

Ultra Fast USB 2.0 Hub and Multi-Format Flash Media Controller with Dual SD Interfaces

PRODUCT FEATURES

General Description

The SMSC USB2660/USB2660i is a USB 2.0 compliant, Hi-Speed hub, card reader, and protocol converter combo solution. This fully integrated single chip solution provides USB expansion and flash card media reader/writer integration. SDIO bridging is possible with custom firmware. The SMSC USB2660/USB2660i provides an ultra fast interface between a USB host and today's popular flash media formats. The controller allows read/write capability to flash media from the following families:

- Secure Digital[™] (SD)
- MultiMediaCard[™] (MMC)
- Memory Stick[®] (MS)
- xD-Picture Card[™] (xD)¹

The USB2660/USB2660i offers a versatile, cost-effective, and energy-efficient hub controller with 2 downstream USB 2.0 ports. This combo solution leverages SMSC's innovative technology that delivers industry-leading data throughput in mixed-speed USB environments. Average sustained transfer rates exceeding 35 MB/s are possible².

Highlights

- 2 exposed Hi-Speed USB 2.0 downstream ports for external peripheral expansion
- The dedicated flash media reader is internally attached to a 3rd downstream port of the hub as a USB Compound Device
 - a single or multiplexed flash media reader interface
 - a non-multiplexed SD/SDIO interface (slot) for SD card reader or SDIO bridging applications
- PortMap
 - Flexible port mapping and port disable sequencing supports multiple platform designs
- PortSwap
 - Programmable USB differential-pair pin locations eases PCB design by aligning USB signal traces directly to connectors
- PHYBoost
 - Programmable USB transceiver drive strength recovers signal integrity

Features

- Compliance with the following flash media card specifications SD 2.0 / MMC 4.2 / MS 1.43 / MS-Pro 1.02 / MS-Pro-HG 1.01 / MS-Duo 1.10 / xD 1.2
- Supports a single external 3.3 V supply source; internal regulators provide 1.8 V internal core voltage for additional bill of materials and power savings
- The transaction translator (TT) in the hub supports operation of Full-Speed and Low-Speed peripherals
- 9 K RAM | 64 K on-chip ROM
- Enhanced EMI rejection and ESD protection performance
- Hub and flash media reader/writer configuration from a single source: External I²C[®] ROM or external SPI ROM
 - Configures internal code using an external I²C EEPROM
 - Supports external code using an SPI Flash EEPROM
 - Customizable vendor ID, product ID, and language ID if using an external EEPROM
- Additional SD/SDIO port for card reader or to host wireless applications such as WiFi[™], Bluetooth[®], and GPS
- Up to 20 configurable GPIOs for special functions
- The USB2660 supports the commercial temperature range of 0°C to +70°C
- The USB2660i supports the industrial temperature range of -40°C to +85°C
- 64-pin QFN lead-free, RoHS compliant package (9 x 9 mm)

Applications

- Desktop and mobile PCs
- Printers
- GPS navigation systems
- Media players/viewers
- Consumer A/V
- Set-top boxes
- Industrial products

^{1.}For xD-Picture Card[™] support, please obtain a user license from the xD-Picture Card License Office. 2.Host and media dependent.

^{2.} Host and media dependent.

ORDER NUMBERS:

USB2660/USB2660i-JZX for 64-PIN, QFN LEAD-FREE RoHS COMPLIANT PACKAGE

THIS PRODUCT MEETS THE HALOGEN MAXIMUM CONCENTRATION VALUES PER IEC61249-2-21. FOR ROHS COMPLIANCE AND ENVIRONMENTAL INFORMATION, PLEASE VISIT WWW.SMSC.COM/ROHS.

80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123

Copyright © 2010 SMSC or its subsidiaries. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC's website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation ("SMSC"). Product names and company names are the trademarks of their respective holders.

SMSC makes the following part-numbered device available for purchase only by customers who are xD-Picture Card licensees: USB2660/USB2660i.


By purchasing or ordering any of such devices, Buyer represents, warrants, and agrees that Buyer is a duly licensed Licensee under an xD-Picture CardTM License Agreement with Fuji Photo Film Co., Ltd., Olympus Optical Co., Ltd., and Toshiba Corporation; and that Buyer will maintain in effect such xD-Picture Card license and will give SMSC reasonable advance notice of any termination or expiration of such xD-Picture Card license, but in no event less than five days advance notice. SMSC may discontinue making such devices available for purchase by Buyer and/or discontinue further deliveries of such devices if such xD-Picture Card license shall expire, terminate, or cease to be in force, or if Buyer is or becomes in default of such xD-Picture Card license.

