	FAULTA1	100	ANB4
5	V _{PP} 2	37	PWMB3	69	FAULTA2	101	ANB5
0		20		70		100	

Table 11-1 56F8355 128-Pin LQFP Package Identification by Pin Number

4	V _{DD_IO}	36	V _{DD_IO}	68	FAULTA1	100	ANB4
5	V _{PP} 2	37	PWMB3	69	FAULTA2	101	ANB5
6	CLKO	38	PWMB4	70	FAULTA3	102	ANB6
7	TXD0	39	PWMB5	71	OCR_DIS	103	ANB7
8	RXD0	40	TXD1	72	V _{DDA_OSC_PLL}	104	ISA0
9	PHASEA1	41	RXD1	73	XTAL	105	ISA1
10	PHASEB1	42	GPIOD0	74	EXTAL	106	ISA2
11	INDEX1	43	GPIOD1	75	V _{CAP} 3	107	TD0
12	HOME1	44	GPIOD2	76	V _{DD_IO}	108	TD1
13	V _{CAP} 4	45	GPIOD3	77	RSTO	109	TD2
14	V _{DD_IO}	46	GPIOD4	78	RESET	110	TD3
15	GPIOA0 ¹	47	GPIOD5	79	CLKMODE	111	TC0
16	GPIOA1 ¹	48	ISB0	80	ANA0	112	V _{DD_IO}
17	GPIOA2 ¹	49	V _{CAP} 1	81	ANA1	113	TC1
18	GPIOA3 ¹	50	ISB1	82	ANA2	114	TRST
19	GPIOA4 ¹	51	ISB2	83	ANA3	115	TCK
20	GPIOA5 ¹	52	IRQA	84	ANA4	116	TMS
21	V _{SS}	53	IRQB	85	AN5	117	TDI
220	GPIOF0 ¹	54	FAULTB0	86	ANA6	118	TDO
23	GPIOF1 ¹	55	FAULTB1	87	ANA7	119	V _{PP} 1
24	GPIOF2 ¹	56	FAULTB2	88	TEMP_SENSE	120	CAN_TX
25	V _{DD_IO}	57	FAULTB3	89	V _{REFLO}	121	CAN_RX
26	GPIOF3 ¹	58	PWMA0	90	V _{REFN}	122	V _{CAP} 2
27	GPIOB0	59	V _{SS}	91	V _{REFMID}	123	SS0
28	GPIOB1	60	PWMA1	92	V _{REFP}	124	SCLK0

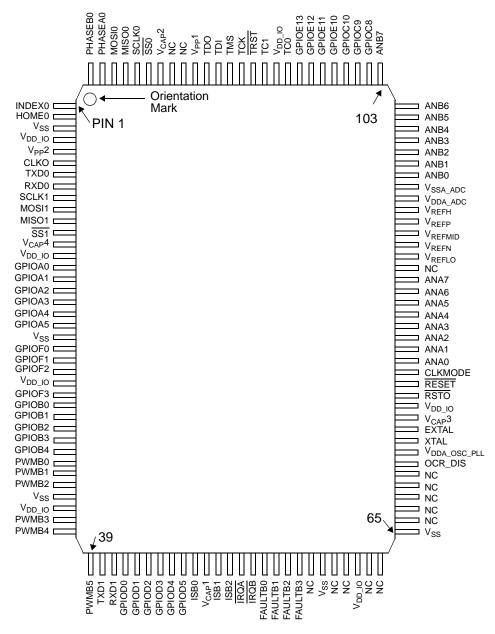

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
29	GPIOB2	61	PWMA2	93	V _{REFH}	125	MISO0
30	GPIOB3	62	V _{DD_IO}	94	V _{DDA_ADC}	126	MOSI0
31	GPIOB4	63	PWMA3	95	V _{SSA_ADC}	127	PHASEA0
32	PWMB0	64	PWMA4	96	ANB0	128	PHASEB0

Table 11-1 56F8355 128-Pin LQFP Package Identification by Pin Number (Continued)

1. Primary function is not available in this package configuration; GPIO function must be used instead.

11.2 56F8155 Package and Pin-Out Information

This section contains package and pin-out information for the 56F8155. This device comes in a 128-pin low-profile quad flat pack (LQFP). **Figure 11-1** shows the package outline for the 128-pin LQFP case, **Figure 11-3** shows the mechanical parameters for the 128-pin LQFP case, and **Table 11-1** lists the pin-out for the 128-pin LQFP.

