

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

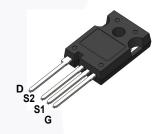
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

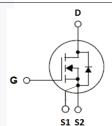
May 2016

FCH041N65EFL4

N-Channel SuperFET[®] II FRFET[®] MOSFET 650 V, 76 A, 41 m Ω

Features


- 700 V @ T_J = 150°C
- Typ. $R_{DS(on)} = 36 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_q = 229 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 631 pF)
- · 100% Avalanche Tested
- · RoHS Compliant


Applications

- LCD / LED / PDP TV Telecom / Server Power Supplies
- · Solar Inverter
- AC DC Power Supply

Description

SuperFET® II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. SuperFET II FRFET® MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

S1: Kelvin Source S2: Power Source

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter		FCH041N65EFL4	Unit
V_{DSS}	Drain to Source Voltage			650	V
V	Cata to Course Voltage	- DC		±20	V
V_{GSS}	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	7 V
	Drain Current	- Continuous (T _C = 25°C)		76	^
ID	Drain Current	- Continuous (T _C = 100°C)	- Continuous (T _C = 100°C)		A
I _{DM}	Drain Current	- Pulsed	(Note 1)	228	Α
E _{AS}	Single Pulsed Avalanche Energ	ЭУ	(Note 2)	2025	mJ
I _{AR}	Avalanche Current		(Note 1)	15	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	5.95	mJ
dv/dt	MOSFET dv/dt		100	V/ns	
αν/αι	Peak Diode Recovery dv/dt		(Note 3)	50	V/IIS
D	Payer Dissipation	(T _C = 25°C)	-	595	W
P_D	Power Dissipation	- Derate Above 25°C		4.76	W/°C
T _J , T _{STG}	Operating and Storage Temper	ature Range		-55 to +150	°C
T _L	Maximum Lead Temperature for 1/8" from Case for 5 Seconds	or Soldering,		300	°C

Thermal Characteristics

Symbol	Parameter	FCH041N65EFL4	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.21	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FCH041N65EFL4	FCH041N65EF	TO-247 4L	Tube	N/A	N/A	30 units

Test Conditions

Min.

Тур.

Max.

Unit

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted. Parameter

Off Chara	acteristics					
D) /	Drain to Course Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	650	-	-	W
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 10 \text{ mA}, T_J = 150^{\circ}\text{C}$	700	-	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, Referenced to 25°C	-	0.72	-	V/°C
	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V	-	-	10	
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 520 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	145	-	μΑ
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA

On Characteristics

Symbol

$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 7.6$ mA	3	-	5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 38 A	-	36	41	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 20 V, I _D = 38 A	-	71.7	1	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V = 400 V V = 0 V	-	9446	12560	pF
C _{oss}	Output Capacitance	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz	-	366	490	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1011 12	-	35	-	pF
C _{oss}	Output Capacitance	V _{DS} = 380 V, V _{GS} = 0 V, f = 1 MHz	-	197	-	pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	-	631	-	pF
$Q_{g(tot)}$	Total Gate Charge at 10V	V _{DS} = 380 V, I _D = 38 A,	-	229	298	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = 10 V	-	50	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	(Note 4)	-	90	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	0.6	-	Ω

Switching Characteristics

$t_{d(on)}$	Turn-On Delay Time		-	55	120	ns
t _r	Turn-On Rise Time	$V_{DD} = 380 \text{ V}, I_{D} = 38 \text{ A},$	- /	25	60	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$	-	169	348	ns
t _f	Turn-Off Fall Time	(Note 4)	_/	18	46	ns

Drain-Source Diode Characteristics

Is	Maximum Continuous Drain to Source Diode	Maximum Continuous Drain to Source Diode Forward Current			76	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	228	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 38 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 38 A,	-	207	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	1.5	-	μС

- 1. Repetitive rating: pulse width limited by maximum junction temperature.
- 2. I_{AS} = 15 A, R_{G} = 25 Ω , starting T_{J} = 25°C.
- 3. I $_{SD} \leq$ 38 A, di/dt \leq 200 A/µs, V $_{DD} \leq$ 380 V, starting T $_{J}$ = 25°C.
- 4. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

