Hex Unbuffered Inverter

High-Performance Silicon-Gate CMOS

The MC74HCU04A is identical in pinout to the LS04 and the MC14069UB. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of six single-stage inverters. These inverters are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high-input impedance amplifier. For digital applications, the HC04A is recommended.

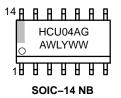
Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V; 2.5 to 6.0 V in Oscillator Configurations
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With the JEDEC Standard No. 7.0 A Requirements
- Chip Complexity: 12 FETs or 3 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

A1 1 2 Y1 A2 3 4 Y2 A3 5 6 Y3 A4 9 8 Y4 A5 11 10 Y5 A6 13 12 Y6 Y = Ā PIN 14 = V_{CC} PIN 7 = GND

ON Semiconductor®

http://onsemi.com



SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

A1 [1●	14	v _{cc}
Y1 [2	13] A6
A2 [3	12] Y6
Y2 [4	11] A5
A3 [5	10] Y5
Y3 [6	9] A4
GND [7	8] Y4

MARKING DIAGRAMS

A = Assembly Location

L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

Inputs	Outputs
A	Y
H	ΗL

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from case for 10 Seconds SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	- 55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)	_	No Limit	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

					Guaranteed Limit			
Symbol	Parameter	Test Conc	litions	V _{CC} V	–55 to 25°C	≤ 85 ° C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage			2.0 3.0 4.5 6.0	1.7 2.5 3.6 4.8	1.7 2.5 3.6 4.8	1.7 2.5 3.6 4.8	V
V _{IL}	Maximum Low–Level Input Voltage			2.0 3.0 4.5 6.0	0.3 0.5 0.8 1.1	0.3 0.5 0.8 1.1	0.3 0.5 0.8 1.1	V
V _{OH}	Minimum High–Level Output Voltage	$V_{in} = GND$ $ I_{out} \le 20 \mu A$		2.0 4.5 6.0	1.8 4.0 5.5	1.8 4.0 5.5	1.8 4.0 5.5	V
		V _{in} = GND	$\begin{split} I_{out} &\leq 2.4 \text{ mA} \\ I_{out} &\leq 4.0 \text{ mA} \\ I_{out} &\leq 5.2 \text{ mA} \end{split}$	3.0 4.5 6.0	2.36 3.86 5.36	2.26 3.76 5.26	2.20 3.70 5.20	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} For $V_{CC} = 2.0 \text{ V}$, $V_{out} = 0.2 \text{ V}$ or $V_{CC} - 0.2 \text{ V}$.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued)

					Gu	aranteed Li	mit	
Symbol	Parameter	Test Cond	litions	V _{CC} V	–55 to 25°C	≤ 85 ° C	≤ 125°C	Unit
V _{OL}	Maximum Low–Level Output Voltage	$V_{in} = V_{CC}$ $ I_{out} \le 20 \mu\text{A}$		2.0 4.5 6.0	0.2 0.5 0.5	0.2 0.5 0.5	0.2 0.5 0.5	V
		V _{in} = V _{CC}	$\begin{aligned} I_{out} &\leq 2.4 \text{ mA} \\ I_{out} &\leq 4.0 \text{ mA} \\ I_{out} &\leq 5.2 \text{ mA} \end{aligned}$	3.0 4.5 6.0	0.32 0.32 0.32	0.32 0.37 0.37	0.32 0.40 0.40	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND		6.0	±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$		6.0	1	10	40	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. For $V_{CC} = 2.0 \text{ V}$, $V_{out} = 0.2 \text{ V}$ or $V_{CC} - 0.2 \text{ V}$.