Table 11-2 56F8155 128-Pin LQFP Package Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	INDEX0	33	PWMB1	65	V _{SS}	97	ANB1
2	HOME0	34	PWMB2	66	NC	98	ANB2

3 V _{SS} 35 V _{SS} 67 NC 99 ANB3 4 V _{DD,IO} 36 V _{DD,IO} 68 NC 100 ANB4 5 V _{PP} 2 37 PWMB3 69 NC 101 ANB5 6 CLKO 38 PWMB5 71 OCR_DIS 103 ANB7 7 TXD0 39 PWMB5 71 OCR_DIS 103 ANB7 8 RXD0 40 TXD1 72 V _{DDA_OSC_PLL} 104 GPIO26 9 SCLK1 41 RXD1 73 XTAL 106 GPIO26 10 MOS1 42 GPIOD1 75 V _{CAP} 3 107 GPIO21 11 MIS01 43 GPIOD2 76 V _{DD,IO} 108 GPIO21 114 V _{DD,IO} 46 GPIOD3 77 RESET 110 GPIO31 15 GPIOA1 47 GPIOD3 79	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
5 V_{PP2} 37 PWMB3 69 NC 101 ANB5 6 CLKO 38 PWMB4 70 NC 102 ANB6 7 TXD0 39 PWMB5 71 OCR_DIS 103 ANB7 8 RXD0 40 TXD1 72 $V_{DDA_OSC,PLL}$ 104 GPIO28 9 SCLK1 41 RXD1 73 XTAL 106 GPIO29 10 MOS11 42 GPIOD0 74 EXTAL 106 GPIO210 11 MIS01 43 GPIOD2 76 $V_{DD,IO}$ 108 GPIO211 12 $\overline{SS1}$ 44 GPIOD2 76 $V_{DD,IO}$ 108 GPIO211 14 $V_{DD,IO}$ 46 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA1 48 ISB0 80 ANA1 113 TC1 18	3	V _{SS}	35	V _{SS}	67	NC	99	ANB3
6 CLKO 38 PWMB4 70 NC 102 ANB6 7 TXD0 39 PWMB5 71 OCR_DIS 103 ANB7 8 RXD0 40 TXD1 72 V _{DDA_OSC_PLL} 104 GPIOC8 9 SCLK1 41 RXD1 73 XTAL 106 GPIOC9 10 MOS11 42 GPIOD0 74 EXTAL 106 GPIOC10 11 MISO1 43 GPIOD2 76 V _{DD,IO} 108 GPIOE11 12 SST 44 GPIOD2 76 V _{DD,IO} 109 GPIOE11 13 V _{CAP} 4 45 GPIOD3 77 RSTO 109 GPIOE12 14 V _{DD,IO} 46 GPIOD4 78 RESET 110 GPIO21 15 GPIOA1 47 GPIO5 79 CLKMODE 111 TC0 16 GPIOA1 48 ISB0	4	V _{DD_IO}	36	V _{DD_IO}	68	NC	100	ANB4
7 TXD0 39 PWMB5 71 OCR_DIS 103 ANB7 8 RXD0 40 TXD1 72 VDDA_OSC_PLL 104 GPIOC8 9 SCLK1 41 RXD1 73 XTAL 105 GPIOC9 10 MOSI1 42 GPIOD0 74 EXTAL 106 GPIOC10 11 MISO1 43 GPIOD1 75 V _{CAP3} 107 GPIOE10 12 SST 44 GPIOD2 76 V _{DD_IO} 108 GPIOE11 13 V _{CAP4} 45 GPIOD3 77 RST0 109 GPIOE12 14 V _{DD_IO} 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA1 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA11 48 ISB0 80 ANA1 113 TC1 17 GPIOA1 50 ISB1	5	V _{PP} 2	37	PWMB3	69	NC	101	ANB5
8 RXD0 40 TXD1 72 V _{DDA_OSC_PLL} 104 GPIOC8 9 SCLK1 41 RXD1 73 XTAL 105 GPIOC9 10 MOSI1 42 GPIOD0 74 EXTAL 106 GPIOC10 11 MISO1 43 GPIOD1 75 V _{CAP} 3 107 GPIOE10 12 SST 44 GPIOD2 76 V _{DD_IO} 108 GPIOE11 13 V _{CAP} 4 45 GPIOD3 77 RSTO 109 GPIOE12 14 V _{DD_IO} 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA1 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA11 48 ISB0 80 ANA1 113 TC1 17 GPIOA21 49 V _{CAP} 1 81 ANA1 113 TCK 20 GPIOA11 51 ISB2	6	CLKO	38	PWMB4	70	NC	102	ANB6
9 SCLK1 41 RXD1 73 XTAL 105 GPIOC9 10 MOSI1 42 GPIOD0 74 EXTAL 106 GPIOC10 11 MISO1 43 GPIOD1 75 V _{CAP} 3 107 GPIOE10 12 SS1 44 GPIOD2 76 V _{DD_IO} 108 GPIOE11 13 V _{CAP} 4 45 GPIOD3 77 RSTO 109 GPIOE12 14 V _{DD_IO} 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA0 ¹ 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA1 ¹ 48 ISB0 80 ANA0 112 V _{DD_IO} 17 GPIOA1 ¹ 48 ISB2 83 ANA1 113 TC1 18 GPIOA1 ¹ 50 ISB1 82 ANA2 114 TRST 19 GPIOA1 ¹ 51 ISB2<	7	TXD0	39	PWMB5	71	OCR_DIS	103	ANB7