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Table of Contents

Chap	oter 1	Overview	7
Chap	oter 2	Acronyms 1	0
Chap	oter 3	Pin Configuration1	1
Chap	oter 4	Block Diagram	2
Chap 5.1		Pin Table. 1 Table. 1	
Chap 6.1 6.2 6.3 6.4	USB26 Buffer Port Po	Pin Descriptions 1 560/USB2660i Pin Descriptions 1 Type Descriptions 2 ower Control 2 BOOT Sequence 2	5 22 3
Chap 7.1		Pin Reset States 2 uset States 2	
Chap 8.1 8.2 8.3 8.4 8.5	8.1.1 8.1.2 Card F System 8.3.1 8.3.2 Set bit 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7	Configuration Options.2Hub Configuration Options2VBus Detect.2Reader2n Configurations3EEPROM/SPI Interface3EEPROM Data Descriptor37 of bmAttribute to enable the registers in Table 8.4.3EEPROM Data Descriptor Register Descriptions3A0h-A7h: Device Power Configuration3Device ID Strings.4Hub Controller Configurations4Internal Flash Media Controller Extended Configurations5I^2C EEPROM.5In-Circuit EEPROM Programming5t Configuration Option5External Hardware nRESET5USB Bus Reset5	9999000034801133344
Chap 9.1 9.2 9.3	Ceram	AC Specifications 5 tor/Crystal 5 ic Resonator 5 al Clock 5 I ² C EEPROM 5 USB 2.0 5	56 57 57 57
Chap 10.1 10.2 10.3	Maxim Operat	DC Parameters. 5 um Guaranteed Ratings. 5 ting Conditions 5 ectrical Characteristics 5	8 9

10.4	Datasheet
Chap	oter 11 GPIO Usage
-	oter 12 Package Specifications

List of Tables

Table 5.1	USB2660/USB2660i 64-Pin Table	13
Table 6.1	USB2660/USB2660i Pin Descriptions	15
Table 6.2	USB2660/USB2660i Buffer Type Descriptions	22
Table 7.1	Legend for Pin Reset States Table	26
Table 7.2	USB2660/USB2660i Reset States Table	26
Table 8.1	Internal Flash Media Controller Configurations	30
Table 8.2	Hub Controller Configurations	32
Table 8.3	Other Internal Configurations.	32
Table 8.4	Internal Flash Media Controller Extended Configurations	33
Table 8.5	Port Map Register for Ports 1 & 2	49
	Port Map Register for Port 3	
Table 8.7	nRESET Timing for EEPROM Mode	54
Table 9.1	Crystal Circuit Legend	56
Table 10.1	Pin Capacitance.	63
Table 11.1	USB2660/USB2660i GPIO Usage	64

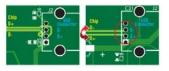
List of Figures

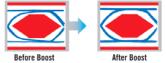
Figure 3.1	USB2660/USB2660i 64-Pin QFN	11
Figure 4.1	USB2660/USB2660i Block Diagram	12
Figure 6.1	Port Power Control with USB Power Switch	23
Figure 6.2	Port Power Control with a Single Poly Fuse and Multiple Loads	24
Figure 6.3	Port Power with Ganged Control with Poly Fuse	24
Figure 6.4	SPI ROM Connection.	25
Figure 6.5	I ² C Connection	25
Figure 7.1	Pin Reset States	26
Figure 8.1	nRESET Timing for EEPROM Mode	54
Figure 9.1	Typical Crystal Circuit	56
Figure 9.2	Capacitance Formulas	56
Figure 9.3	Ceramic Resonator Usage with SMSC IC	57
Figure 10.1	Supply Rise Time Model	58
Figure 12.1	USB2660/USB2660i 64-Pin QFN	65
Figure 12.2	64-Pin Package Tape Specifications	66
Figure 12.3	64-Pin Package Reel Specifications	67

Chapter 1 Overview

The SMSC USB2660/USB2660i is an integrated USB 2.0 compliant, Hi-Speed hub, card reader, and protocol converter combo solution. This combo solution supports today's popular multi-format flash media cards. This multi-format flash media controller and USB hub combo features two exposed downstream USB ports available for external peripheral expansion. The dedicated flash media reader/writer is internally attached to a third downstream port of the hub as a USB Compound Device which supports the following two interfaces: One interface is multiplexed for xD-Picture Card, Memory Stick, Secure Digital/MultiMediaCard, and SD/Secure Digital Input/Output. The other interface is dedicated to a second SD card slot for SDIO bridging applications. SDIO bridging is possible with custom firmware.

