

LV8402GP

Bi-CMOS IC

2ch Forward/Reverse Motor Driver

Overview

LV8402GP is a 2ch forward/reverse motor driver IC using D-MOS FET for output stage. As MOS circuit is used, it supports the PWM input. Its features are that the on resistance (0.75Ω typ) and current dissipation are low. It also provides protection functions such as heat protection circuit and reduced voltage detection and is optimal for the motors that need high-current.

Functions

- 2ch forward/reverse motor driver.
- Low power consumption.
- Low ON resistance 0.75Ω.
- Built-in low voltage reset and thermal shutdown circuit.
- 4 mode function forward/reverse, brake and standby.
- Built-in charge pump.
- Built-in EXTRA mode for PWM port reduction when a motor drives by two phase excitation.

Specifications

Maximum Ratings at Ta = 25°C, SGND = PGND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage (for load)	VM max		-0.5 to 16.0	V
Power supply voltage (for control)	V _{CC} max		-0.5 to 6.0	V
Output current	I _O max		1.4	A
Output peak current	I _O peak	t ≤ 10ms	2.5	A
Input voltage	V _{IN} max		-0.5 to V _{CC} +0.5	V
Allowable power dissipation	P _d max	Mounted on a specified board*	1050	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	T _{stg}		-55 to +150	°C

* Specified board: 40.0mm × 50.0mm × 0.8mm, 4 Layer glass epoxy board.

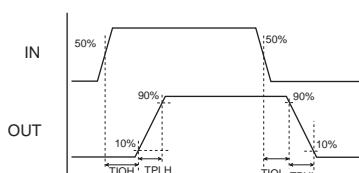
Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc. , please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Allowable Operating Conditions at $T_a = 25^\circ\text{C}$, SGND = PGND = 0V

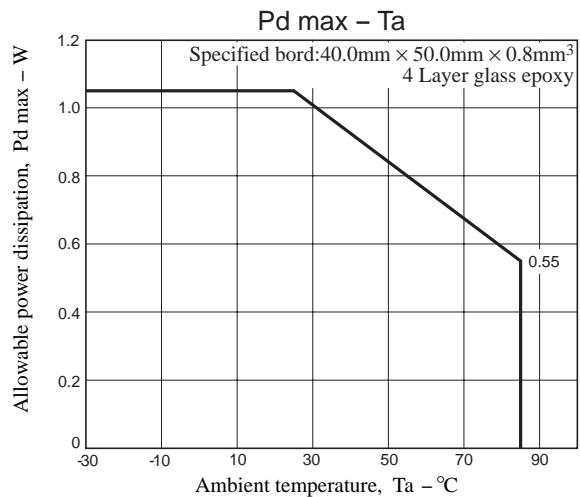
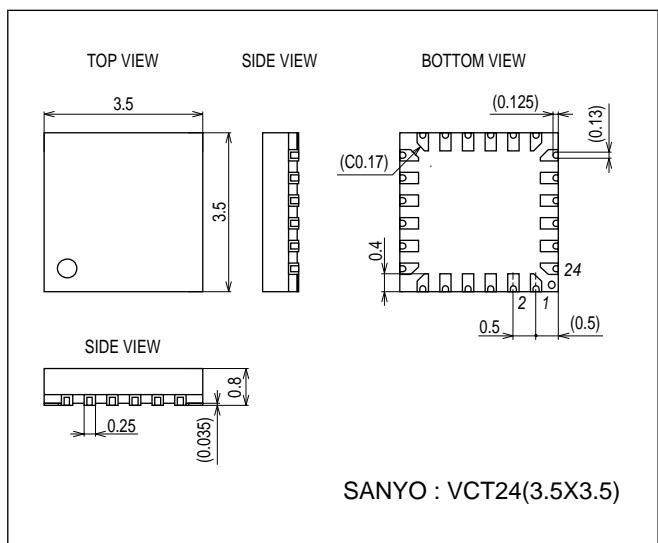
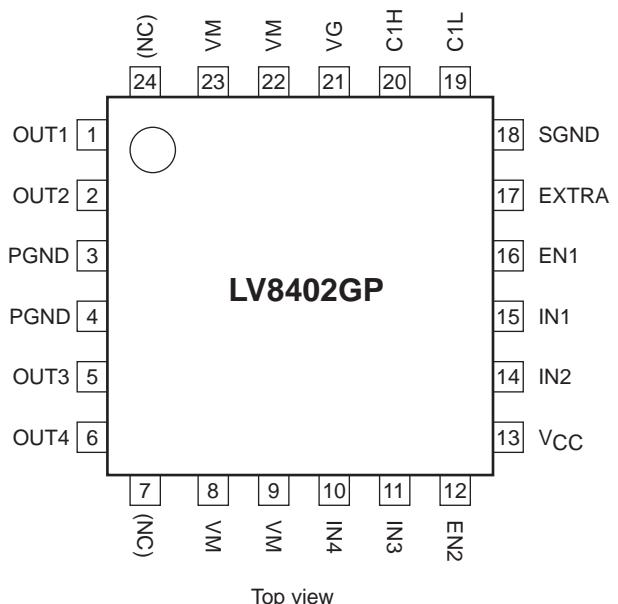
Parameter	Symbol	Conditions	Ratings		Unit
Power supply voltage (VM pin)	VM		1.5 to 15.0		V
Power supply voltage (V _{CC} pin)	V _{CC}		2.8 to 5.5		V
Input signal voltage	V _{IN}		0 to V _{CC}		V
Input signal frequency	f max		200	kHz	