10 MOSII 42 GPIOD0 74 EXTAL 106 GPIOC10 11 MISO1 43 GPIOD1 75 V _{CAP} 3 107 GPIOE10 12 SS1 44 GPIOD2 76 V _{DD_IO} 108 GPIOE11 13 V _{CAP} 4 45 GPIOD3 77 RSTO 109 GPIOE12 14 V _{DD_IO} 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA01 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA11 48 ISB0 80 ANA0 112 V _{DD_IO} 17 GPIOA11 48 ISB0 80 ANA1 113 TC1 18 GPIOA1 50 ISB1 82 ANA2 114 TRST 19 GPIOA51 52 IRQA 84 ANA4 116 TMS 21 V _{SS} 53 IRQB	8	RXD0	40	TXD1	72	V _{DDA_OSC_PLL}	104	GPIOC8
11 MISO1 43 GPIOD1 75 V _{CAP} 3 107 GPIOE10 12 SS1 44 GPIOD2 76 V _{DD_IO} 108 GPIOE11 13 V _{CAP} 4 45 GPIOD3 77 RSTO 109 GPIOE12 14 V _{DD_IO} 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA01 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA11 48 ISB0 80 ANA0 112 V _{DD_IO} 17 GPIOA21 49 V _{CAP} 1 81 ANA1 113 TC1 18 GPIOA31 50 ISB1 82 ANA2 114 TRST 19 GPIOA41 51 ISB2 83 ANA3 115 TCK 20 GPIOF01 54 FAULTB0 86 ANA4 116 TMS 21 V _{SS} 53 IRQB	9	SCLK1	41	RXD1	73	XTAL	105	GPIOC9
12 SS1 44 GPIOD2 76 VDD_IO 108 GPIOE11 13 V _{CAP} 4 45 GPIOD3 77 RSTO 109 GPIOE12 14 V _{DD_IO} 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA01 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA11 48 ISB0 80 ANA0 112 V _{DD_IO} 17 GPIOA21 49 V _{CAP} 1 81 ANA1 113 TC1 18 GPIOA31 50 ISB1 82 ANA2 114 TRST 19 GPIOA41 51 ISB2 83 ANA3 115 TCK 20 GPIOA51 52 IRQA 84 ANA4 116 TMS 21 V _{SS} 53 IRQB 85 AN5 117 TDI 220 GPIOF01 54 FAULTB0 86<	10	MOSI1	42	GPIOD0	74	EXTAL	106	GPIOC10
13 V _{CAP} 4 45 GPIOD3 77 RSTO 109 GPIOE12 14 V _{DD_IO} 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA0 ¹ 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA1 ¹ 48 ISB0 80 ANA0 112 V _{DD_IO} 17 GPIOA2 ¹ 49 V _{CAP} 1 81 ANA1 113 TC1 18 GPIOA3 ¹ 50 ISB1 82 ANA2 114 TRST 19 GPIOA4 ¹ 51 ISB2 83 ANA3 115 TCK 20 GPIOA5 ¹ 52 IRQA 84 ANA4 116 TMS 21 V _{SS} 53 IRQB 85 AN5 117 TDI 220 GPIOF0 ¹ 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF2 ¹ 56 FAULTB1	11	MISO1	43	GPIOD1	75	V _{CAP} 3	107	GPIOE10
14 V _{DD_IO} 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA0 ¹ 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA1 ¹ 48 ISB0 80 ANA0 112 V _{DD_IO} 17 GPIOA2 ¹ 49 V _{CAP} 1 81 ANA1 113 TC1 18 GPIOA3 ¹ 50 ISB1 82 ANA2 114 TRST 19 GPIOA4 ¹ 51 ISB2 83 ANA3 115 TCK 20 GPIOA5 ¹ 52 IRQA 84 ANA4 116 TMS 21 V _{SS} 53 IRQB 85 AN5 117 TDI 220 GPIOF0 ¹ 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF2 ¹ 56 FAULTB1 87 ANA7 119 V _{PP} 1 24 GPIOF2 ¹ 56 FAULTB3 <td>12</td> <td>SS1</td> <td>44</td> <td>GPIOD2</td> <td>76</td> <td>V_{DD_IO}</td> <td>108</td> <td>GPIOE11</td>	12	SS1	44	GPIOD2	76	V _{DD_IO}	108	GPIOE11