The USB2660/USB2660i will attach to an upstream port as a Full-Speed hub or as a Full-/Hi-Speed hub. The hub supports Low-Speed, Full-Speed, and Hi-Speed (if operating as a Hi-Speed hub) downstream devices on all of the enabled downstream ports.


All required resistors on the USB ports are integrated into the hub. This includes all series termination resistors on D+ and D– pins and all required pull-down and pull-up resistors. The overcurrent sense inputs for the downstream facing ports have internal pull-up resistors.


The USB2660/USB2660i includes programmable features such as:

PortMap which provides flexible port mapping and disable sequences. The downstream ports of a USB2660/USB2660i hub can be reordered or disabled in any sequence to support multiple platform designs with minimum effort. For any port that is disabled, the USB2660/USB2660i automatically reorders the remaining ports to match the USB host controller's port numbering scheme.

PortSwap which adds per-port programmability to USB differentialpair pin locations. PortSwap allows direct alignment of USB signals (D+/D-) to connectors avoiding uneven trace length or crossing of the USB differential signals on the PCB.

PHYBoost which enables four programmable levels of USB signal drive strengths in downstream port transceivers. PHYBoost attempts to restore USB signal integrity. The diagram on the right shows an example of Hi-Speed USB eye diagrams before (PHYBoost at 0%) and after (PHYBoost at 12%) signal integrity restoration in a compromised system environment.

Hardware Features

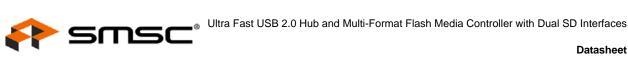
- Single chip hub and flash media controller combo
- USB2660 supports the commercial temperature range of 0°C to +70°C
- USB2660i supports the industrial temperature range of -40°C to +85°C
- Transaction translator (TT) in the hub supports operation of FS and LS peripherals
- Full power management with individual or ganged power control of each downstream port
- Optional support for external firmware access via SPI interface
- Onboard 24 MHz crystal driver circuit
- Optional external 24 MHz clock input which must be a 1.8 V signal
- Code execution via SPI ROM which must meet
 - 30 MHz or 60 MHz operation support
 - Single bit or dual bit mode support
 - Mode 0 or mode 3 SPI support

Compliance with the following flash media card specifications:

- Secure Digital 2.0 / MultiMediaCard 4.2
 - SD 2.0, SD-HS, SD-HC
 - TransFlash[™] and reduced form factor media
 - 1/4/8 bit MMC 4.2
- Memory Stick 1.43
- Memory Stick Pro Format 1.02
- Memory Stick Pro-HG Duo Format 1.01
 Memory Stick, MS Duo, MS-HS, MS Pro-HG, MS Pro
- Memory Stick Duo 1.10
- xD-Picture Card 1.2
- Up to 20 GPIOs: Configuration and polarity for special function use
 - The number of actual GPIOs depends on the implementation configuration used
 - Two GPIOs available with up to 200 mA drive and protected "fold-back" short circuit current
- 8051 8-bit microprocessor
 - 60 MHz single cycle execution
 - 64 KB ROM | 9 KB RAM
- Integrated regulator for 1.8 V core operation

Software Features

- Hub and flash media reader/writer configuration from a single source: External I²C ROM or external SPI ROM
- If the OEM is using an external EEPROM or an external SPI ROM, the following features are available:
 - Customizable vendor ID, product ID, and device ID
 - 12-hex digits maximum for the serial number string
 - 28-character manufacturer ID and product strings for the flash media reader/writer


OEM Selectable Hub Features

A default configuration is available in the USB2660/USB2660i following a reset. The USB2660/USB2660i may also be configured by an external I^2C EEPROM or via external SPI ROM flash.

Compound Device support on a port-by-port basis

- a port is permanently hardwired to a downstream USB peripheral device

- Select over-current sensing and port power control on an individual or ganged (all ports together) basis to match the OEM's choice of circuit board component selection
- Port power control and over-current detection/delay features
- Configure the delay time for filtering the over-current sense inputs
- Configure the delay time for turning on downstream port power
- Bus- or self-powered selection
- Hub port disable or non-removable configurations
- Flexible port mapping and disable sequencing supports multiple platform designs
- Programmable USB differential-pair pin location eases PCB layout by aligning USB signal lines directly to connectors
- Programmable USB signal drive strength recovers USB signal integrity using 4 levels of signal drive strength
- Indicate the maximum current that the 2-port hub consumes from the USB upstream port
- Indicate the maximum current required for the hub controller