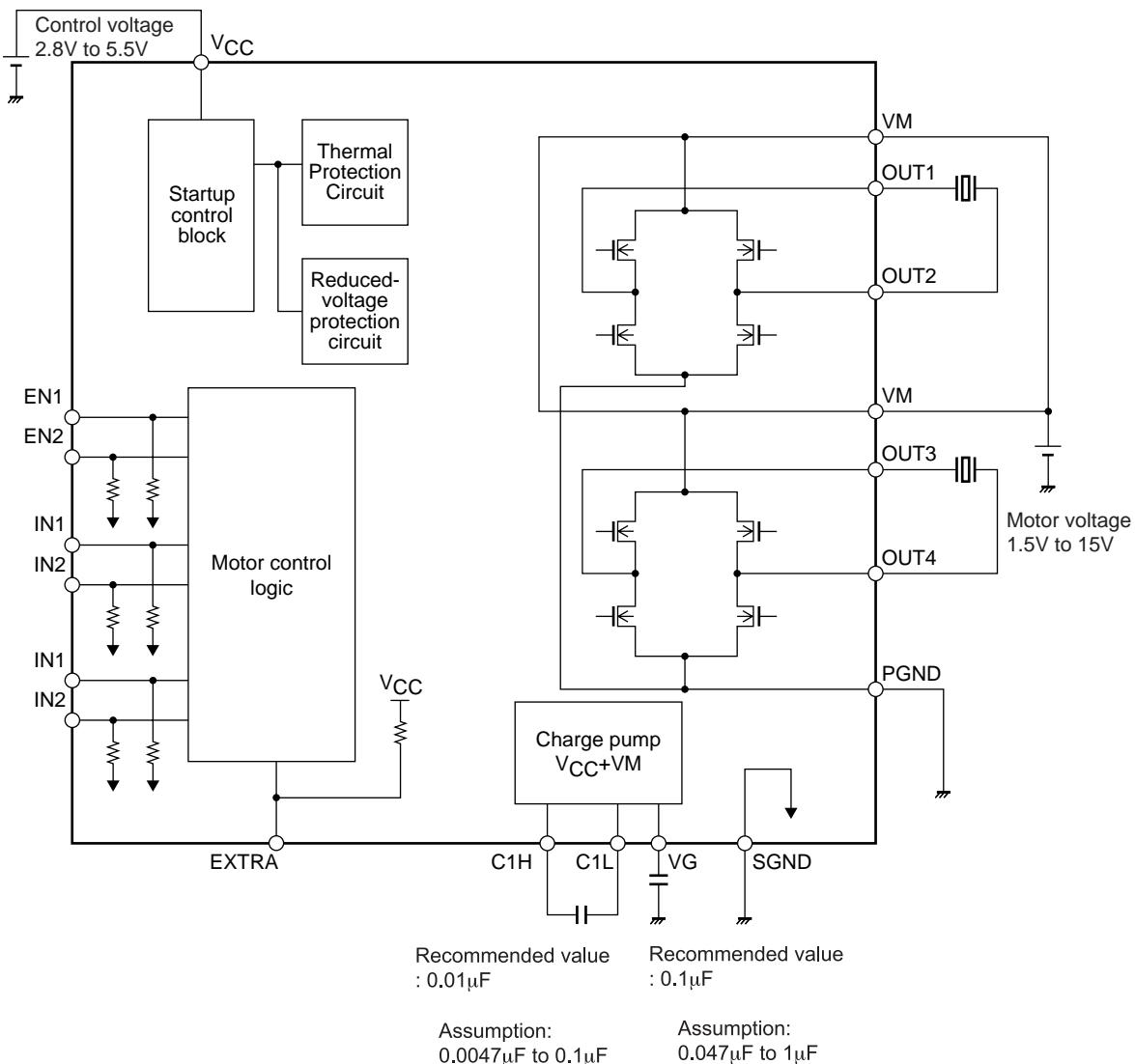

Electrical Characteristics $T_a = 25^\circ\text{C}$, $V_{CC} = 3.0\text{V}$, $VM = 6.0\text{V}$, SGND = PGND = 0V, unless otherwise specified.