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC}	–55 to 25°C	≤ 85° C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 2)	2.0 3.0 4.5 6.0	70 40 14 12	90 45 18 15	105 50 21 18	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 2)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Inverter)*	15	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

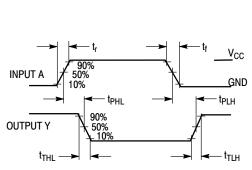
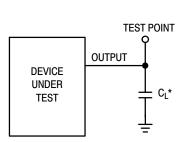



Figure 1. Switching Waveforms

*Includes all probe and jig capacitance

ince Figure 3

Figure 3. Logic Detail (1/6 of Device Shown)

Figure 2. Test Circuit

^{2.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TYPICAL APPLICATIONS

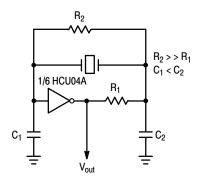


Figure 4. Crystal Oscillator

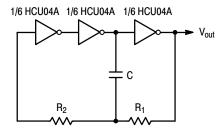


Figure 5. Stable RC Oscillator

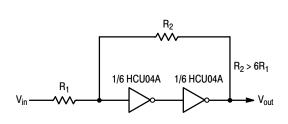


Figure 6. Schmitt Trigger

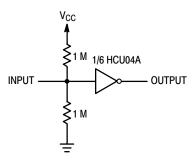


Figure 7. High Input Impedance Single-Stage Amplifier with a 2 to 6 V Supply Range

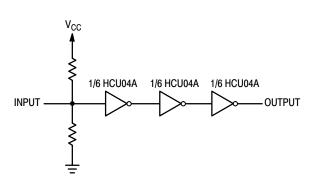
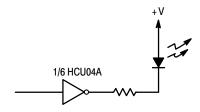
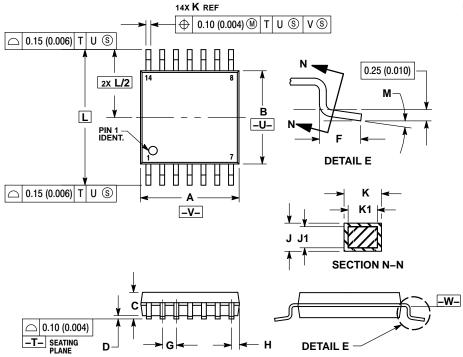



Figure 8. Multi-Stage Amplifier

For reduced power supply current, use high–efficiency LEDs such as the Hewlett–Packard HLMP series or equivalent.

Figure 9. LED Driver

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74HCU04ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
NLV74HCU04ADG*	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HCU04ADR2G	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
NLV74HCU04ADR2G*	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
MC74HCU04ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
NLV74HCU04ADTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

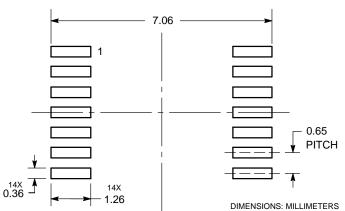
Capable.

PACKAGE DIMENSIONS

TSSOP-14 CASE 948G **ISSUE B**

- NOTES:

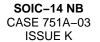
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

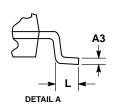

 2. CONTROLLING DIMENSION: MILLIMETER.

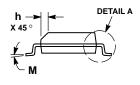
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 - EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
 NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08
 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL
 CONDITION
 - CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
 - 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252 BSC		
М	0°	8°	0°	8 °	


SOLDERING FOOTPRINT*



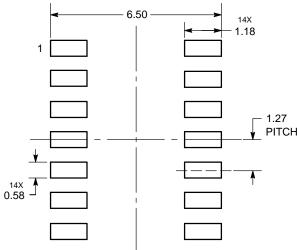

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

H Н Н Н B (M) 13X b ⊕ 0.25 M \oplus 0.25 M C A S B ®

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION b DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
- MAXIMUM MATERIAL CONDITION.


 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER

	MILLIMETERS		INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	1.35	1.75	0.054	0.068		
A1	0.10	0.25	0.004	0.010		
A3	0.19	0.25	0.008	0.010		
b	0.35	0.49	0.014	0.019		
D	8.55	8.75	0.337	0.344		
Е	3.80	4.00	0.150	0.157		
е	1.27	1.27 BSC		BSC		
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.019		
L	0.40	1.25	0.016	0.049		
М	0 °	7°	0°	7°		

SOLDERING FOOTPRINT*

C SEATING PLANE

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9