Chapter 2 Acronyms

ACK: Handshake packet (positive acknowledgement)

EOP: End of Packet

EOF: End of (micro) Frame

FM: Flash Media

FMC: Flash Media Controller

FS: Full-Speed Device

LS: Low-Speed Device

HS: Hi-Speed Device

I²C[®]: Inter-Integrated Circuit¹

MMC: MultiMediaCard

MS: Memory Stick

MSC: Memory Stick Controller

OCS: Over-current Sense

PHY: Physical Layer

PLL: Phase-Locked Loop

RXD: Received eXchange Data

SD: Secure Digital

SDC: Secure Digital Controller

TXD: Transmit eXchange Data

UART: Universal Asynchronous Receiver-Transmitter

UCHAR: Unsigned Character

UINT: Unsigned Integer

Standard Microsystems is a registered trademark and SMSC is a trademark of Standard Microsystems Corporation. Other product and company names are trademarks or registered trademarks of their respective holders

*Note: In order to develop, make, use, or sell readers and/or other products using or incorporating any of the SMSC devices made the subject of this document or to use related SMSC software programs, technical information and licenses under patent and other intellectual property rights from or through various persons or entities, including without limitation media standard companies, forums, and associations, and other patent holders may be required. These media standard companies, forums, and associations include without limitation the following: Sony Corporation (Memory Stick, Memory Stick Pro); SD3 LLC (Secure Digital); MultiMedia Card Association (MultiMediaCard); the SSFDC Forum (SmartMedia); the Compact Flash Association (Compact Flash); and Fuji Photo Film Co., Ltd., Olympus Optical Co., Ltd., and Toshiba Corporation (xD-Picture Card). SMSC does not make such licenses or technical information available; does not promise or represent that any such licenses or technical information will actually be obtainable from or through the various persons or entities (including the media standard companies, forums, and associations), or with respect to the terms under which they may be made available; and is not responsible for the accuracy or sufficiency of, or otherwise with respect to, any such technical information.

SMSC's obligations (if any) under the Terms of Sale Agreement, or any other agreement with any customer, or otherwise, with respect to infringement, including without limitation any obligations to defend or settle claims, to reimburse for costs, or to pay damages, shall not apply to any of the devices made the subject of this document or any software programs related to any of such devices, or to any combinations involving any of them, with respect to infringement or claimed infringement of any existing or future patents related to solid state disk or other flash memory technology or applications ("Solid State Disk Patents"). By making any purchase of any of the devices made the subject of this document, the customer represents, warrants, and agrees that it has obtained all necessary licenses under then-existing Solid State Disk Patents for the manufacture, use and sale of solid state disk and other flash memory products and that the customer will timely obtain at no cost or expense to SMSC all necessary licenses under Solid State Disk Patents; that the manufacture and testing by or for SMSC of the units of any of the devices made the subject of this document which may be sold to the customer, and any sale by SMSC of such units to the customer, are valid exercises of the customer's rights and licenses under such Solid State Disk Patents; that SMSC shall have no obligation for royalties or otherwise under any Solid State Disk Patents by reason of any such manufacture, use, or sale of such units; and that SMSC shall have no obligation for any costs or expenses related to the customer's obtaining or having obtained rights or licenses under any Solid State Disk Patents. SMSC MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, IN REGARD TO INFRINGEMENT OR OTHER VIOLATION OF INTELLECTUAL PROPERTY RIGHTS. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES AGAINST INFRINGEMENT AND THE LIKE.

No license is granted by SMSC expressly, by implication, by estoppel or otherwise, under any patent, trademark, copyright, mask work right, trade secret, or other intellectual property right

**To obtain this software program the appropriate SMSC Software License Agreement must be executed and in effect. Forms of these Software License Agreements may be obtained by contacting SMSC.

^{1.}I²C is a registered trademark of Philips Corporation.

