

Boost (Step-up) WLED Driver with OVP

DESCRIPTION

The TS19371 is a step-up DC/DC converter specifically designed to drive white LEDs with a constant current. The device can drive up to 126 LEDs (9S14P) from a 12V supply. The output capacitor can be as small as 4.7μF, saving space versus alternative solutions. A low 95mV feedback voltage minimizes power loss for better efficiency. Additional feature include over output voltage limiting when LEDs are disconnected. The TS19371 switches at a fixed frequency of 1.2MHz, allowing the use of tiny, low profile inductors and capacitors to minimize footprint and cost in space consideration applications for cellular phone backlighting or other hand held equipment.

FEATURES

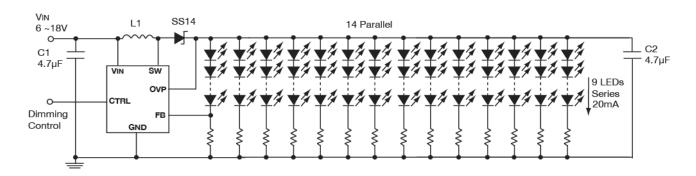
- Inherently Matched LED Current
- High Efficiency: 89% Typical
- Drives Up to 9 LEDs Series @ Vin 9~15V
- Drives Up to 126 LEDs (9S14P) @ Vin 12~15V
- Drives Up to 6 (1W) LEDs Series @ Vin 12V
- Over Output Voltage Protection 30V
- Fast 1.2MHz Switching Frequency
- Requires Only 4.7µF Output Capacitor
- PWM Dimming Control 1kHz to 10kHz
- Analog Dimming Control
- Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC.
- Halogen-Free according to IEC 61249-2-21

APPLICATION

- Cellular Phones
- Portable Electronics Devices PDA, GPS
- LCD Display Module
- White LED Backlighting
- MR-16 Lighting

SOT-26

Pin Definition:



- 1. SW
- 2. GND
- 3. FB
- 4. CTRL
- 5. OVP

6. VIN

Notes: MSL 1 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

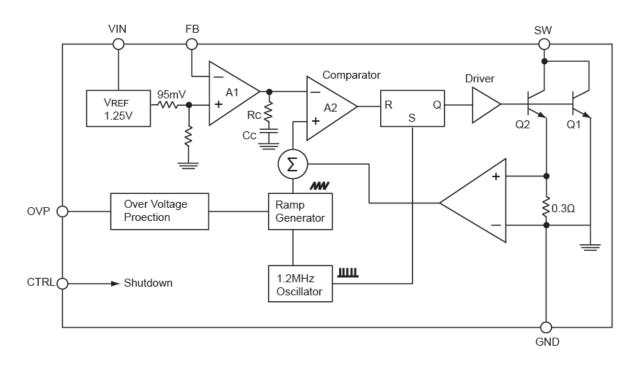
1

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified) (Note 1)				
PARAMETER	SYMBOL	LIMIT	UNIT	
Input Voltage	V _{IN}	20	V	
Supply Voltage (Recommended)	V _{IN}	2.5 ~ 18	V	
FB Voltage	V_{FB}	10	V	
SW Voltage	V _{SW}	36	V	
CTRL Voltage	V_{CTRL}	10	V	
Ambient Temperature Range	T _A	-40 to +85	°C	
Junction Temperature Range	TJ	-40 to +125	°C	

THERMAL PERFORMANCE (Note 3)						
PARAMETER	SYMBOL	LIMIT	UNIT			
Thermal Resistance Junction to Case	$R_{ heta JC}$	106	°C/W			
Thermal Resistance Junction to Ambient R _{θJA} 220						

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
PARAMETER	STWIBUL	CONDITION	IAIIIA	IIP	IVIAA	ONII
Input Voltage Range	V_{IN}		2.5		18	V
Feedback Voltage	V_{FB}	I _{SW} =180mA, V _{IN} =5V	80	95	110	mV
FB Pin Bias Current	I _B		10	45	100	nA
Committee Committee	1			2.1	3.0	mA
Supply Current	Ι _Q	C _{TRL} =0V		0.1	1.0	μA
Switching Frequency	F _{RSW}		0.8	1.2	1.6	MHz
Switch Current Limit	I _{CL}			650		mA
Maximum Duty Cycle	D _{TMX}		85	90		%
Switch V _{CESAT}	V_{SAT}	At I _{SW} = 250mA		350		mV
Switch Leakage Current	I _{LKG}	V _{SW} =5V		0.01	5	μΑ
Valtana Frankla Cantral		High	1.5			V
Voltage Enable Control	V _{CTL}	Low			0.4	V
CTRL Pin Bias Current	I _{CTL}	C _{TRL} =2V		65		μΑ
Over Voltage Protection	OVP			30		V