Parameter	Symbol	Conditions	Remarks	Ratings			Unit	
				min	typ	max		
Standby load current drain	I _{MO}	EN1=EN2=0V, EXTRA=3V	1			1.0	µA	
Standby control current drain	I _{CO}	EN1=EN2=IN1=IN2=IN3=IN4=0V	2			1.0	µA	
Operating control current drain	I _{C1}	EN=3V, with no load	3		0.85	1.2	mA	
High-level input voltage	V _{IH}	$2.7 \leq V_{CC} \leq 5.5\text{V}$		0.6×V _{CC}		V _{CC}	V	
Low-level input voltage	V _{IL}	$2.7 \leq V_{CC} \leq 5.5\text{V}$		0		0.2×V _{CC}	V	
High-level input current (IN1, IN2, IN3, IN4, EN1, EN2)	I _{IH}	V _{IN} = 3V	4		15	25	µA	
Low-level input current (IN1, IN2, IN3, IN4, EN1, EN2)	I _{IL}	V _{IN} = 0V	4	-1.0			µA	
Pull-down resistance value	R _{DN}	IN1, IN2, IN3, IN4, EN1, EN2	4	100	200	400	kΩ	
High-level input current 2 (IN1, IN2, IN3, IN4, EN1, EN2)	I _{IH2}	V _{IN} = 3V	5			1.0	µA	
Low-level input current 2 (IN1, IN2, IN3, IN4, EN1, EN2)	I _{IL2}	V _{IN} = 0V	5	-25	-15		µA	
Pull-up resistance value	R _{UP}	EXTRA	5	100	200	400	kΩ	
Charge pump voltage	V _G	V _{CC} + VM		8.5	9.0	9.5	V	
Output ON resistance 1	R _{ON1}	Sum of top and bottom sides ON resistance.	6		0.75	1.2	Ω	
Output ON resistance 2	R _{ON2}	Sum of top and bottom sides ON resistance. $V_{CC} = 2.8\text{V}$	6		1.0	1.5	Ω	
Low-voltage detection voltage	V _{CS}	V _{CC} pin voltage is monitored	7	2.15	2.30	2.45	V	
Thermal shutdown temperature	T _{th}	Design guarantee value *	8	150	180	210	°C	
Output block	Turn-on time	T _{PLH}	When no load. Design guarantee value *	9		0.3	0.5	µS
			When no load.	10		100	200	nS
	Turn-off time	T _{PHL}	When no load. Design guarantee value *	9		0.35	0.6	µS
			When no load.	10		100	200	nS

*: Design guarantee value and no measurement is preformed.

Remarks




1. Current consumption when output at the VM pin is off.
2. Current consumption at the V_{CC} for standby mode.
3. EN1=3V (IC starts) shows the current consumption of the V_{CC} pin.
4. Pins IN 1, 2, 3, 4, EN1, and EN2 are all pulled down according to resistance.
5. EXTRA pin is pulled up according to resistance.
6. Sum of upper and lower saturation voltages of OUT pin divided by the current.
7. All power transistors are turned off if a low V_{CC} condition is detected.
8. All output transistors are turned off if the thermal protection circuit is activated. They are turned on again as the temperature goes down.
9. Rising time from 10 to 90% and falling time from 90 to 10% are specified.
10. The change of the voltage of the input pin provides for time until the voltage of the terminal OUT changes by 10% at the time of 50% of V_{CC}.


Package Dimensions

unit : mm (typ)

3322A

Pin Assignment

Block Diagram

* Connect a kickback absorption capacitor as near as possible to the IC. Coil kickback may cause increase in VM line voltage, and a voltage exceeding the maximum rating may be applied momentarily to the IC, which results in deterioration or damage of the IC

Truth Table

EXTRA	EN1 (EN2)	IN1 (IN3)	IN2 (IN4)	OUT1 (OUT3)	OUT2 (OUT4)	Charge pump	Mode
H	H	H	H	Z	Z	ON	Stand-by
		H	L	L	H		Reverse
		L	H	H	L		Forward
		L	L	L	L		Brake
	L	-	-	L	L	OFF	Stand-by
L	H	H	-	L	H	ON	Reverse
		L	-	H	L		Forward
	L	-	-	L	L		Brake

- : denotes a don't care value. Z: High-Impedance

• In the standby mode, current consumption vanishes.

* All power transistors turn off and the motor stops driving when the IC is detected in low voltage or thermal protection mode.

Pin Functions

Pin No.	Pin name	Description	Equivalent circuit
20 21	C1H VG	Step-up capacitor connection pin.	
17	EXTRA	Extra logic pin. (Logic switch for PWM)	
16 12 15 14 11 10	EN1 EN2 IN1 IN2 IN3 IN4	Driver output switching. Logic enable pin. (Pull-down resistor incorporated)	
1 2 5 6	OUT1 OUT2 OUT3 OUT4	Driver output.	
8, 9, 22, 23	VM	Motor block power supply.	
13	VCC	Logic block power supply.	
18	SGND	Control block ground.	
3, 4	PGND	Driver block ground.	

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of July, 2012. Specifications and information herein are subject to change without notice.

Данный компонент на территории Российской Федерации**Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

<http://moschip.ru/get-element>

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9