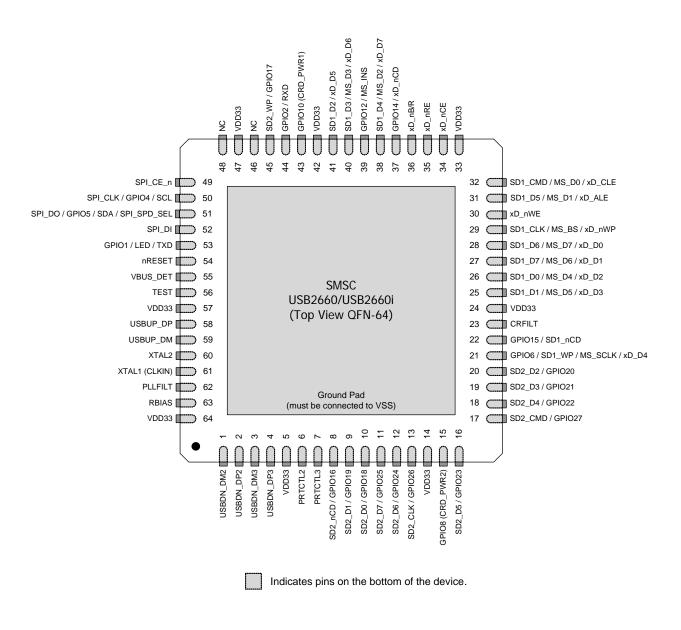
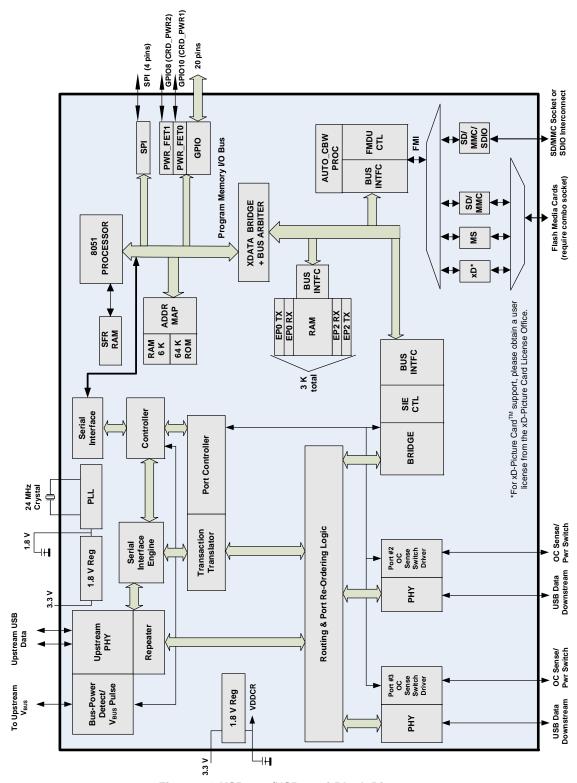
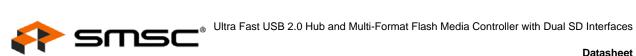


Figure 3.1 USB2660/USB2660i 64-Pin QFN

Chapter 4 Block Diagram




Figure 4.1 USB2660/USB2660i Block Diagram

Chapter 5 Pin Table

5.1 64-Pin Table

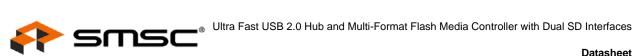
SECURE DIGITAL / MEMORY STICK / xD INTERFACE (18 PINS)						
SD1_D7 / MS_D6 / xD_D1	SD1_D6 / MS_D7 / xD_D0	SD1_D5 / MS_D1 / xD_ALE	SD1_D4 / MS_D2 / xD_D7			
SD1_D3 / MS_D3 / xD_D6	SD1_D2 / xD_D5	SD1_D1 / MS_D5 / xD_D3	SD1_D0 / MS_D4 / xD_D2			
SD1_CLK / MS_BS / xD_ nWP	SD1_CMD / MS_D0 / xD_CLE	GPIO15 / SD1_nCD	GPIO12 / MS_INS			
GPIO6 / SD1_WP / MS_SCLK / xD_D4	GPIO14 / xD_nCD	xD_nB/R	xD_nRE			
xD_nCE	xD_nWE					
	SECOND SECURE DIGITAL INTERFACE (12 PINS)					
SD2_D7 / GPIO25	SD2_D6 / GPIO24	SD2_D5 / GPIO23	SD2_D4 / GPIO22			
SD2_D3 / SD2_D2 / GPIO21 GPIO20		SD2_D1 / GPIO19	SD2_D0 / GPIO18			
SD2_nCD / SD2_CLK / GPIO16 GPIO26		SD2_CMD / GPIO27	SD2_WP / GPIO17			
	USB INTERF	ACE (5 PINS)				
USBUP_DP	USBUP_DM	XTAL1 (CLKIN)	XTAL2			
RBIAS						
2-PORT USB INTERFACE (7 PINS)						
USBDN_DP2	USBDN_DM2	PRTCTL2	PRTCTL3			
USBDN_DP3	USBDN_DM3	VBUS_DET				

Table 5.1 USB2660/USB2660i 64-Pin Table (continued)