Note:


- 1. Absolute maximum ratings are limits beyond which damage to the device may occur.
- 2. The maximum allowable power dissipation is a function of maximum function temperature, $T_J(max)$, the junction to ambient thermal resistance, $R_{\theta JA}$, and the ambient temperature. The maximum allowable, power dissipation at any ambient temperature is calculated using: $PD(MAX)=[T_J(max)-T_A]/R_{\theta JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature. All limits at temperature extremes are guaranteed via correlation using standard statistical methods

ORDERING INFORMATION

PART NO.	PACKAGE	PACKING
TS19371CX6 RFG	SOT-26	3,000pcs / 7"Reel

FUNCTION BLOCK

PIN DESCRIPTION

	1411 11014	-
PIN NO.	NAME	FUNCTION
		Switching Pin. This is the collector of the internal NPN power switch.
1	SW	Connect to inductor and diode. Minimize the metal trace area connected to
		this pin to reduce EMI.
2	Ground	Ground Pin. Connect directly to local ground plane.
3	FB	Feedback Pin. Reference voltage is 95mV. Connect LEDs and a resistor at
3	ГБ	this pin. LED current is determined by the resistance and CTRL voltage.
		Shutdown Pin and Dimming Control Pin.
4	CTRL	V _{CTRL} > 1.8V generates full-scale LED current.
4	CIKL	V_{CTRL} < 0.4V chip is off.
		Switching from 04V to 2.0V, PWM duty cycle controls the LED current.
5	OVP Over Voltage Protection, 30V.	
	\	Input Supply Pin. Bypass this pin with a capacitor as close to the device as
6 VIN		possible.

APPLICATION INFORMATION

Operation

The TS19371 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the block diagram. At the start of each oscillator cycle, the RS latch is set, which turns on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A2, the RS latch is reset turning off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the reference voltage of 95mV. In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered.

Soft Start and Current Limit

The internal soft start circuit minimizes the inrush current during turning on TS19371. The Typical switch current is limited to about 650mA by the chip.

Over Voltage Protection

The TS19371 has design an internal latched off open-circuit protection circuit, the additional sense pin to detect the voltage when the LEDs are disconnected from the circuit or fail open, the TS19371 will shutdown until input condition changes to bring it out of the shutdown mode.

Inductor Selection

A 10µH inductor is recommended for most TS19371 applications. Although small size and high efficiency are major concerns, the inductor should have low core losses at 1.2MHz and low DCR (copper wire resistance).

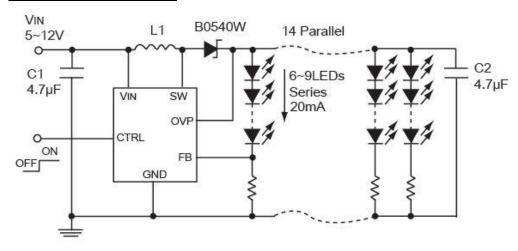
Diode Selection

Schottky diodes, with their low forward voltage drop and fast reverse recovery, are the ideal choices for TS19371 applications. The forward voltage drop of a Schottky diode represents the conduction losses in the diode while the diode capacitance (CT or CD) represents the switching losses. For diode selection, both forward voltage drop and diode capacitance need to be considered. Schottky diodes with higher current ratings usually have lower forward voltage drop and larger diode capacitance, which can cause significant switching losses at the 1.2MHz switching frequency of the TS19371. A Schottky diode rated at 1000mA is sufficient for most TS19371 applications.

Capacitor Selection

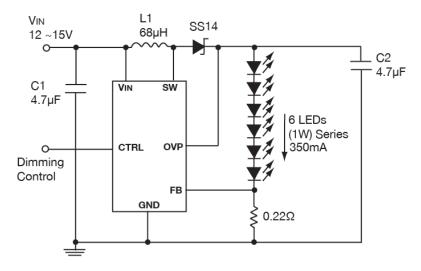
The small size of ceramic capacitors makes them ideal for TS19371 applications. X5R and X7R types are recommended because they retain their capacitance over wider voltage and temperature ranges than other types such as Y5V or Z5U. A $4.7\mu F$ input capacitor and a $4.7\mu F$ output capacitor are sufficient for most TS19371 applications.