15 GPIOA0 ¹ 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA1 ¹ 48 ISB0 80 ANA0 112 V _{DD_IO} 17 GPIOA1 ¹ 49 V _{CAP} 1 81 ANA1 113 TC1 18 GPIOA1 ¹ 50 ISB1 82 ANA2 114 TRST 19 GPIOA4 ¹ 51 ISB2 83 ANA3 115 TCK 20 GPIOA5 ¹ 52 IROA 84 ANA4 116 TMS 21 V _{SS} 53 IROB 85 AN5 117 TDI 220 GPIOF0 ¹ 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF2 ¹ 56 FAULTB1 87 ANA7 119 V _{PP} 1 24 GPIOF2 ¹ 56 FAULTB2 88 NC 120 NC 25 V _{DD_IO} 57 FAULTB3	13	V _{CAP} 4	45	GPIOD3	77	RSTO	109	GPIOE12
16 GPIOA1 48 ISB0 80 ANA0 112 V _{DD_IO} 17 GPIOA2 ¹ 49 V _{CAP} 1 81 ANA1 113 TC1 18 GPIOA2 ¹ 50 ISB1 82 ANA2 114 TRST 19 GPIOA1 ¹ 51 ISB2 83 ANA3 115 TCK 20 GPIOA1 ¹ 52 IRQA 84 ANA4 116 TMS 21 V _{SS} 53 IRQB 85 AN5 117 TDI 220 GPIOF0 ¹ 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF2 ¹ 55 FAULTB1 87 ANA7 119 V _{PP} 1 24 GPIOF2 ¹ 56 FAULTB2 88 NC 120 NC 25 V _{DD_JO} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF3 ¹ 58 NC	14	V _{DD_IO}	46	GPIOD4	78	RESET	110	GPIOE13
17 GPIOA21 49 V _{CAP} 1 81 ANA1 113 TC1 18 GPIOA31 50 ISB1 82 ANA2 114 TRST 19 GPIOA1 51 ISB2 83 ANA3 115 TCK 20 GPIOA1 51 ISB2 83 ANA3 116 TMS 21 V _{SS} 53 IRQB 85 AN5 117 TDI 220 GPIOF01 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF21 56 FAULTB1 87 ANA7 119 V _{PP} 1 24 GPIOF21 56 FAULTB2 88 NC 120 NC 25 V _{DD_10} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF31 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91	15	GPIOA0 ¹	47	GPIOD5	79	CLKMODE	111	TC0
18 GPIOA31 50 ISB1 82 ANA2 114 TRST 19 GPIOA41 51 ISB2 83 ANA3 115 TCK 20 GPIOA51 52 IRQA 84 ANA4 116 TMS 21 V _{SS} 53 IRQB 85 AN5 117 TDI 220 GPIOF01 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF1 55 FAULTB1 87 ANA7 119 V _{PP} 1 24 GPIOF21 56 FAULTB2 88 NC 120 NC 25 V _{DD_10} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF31 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91 V _{REFN} 123 SS0 28 GPIOB1 60 NC 92 <	16	GPIOA1 ¹	48	ISB0	80	ANA0	112	V _{DD_IO}
19 GPIOA41 51 ISB2 83 ANA3 115 TCK 20 GPIOA51 52 IRQA 84 ANA4 116 TMS 21 V _{SS} 53 IRQA 86 ANA5 117 TDI 220 GPIOF01 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF01 54 FAULTB0 86 ANA7 119 V _{PP} 1 24 GPIOF21 56 FAULTB2 88 NC 120 NC 25 V _{DD_10} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF31 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91 V _{REFMID} 123 SS0 28 GPIOB1 60 NC 92 V _{REFP} 124 SCLK0 29 GPIOB2 61 NC 93	17	GPIOA2 ¹	49	V _{CAP} 1	81	ANA1	113	TC1
20 GPIOA51 52 IRQA 84 ANA4 116 TMS 21 V _{SS} 53 IRQB 85 AN5 117 TDI 220 GPIOF01 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF1 55 FAULTB1 87 ANA7 119 V _{PP} 1 24 GPIOF21 56 FAULTB2 88 NC 120 NC 25 V _{DD_10} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF31 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91 V _{REFN} 123 SS0 28 GPIOB1 60 NC 92 V _{REFP} 124 SCLK0 29 GPIOB2 61 NC 93 V _{REFH} 125 MIS00 30 GPIOB3 62 V _{DD_IO} 94	18	GPIOA3 ¹	50	ISB1	82	ANA2	114	TRST