SPI INTERFACE (4 PINS)					
SPI_CE_n SPI_CLK / GPIO4 / SCL		SPI_DO / GPIO5 / SDA / SPI_SPD_SEL	SPI_DI		
	MISC (8	B PINS)			
nRESET TEST		GPIO1 / LED / TXD	GPIO2 / RXD		
GPIO8 (CRD_PWR2) GPIO10 (CRD_PWR1)		(2) NC			
POWER (10 PINS)					
(8) VDD33	CRFILT	PLLFILT			
TOTAL 64					

Chapter 6 Pin Descriptions

This section provides a detailed description of each signal. The signals are arranged in functional groups according to their associated interface. The pin descriptions below are applied when using the internal default firmware and can be referenced in Chapter 8, "Configuration Options," on page 29. Please reference Chapter 2, "Acronyms," on page 10 for a list of the acronyms used.


The "n" symbol in the signal name indicates that the active, or asserted, state occurs when the signal is at a low voltage level. When "n" is not present in the signal name, the signal is asserted at a high voltage level.

The terms assertion and negation are used exclusively. This is done to avoid confusion when working with a mixture of "active low" and "active high" signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

6.1 USB2660/USB2660i Pin Descriptions

SYMBOL	64-PIN QFN	BUFFER TYPE (Table 6.2)	DESCRIPTION
		S	ECURE DIGITAL INTERFACE
SD1_D[7:0]	27 28 31 38 40 41 25 26	I/O8PU	Secure Digital Data 7-0 These are the bi-directional data signals SD_D0 - SD_D7 with weak pull-up resistors.
SD1_CLK	29	O8	Secure Digital Clock This is an output clock signal to the SD/MMC device.
SD1_CMD	32	I/O8PU	Secure Digital Command This is a bi-directional signal that connects to the CMD signal of the SD/MMC device. The bi-directional signal has a weak internal pull-up resistor.
GPIO15 /	22	I/O6	This general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.
SD1_nCD		I/O8PU	Secure Digital Card Detect GPIO This is a GPIO designated by the default firmware as the Secure Digital card detection pin and has an internal pull-up.

Table 6.1 USB2660/USB2660i Pin Descriptions

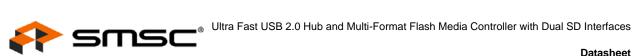
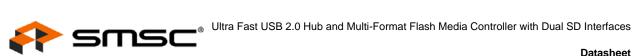


Table 6.1	USB2660/USB2660i Pin	Descriptions	(continued)
-----------	----------------------	--------------	-------------

SYMBOL	64-PIN QFN	BUFFER TYPE (Table 6.2)	DESCRIPTION
GPIO6 /	21	I/O6	This general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.
SD1_WP		I/O8	Secure Digital Write Protected GPIO
			This is a GPIO designated by the default firmware as the Secure Digital card mechanical write protect detect pin.
		SECO	ND SECURE DIGITAL INTERFACE
SD2_D[7:0] /	11	I/O8PU	SD2 Data 7-0
	12 16 18		These are the bi-directional data signals SD2_D0 - SD2_D7 and have weak pull-up resistors.
GPIO[25:18]	19 20 9 10	I/O6	These general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.
SD2_CLK /	13	O8	SD2 Clock GPIO
			This is an output clock signal designated by the default firmware to the SD2/MMC device.
GPIO26		I/O6	This general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.
SD2_CMD /	17	I/O8PU	SD2 Command GPIO
			This is a bi-directional signal designated by the default firmware that connects to the CMD signal of the SD2/MMC device. The bi-directional signal has a weak internal pull-up resistor.
GPIO27		I/O6	This general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.
SD2_nCD /	8	I/O8	SD2 Card Detect GPIO
			This is a GPIO designated by the default firmware as the second Secure Digital card detection pin and has an internal pull-up.
GPIO16		I/O6	This general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.
SD2_WP /	45	I/O8	SD2 Write Protected GPIO
			This is a GPIO designated by the default firmware as the second Secure Digital card interface mechanical write detect pin.
GPIO17		I/O6	This general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.