LED Current Control


The LED current is controlled by the feedback resistor (R1). The feedback reference is 95mV. The LED current is 95mV/R1. The formula and table 3 for R1 selection are shown below. R1=95mV/I_{LED}

I _{LED} (mA)	R1(Ω)
5	19.1
10	9.53
12	7.87
15	6.34
20	4.75

APPLICATION INFORMATION (CONTINUE)


Typical Application Circuit

Reference Design Information

VIN Range (V)	VLED (V)	L (µH)	LED (Series)	LED (Parallel)	Current (Series/mA)	Resistor (Ω)	Efficiency (%)
5	19.8	22	6pcs	14	20	4.75	81.2
9	29.7	33	9pcs	14	20	4.75	83.6
12	29.7	47	9pcs	14	20	4.75	87.2
15	29.7	68	9pcs	14	20	4.75	88.4

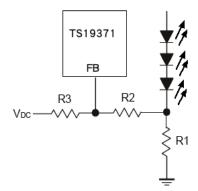
Typical Application Circuit for 1W x 6pcs LEDs

Reference Design Information

VIN Range	VLED.	L (µH)	1W LED	Current	Resistor	Efficiency
(V)	(V)		(Series)	(mA)	(Ω)	(%)
12~15	19.8	68	6pcs	350	0.22	88

APPLICATION INFORMATION (CONTINUE)

LED Dimming Control


There are some different types of dimming control circuits:

1. Using a PWM Signal to CTRL Pin

With the PWM signal applied to the CTRL pin, the TS19371 is turned on or off by the PWM signal. The LEDs operate at either zero or full current. The average LED current increases proportionally with the duty cycle of the PWM signal. A 0% duty cycle will turn off the TS19371 and corresponds to zero LED current. A 100% duty cycle corresponds to full current. The typical frequency range of the PWM signal is 1kHz to 10kHz.

The magnitude of the PWM signal should be higher than the minimum V_{CTRL} high.

For some applications, the preferred method of brightness control is a variable DC voltage to adjust the LED current. The dimming control using a DC voltage is shown in below figure. As the DC voltage increases, the voltage drop on R2 increases and the voltage drop on R1 decreases. Thus, the LED current decreases. The selection of R2 and R3 will make the current from the variable DC source much smaller than the LED current and much larger than the FB pin bias current. For VDC range from 0V to 2V, the selection of resistors in Figure 4 gives dimming control of LED current from 0mA to 20mA.

Dimming Control using a DC Voltage

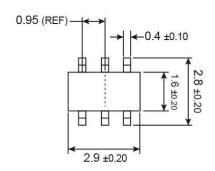
V _{DC} (V)	V _{FB}	I _{OUT} (mA)
2	0	0
1.8	2.2	0.43
1.6	9.2	1.8
1.4	19.6	3.6
1.2	31.1	6
1	43.4	8.5
0.8	63	12.3
0.6	74	14.5
0.4	86.4	16.9
0.2	96.9	19
0	102	20

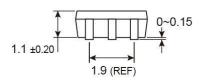
2. Using a Filtered PWM Signal

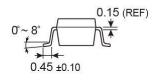
The filtered PWM signal can be considered as an adjustable DC voltage. It can be used to replace the variable DC voltage source in dimming control. The circuit is shown as follow:

Dimming Control using a Filtered PWM Signal

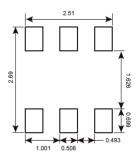
Duty	I _{OUT} (mA)		
0%	20		
20%	17.4		
30%	15		
40%	12.4		
50%	10		
60%	8		
70%	6.4		
80%	4.07		
100%	0		
PWM: 2V; 1kHz; Vin=3.6V			


3. Using Control pin for dimming


The PWM signal can be considered as TTL signal to control pin to change the power on/off time.



PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)


SOT-26

SUGGESTED PAD LAYOUT (Unit: Millimeters)

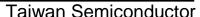
7

MARKING DIAGRAM

71YML #1H H H

71 = Device Code

Y = Year Code


M = Month Code for Halogen Free Product

O =Jan P =Feb Q =Mar R =Apr

 $S = May \quad T = Jun \quad U = Jul \quad V = Aug$

W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9