21 V _{SS} 53 IRQB 85 AN5 117 TDI 220 GPIOF01 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF1 55 FAULTB1 87 ANA7 119 V _{PP} 1 24 GPIOF21 56 FAULTB2 88 NC 120 NC 25 V _{DD_10} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF31 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91 V _{REFM} 123 SS0 28 GPIOB1 60 NC 92 V _{REFP} 124 SCLK0 29 GPIOB2 61 NC 93 V _{REFH} 125 MISO0 30 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	19	GPIOA4 ¹	51	ISB2	83	ANA3	115	ТСК
220 GPIOF01 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF11 55 FAULTB1 87 ANA7 119 V _{PP} 1 24 GPIOF21 56 FAULTB2 88 NC 120 NC 25 V _{DD_10} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF31 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91 V _{REFN} 123 SS0 28 GPIOB1 60 NC 92 V _{REFP} 124 SCLK0 29 GPIOB2 61 NC 93 V _{REFH} 125 MISO0 30 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	20	GPIOA5 ¹	52	ĪRQĀ	84	ANA4	116	TMS
23 GPIOF1 ¹ 55 FAULTB1 87 ANA7 119 Vpp1 24 GPIOF2 ¹ 56 FAULTB2 88 NC 120 NC 25 VDD_IO 57 FAULTB3 89 VREFLO 121 NC 26 GPIOF3 ¹ 58 NC 90 VREFN 122 VCAP2 27 GPIOB0 59 VSS 91 VREFNID 123 SS0 28 GPIOB1 60 NC 92 VREFP 124 SCLK0 29 GPIOB2 61 NC 93 VREFH 125 MISO0 30 GPIOB3 62 VDD_IO 94 VDDA_ADC 126 MOSI0	21	V _{SS}	53	IRQB	85	AN5	117	TDI
24 GPIOF21 56 FAULTB2 88 NC 120 NC 25 V _{DD_IO} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF31 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91 V _{REFMID} 123 SS0 28 GPIOB1 60 NC 93 V _{REFP} 124 SCLK0 29 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	220	GPIOF0 ¹	54	FAULTB0	86	ANA6	118	TDO
25 V _{DD_IO} 57 FAULTB3 89 V _{REFLO} 121 NC 26 GPIOF3 ¹ 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91 V _{REFMID} 123 SS0 28 GPIOB1 60 NC 92 V _{REFP} 124 SCLK0 29 GPIOB2 61 NC 93 V _{REFH} 125 MISO0 30 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	23	GPIOF1 ¹	55	FAULTB1	87	ANA7	119	V _{PP} 1
26 GPIOF3 ¹ 58 NC 90 V _{REFN} 122 V _{CAP} 2 27 GPIOB0 59 V _{SS} 91 V _{REFMID} 123 SS0 28 GPIOB1 60 NC 92 V _{REFP} 124 SCLK0 29 GPIOB2 61 NC 93 V _{REFH} 125 MISO0 30 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	24	GPIOF2 ¹	56	FAULTB2	88	NC	120	NC
27 GPIOB0 59 V _{SS} 91 V _{REFMID} 123 SS0 28 GPIOB1 60 NC 92 V _{REFP} 124 SCLK0 29 GPIOB2 61 NC 93 V _{REFH} 125 MISO0 30 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	25	V _{DD_IO}	57	FAULTB3	89	V _{REFLO}	121	NC
28 GPIOB1 60 NC 92 V _{REFP} 124 SCLK0 29 GPIOB2 61 NC 93 V _{REFH} 125 MISO0 30 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	26	GPIOF3 ¹	58	NC	90	V _{REFN}	122	V _{CAP} 2
29 GPIOB2 61 NC 93 V _{REFH} 125 MISO0 30 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	27	GPIOB0	59	V _{SS}	91	V _{REFMID}	123	SS0
30 GPIOB3 62 V _{DD_IO} 94 V _{DDA_ADC} 126 MOSI0	28	GPIOB1	60	NC	92	V _{REFP}	124	SCLK0
	29	GPIOB2	61	NC	93	V _{REFH}	125	MISO0
31 GPIOB4 63 NC 95 V _{SSA_ADC} 127 PHASEA0	30	GPIOB3	62	V _{DD_IO}	94	V _{DDA_ADC}	126	MOSI0
	31	GPIOB4	63	NC	95	V _{SSA_ADC}	127	PHASEA0