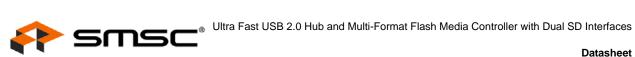
SYMBOL	64-PIN QFN	BUFFER TYPE (Table 6.2)	DESCRIPTION				
	MEMORY STICK INTERFACE						
MS_BS	29	O8	Memory Stick Bus State This pin is connected to the bus state pin of the MS device. It is used to control the Bus States 0, 1, 2, and 3 (BS0, BS1, and BS3) of the MS device.				
GPIO12 /	39	I/O6	This general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.				
MS_INS		IPU	Memory Stick Card Insertion GPIO				
			This is a GPIO designated by the default firmware as the Memory Stick card detection pin and has a weak internal pull-up resistor.				
MS_SCLK	21	O8	Memory Stick System Clock				
			This pin is an output clock signal to the MS device.				
MS_D[7:0]	28	I/O8PD	Memory Stick System Data In/Out				
	27 25 26 40 38 31 32	26 40 38 31	These pins are the bi-directional data signals for the MS device. In serial mode, the most significant bit (MSB) of each byte is transmitted first by either MSC or MS device on MS_D0.				
				MS_D0, MS_D2, and MS_D3 have weak pull-down resistors. MS_D1 has a pull-down resistor if in parallel mode, otherwise it is disabled. In 4- or 8-bit parallel modes, all MS_D7 - MS_D0 signals have weak pull-down resistors.			
		x[D-PICTURE CARD INTERFACE				
xD_D[7:0]	38 40 41 21 25 26 27 28	I/O8PD	xD-Picture Card Data 7-0 These pins are the bi-directional data signals xD_D7 - xD_D0 and have weak internal pull-down resistors.				
xD_ALE	31	O8PD	xD-Picture Card Address Strobe				
			This pin is an active high Address Latch Enable (ALE) signal for the xD device. This pin has a weak pull-down resistor that is permanently enabled.				
xD_nB/R	36	IPU	xD-Picture Card Busy or Data Ready				
			This pin is connected to the BSY/RDY pin of the xD-Picture Card device.				
			When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal power FET.				
			If an external FET is used (the internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).				


Table 6.1	USB2660/USB2660i Pin	Descriptions	(continued)
-----------	----------------------	--------------	-------------

SYMBOL	64-PIN QFN	BUFFER TYPE (Table 6.2)	DESCRIPTION	
xD_nCE	34	O8PU	xD-Picture Card Chip Enable	
			This pin is an active low chip enable signal for the xD-Picture Card device.	
			When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal power FET.	
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).	
xD_CLE	32	O8PD	xD-Picture Card Command Strobe	
			This pin is an active high Command Latch Enable signal for the xD device. This pin has a weak pull-down resistor that is permanently enabled.	
GPIO14 /	37	I/O6	This general purpose pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.	
xD_nCD		I/O8	xD-Picture Card Detection GPIO	
			This is a GPIO designated by the default firmware as the xD-Picture Card detection pin.	
xD_nRE	35	O8PU	xD-Picture Card Read Enable	
			This pin is an active low read strobe signal for the xD-Picture Card device.	
			When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal power FET.	
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).	
xD_nWE	30	O8PU	xD-Picture Card Write Enable	
			This pin is an active low write strobe signal for the xD-Picture Card device.	
			When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal power FET.	
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).	
xD_nWP	29	O8PD	xD-Picture Card Write Protect	
			This pin is an active low write protect signal for the xD-Picture Card device. This pin has a weak pull-down resistor that is permanently enabled.	

Table 6.1 USB2660/USB2660i Pin Descriptions (continued)

SYMBOL	64-PIN QFN	BUFFER TYPE (Table 6.2)	DESCRIPTION				
	USB INTERFACE						
USBUP_DM USBUP_DP	59 58	I/O-U	USB Bus Data These pins connect to the upstream USB bus data signals (host port or upstream hub). USBUP_DM and USBUP_DP can be swapped using the PortSwap feature (See Section 8.4.4.20, "F1h: Port Swap," on page 48).				
USBDN_DM [3:2] USBDN_DP [3:2]	3 1 4 2	I/O-U	USB Bus Data These pins connect to the downstream USB bus data signals and can be swapped using the PortSwap feature (See Section 8.4.4.20, "F1h: Port Swap," on page 48).				
PRTCTL[3:2]	7 6	I/OD6 PU	USB Power Enable As an output, these pins enable power to downstream USB peripheral devices and have weak internal pull-up resistors. See Section 6.3, "Port Power Control" for diagram and usage instructions. As an input, when the power is enabled, these pins monitor the over- current condition. When an over-current condition is detected, the pins turn the power off.				
VBUS_DET	55	Ι	Detect Upstream VBUS PowerDetects the state of upstream VBUS power. The hub monitors VBUS_DET to determine when to assert the internal D+ pull-up resistor (signaling a connect event).When designing a detachable hub, connect this pin to the VBUS power pin of the USB port that is upstream of the hub.For self-powered applications with a permanently attached host, this pin should be pulled up, typically to VDD33.VBUS is a 3.3 volt input. A resistor divider must be used if connecting to 5 volts of USB power.				
RBIAS	63	I-R	USB Transceiver Bias A 12.0 k Ω , ±1.0% resistor is attached from VSS to this pin in order to set the transceiver's internal bias currents.				
XTAL1 (CLKIN)	61	ICLKx	24 MHz Crystal Input or External Clock Input This pin can be connected to one terminal of the crystal or it can be connected to an external 24 MHz clock when a crystal is not used.				
XTAL2	60	OCLKx	24 MHz Crystal Output This is the other terminal of the crystal, or it is left open when an external clock source is used to drive XTAL1(CLKIN).				
			SPI INTERFACE				
SPI_CE_n	49	O12	SPI Chip Enable This is the active low chip enable output. If the SPI interface is enabled, this pin must be driven high in power down states.				