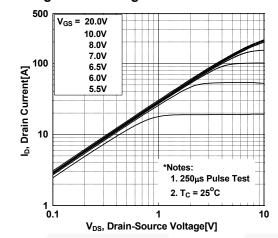


Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

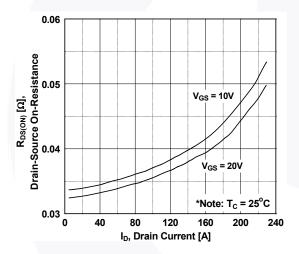


Figure 5. Capacitance Characteristics

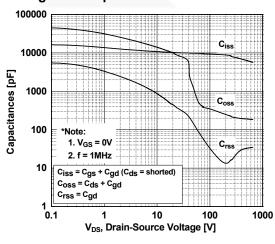


Figure 2. Transfer Characteristics

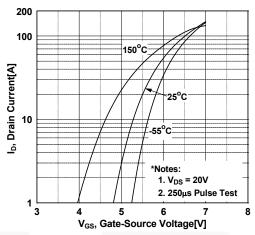
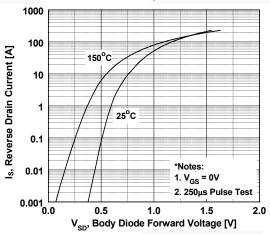
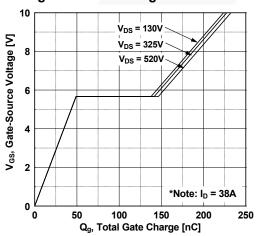




Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

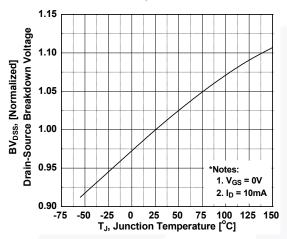


Figure 9. Maximum Safe Operating Area

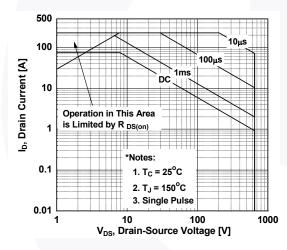


Figure 11. Eoss vs. Drain to Source Voltage

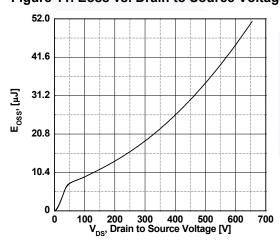


Figure 8. On-Resistance Variation vs. Temperature

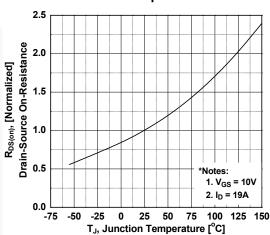
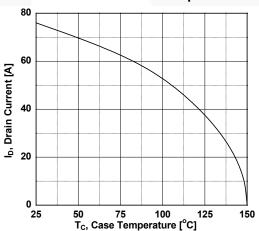
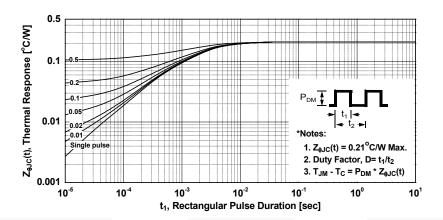




Figure 10. Maximum Drain Current vs. Case Temperature

Typical Performance Characteristics (Continued)

