- Ideal for 303.825 MHz Transmitters - Very Low Series Resistance - Quartz Stability - Complies with Directive 2002/95/EC (RoHS) The RO3104C is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at approximately 303.825 MHz. This SAW was designed for AM transmitters in automotive-keyless-entry applications operating in the USA under FCC Part 15, in Canada under DoC RSS-210, and in Italy. **Absolute Maximum Ratings** | Absolute Maximum Natings | | | | | |--|------------|-------|--|--| | Rating | Value | Units | | | | Input Power Level | 0 | dBm | | | | DC Voltage | 12 | VDC | | | | Storage Temperature | -40 to +85 | °C | | | | Soldering Temperature (10 seconds / 5 cycles max.) | 260 | °C | | | ## **RO3104C** ## 303.825 MHz SAW Resonator #### **Electrical Characteristics** | Characteristic | | Sym | Notes | Minimum | Typical | Maximum | Units | |-------------------------------|--------------------------------------|-------------------|------------|---------|----------------|---------|---------------------| | Frequency (+25 °C) | Absolute Frequency | f _C | 2, 3, 4, 5 | 303.750 | | 303.900 | MHz | | | Tolerance from 303.825 MHz | Δf_{C} | 2, 3, 4, 3 | | | ±75 | kHz | | Insertion Loss | | IL | 2, 5, 6 | | 1.3 | 2.0 | dB | | Quality Factor | Unloaded Q | Q _U | | | 9800 | | | | | 50W Loaded Q | Q_L | | | 1300 | | | | Temperature Stability | Turnover Temperature | T _O | | 10 | 25 | 40 | °C | | | Turnover Frequency | f _O | 6, 7, 8 | | f _C | | | | | Frequency Temperature Coefficient | FTC | | | 0.032 | | ppm/°C ² | | Frequency Aging | Absolute Value during the First Year | f _A | 1, 6 | | 10 | | ppm/yr | | DC Insulation Resistance bet | ween Any Two Terminals | | 5 | 1.0 | | | MΩ | | RF Equivalent RLC Model | Motional Resistance | R_{M} | | | 15.6 | | Ω | | | Motional Inductance | L _M | 5, 7, 9 | | 79.7 | | μH | | | Motional Capacitance | C _M | | | 3.4 | | fF | | | Shunt Static Capacitance | Co | 5, 6, 9 | | 3.3 | | pF | | Test Fixture Shunt Inductance | е | L _{TEST} | 2, 7 | | 83.9 | | nΗ | | Lid Symbolization | | | 1. | 688 | // YWWS | • | l . | | Standard Reel Quantity | Reel Size 7 Inch | | | 500 P | ieces / Reel | | | | | Reel Size 13 Inch | | | 3000 F | Pieces / Reel | | | # *** ## CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes: - Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years. - 2. The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN} , with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST} , is tuned for parallel resonance with C_O at f_C . Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is approximately equal to the resonator f_C . - One or more of the following United States patents apply: 4,454,488 and 4,616,197. - Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer. - 5. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$. - The design, manufacturing process, and specifications of this device are subject to change without notice. - Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O. Turnover temperature, T_O, is the temperature of maximum (or turnover) - Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: f = f_O [1 FTC (T_O -T_C)²]. Typically oscillator T_O is approximately equal to the specified resonator T_O. - 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_{O} is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can by calculated as: $C_{P} \approx C_{O}$ 0.05 pF. #### **Electrical Connections** The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit. | Pin | Connection | | | | |-----|------------|--|--|--| | 1 | NC | | | | | 2 | Terminal | | | | | 3 | NC | | | | | 4 | NC | | | | | 5 | NC | | | | | 6 | Terminal | | | | | 7 | NC | | | | | 8 | NC | | | | #### **Case Dimensions** | Dimension | mm | | | Inches | | | |-----------|------|------|------|--------|-------|-------| | | Min | Nom | Max | Min | Nom | Max | | Α | 4.8 | 5.0 | 5.2 | 0.189 | 0.197 | 0.205 | | В | 4.8 | 5.0 | 5.2 | 0.189 | 0.197 | 0.205 | | С | | | 1.7 | | | 0.067 | | D | | 2.08 | | | 0.082 | | | E | | 1.17 | | | 0.046 | | | F | | 0.64 | | | 0.025 | | | G | 2.39 | 2.54 | 2.69 | 0.094 | 0.100 | 0.106 | #### **Typical Test Circuit** The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_O , at F_C . #### **Electrical Test** #### **Power Test** ## **Typical Application Circuits** #### **Equivalent LC Model** #### **Temperature Characteristics** The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions. ## **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 ## Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: ### http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 ### Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9