Table 11-2 56F8155 128-Pin LQFP Package Identification by Pin Number (Continued)

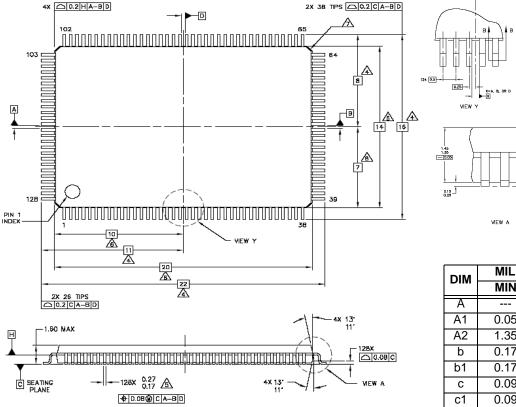
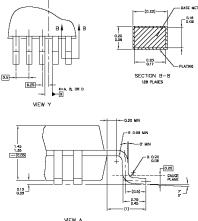


Table 11-2 56F8155 128-Pin LQFP Package Identification by Pin Number (Continued)

Pin No.	Signal Name						
32	PWMB0	64	NC	96	ANB0	128	PHASEB0

1. Primary function is not available in this package configuration; GPIO function must be used instead.



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H.
- 5. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE C.
- 6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE b DIMENSION TO EXCEED 0.35.

Figure 11-3 128-pin LQFP Mechanical Information

DIM	MILLIMETERS			
DIN	MIN	MAX		
Α		1.60		
A1	0.05	0.15		
A2	1.35	1.45		
b	0.17	0.27		
b1	0.17	0.23		
С	0.09	0.20		
c1	0.09	0.16		
D	22.00) BSC		
D1	20.00	OBSC		
е	0.50 BSC			
Е	16.00 BSC			
E1	14.00 BSC			
L	0.45	0.75		
L1	1.00 REF			
L2	0.50 REF			
S	0.20			
R1	0.08			
R2	0.08	0.20		
0	0°	7°		
01	0°			
02	11°	13°		

Please see www.freescale.com for the most current case outline.