Figure 12. Transient Thermal Response Curve

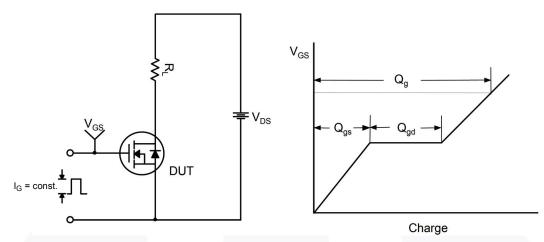


Figure 15. Gate Charge Test Circuit & Waveform

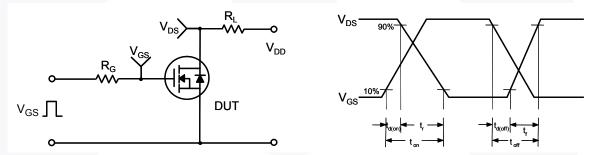


Figure 16. Resistive Switching Test Circuit & Waveforms

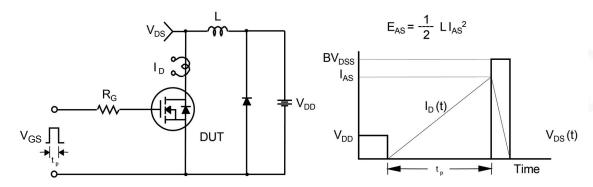


Figure 17. Unclamped Inductive Switching Test Circuit & Waveforms

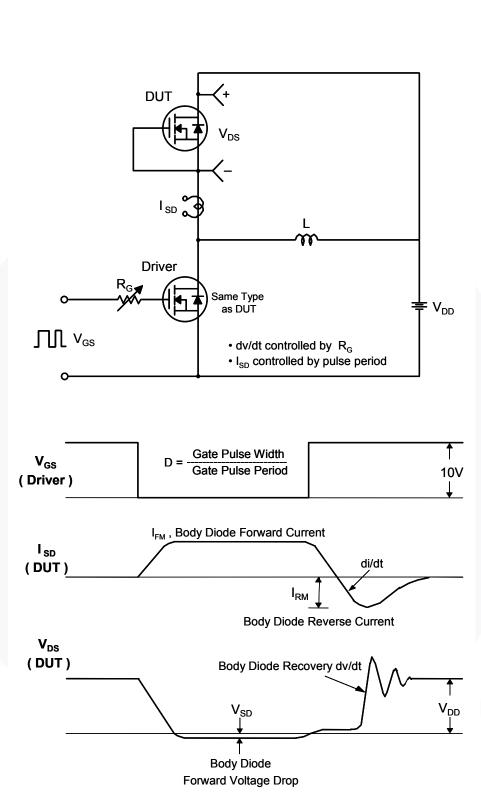
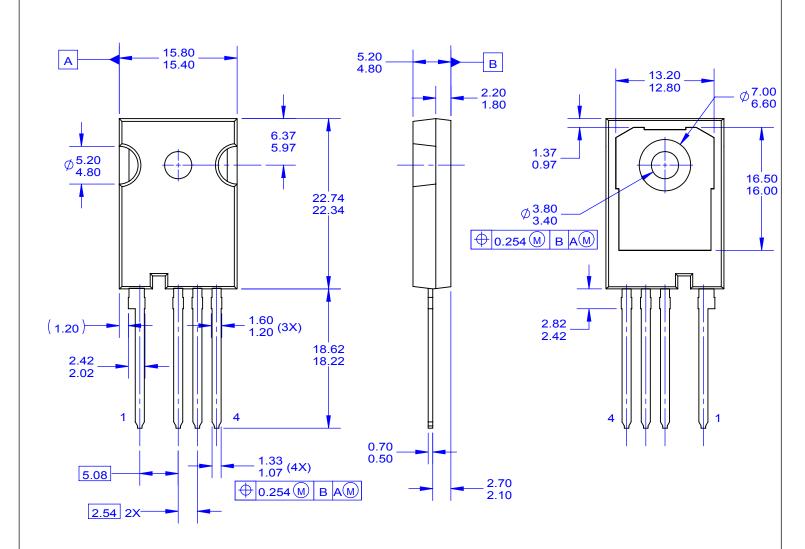



Figure 18. Peak Diode Recovery dv/dt Test Circuit & Waveforms

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5-2009.
- F. DRAWING FILENAME; MKT-TO247A04_REV02.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FCH041N65EFL4

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9