Part 12 Design Considerations

12.1 Thermal Design Considerations

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$ where:

 T_A = Ambient temperature for the package (^oC)

 $R_{\theta JA}$ = Junction-to-ambient thermal resistance (^oC/W)

 P_D = Power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single-layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single-layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low-power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$ where:

 $R_{\theta JA}$ = Package junction-to-ambient thermal resistance °C/W

 $R_{\theta JC}$ = Package junction-to-case thermal resistance °C/W

 $R_{\theta CA}$ = Package case-to-ambient thermal resistance °C/W

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$ where:

 T_T = Thermocouple temperature on top of package (^oC)

- Ψ_{JT} = Thermal characterization parameter (^oC)/W
- P_D = Power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

12.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct operation:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the device, and from the board ground to each V_{SS} (GND) pin
- The minimum bypass requirement is to place six 0.01–0.1 μ F capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA}. Ceramic and tantalum capacitors tend to provide better performance tolerances.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{DD} and V_{SS} (GND) pins are less than 0.5 inch per capacitor lead
- Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V_{DD} and V_{SS}

- Bypass the V_{DD} and V_{SS} layers of the PCB with approximately 100 μ F, preferably with a high-grade capacitor such as a tantalum capacitor
- Because the device's output signals have fast rise and fall times, PCB trace lengths should be minimal
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{DD} and V_{SS} circuits.
- Take special care to minimize noise levels on the V_{REF} , V_{DDA} and V_{SSA} pins
- Designs that utilize the TRST pin for JTAG port or EOnCE module functionality (such as development or debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means to assert TRST independently of RESET. Designs that do not require debugging functionality, such as consumer products, should tie these pins together.
- Because the Flash memory is programmed through the JTAG/EOnCE port, the designer should provide an interface to this port to allow in-circuit Flash programming

12.3 Power Distribution and I/O Ring Implementation

Figure 12-1 illustrates the general power control incorporated in the 56F8355/56F8155. This chip contains two internal power regulators. One of them is powered from the $V_{DDA_OSC_PLL}$ pin and cannot be turned off. This regulator controls power to the internal clock generation circuitry. The other regulator is powered from the V_{DD_IO} pins and provides power to all of the internal digital logic of the core, all peripherals and the internal memories. This regulator can be turned off, if an external V_{DD_CORE} voltage is externally applied to the V_{CAP} pins.

In summary, the entire chip can be supplied from a single 3.3 volt supply if the large core regulator is enabled. If the regulator is not enabled, a dual supply 3.3V/2.5V configuration can also be used.

Notes:

- Flash, RAM and internal logic are powered from the core regulator output
- V_{PP}1 and V_{PP}2 are not connected in the customer system
- All circuitry, analog and digital, shares a common V_{SS} bus

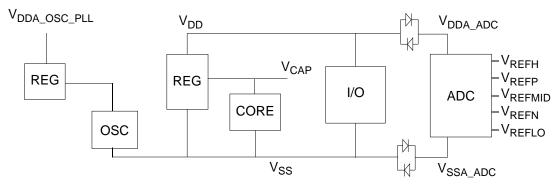


Figure 12-1 Power Management

Part 13 Ordering Information

Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor sales office or authorized distributor to determine availability and to order parts.

Part	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Ambient Temperature Range	Order Number
MC56F8355	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	128	60	-40° to + 105°C	MC56F8355VFG60
MC56F8355	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	128	60	-40° to + 125°C	MC56F8355MFG60
MC56F8155	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	128	40	-40° to + 105°C	MC56F8155VFG
MC56F8355	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	128	60	-40° to + 105°C	MC56F8355VFGE*
MC56F8355	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	128	60	-40° to + 125°C	MC56F8355MFGE*
MC56F8155	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	128	40	-40° to + 105°C	MC56F8155VFGE*

Table 13-1	Orderina	Information
	e ao mg	

*This package is RoHS compliant.

Power Distribution and I/O Ring Implementation

Power Distribution and I/O Ring Implementation

Power Distribution and I/O Ring Implementation

THIS PAGE IS INTENTIONALLY BLANK

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty. representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc. 2005, 2006, 2009. All rights reserved.

MC56F8355 Rev. 17 08/2009

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9