Table 6.1 USB2660/USB2660i Pin Descriptions	(continued)
---	-------------

SYMBOL	64-PIN QFN	BUFFER TYPE (Table 6.2)	DESCRIPTION	
SPI_CLK /	50	I/O12	This is the SPI clock out to the serial ROM. See Section 6.4, "ROM BOOT Sequence" for diagram and usage instructions. During reset, drive this pin low.	
GPIO4 /		I/O6	This pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.	
SCL			When configured, this is the I ² C EEPROM clock pin.	
SPI_DO /	51	I/O12	This is the data out for the SPI port. See Section 6.4, "ROM BOOT Sequence" for diagram and usage instructions.	
GPIO5 /		I/O6	This pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.	
SDA /			This pin is the data pin when the device is connected to the optional I^2C EEPROM.	
SPI_SPD_SEL		I/O12	This pin is used to select the speed of the SPI interface. During nRESET assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality, the internal pull-down will be disabled.	
			 '0' = 30 MHz (No external resistor should be applied.) '1' = 60 MHz (A 10 K external pull-up resistor must be applied.) 	
			If the latched value is '1', then the pin is tri-stated when the chip is in the suspend state.	
			If the latched value is '0', then the pin is driven low during a suspend state.	
SPI_DI	52	I/O12PD	This is the data in to the controller from the ROM. This pin has a weak internal pull-down applied at all times to prevent floating.	
			MISC	
GPIO1 /	53	I/O6	General Purpose I/O	
			This pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.	
LED /			GPIO1 can be used as an LED output.	
ТХD			This signal can be configured as the TXD output of the internal UART. Custom firmware is required to activate this function.	
GPIO2 /	44	I/O6	This pin may be used either as input, edge sensitive interrupt input, or output. Custom firmware is required to activate this function.	
RXD			This signal can be configured as input to the RXD of the internal UART. Custom firmware is required to activate this function.	

Table 6.1 USB2660/USB2660i Pin Descriptions (continued)	Table 6.1	USB2660/USB2660i Pin Descriptions (continued)
---	-----------	---

SYMBOL	64-PIN QFN	BUFFER TYPE (Table 6.2)	DESCRIPTION	
GPIO8 (CRD_PWR2)	15	I/O200	Card power drive: 3.3 V (100 mA or 200 mA) This pin specifically powers the second Secure Digital interface (slot). If card power is not being used to power the second SD interface, this pin may be used as a GPIO. Please reference Section 8.4.5.9, "147h-14Bh: Device to LUN Mapping," on page 52.	
GPIO10 (CRD_PWR1)	43	I/O200	Card power drive: 3.3 V (100 mA or 200 mA) This pin powers the multiplexed flash media interface (slot) for xD, MS, and SD/MMC. If card power is not being used to power the multiplexed flash media interface, this pin may be used as a GPIO. Please reference Section 8.4.2.3, "A4h-A5h: Smart Media Device Power Configuration," on page 39.	
nRESET	54	IS	RESET Input The system uses this active low signal reset the chip. The active low pulse should be at least 1 μs wide.	
TEST	56	I	TEST Input Tie this pin to ground for normal operation.	
		Γ	DIGITAL / POWER / GROUND	
CRFILT	23		VDD Core Regulator Filter Capacitor This pin requires a 1.0 μF (or greater) \pm 20% (ESR <0.1\Omega) capacitor to VSS.	
PLLFILT	62		Phase-locked Loop Regulator Filter Capacitor This pin requires 1.0 μF (or greater) \pm 20% (ESR <0.1\Omega) capacitor to VSS.	
VDD33	5 14 24 33 42 47 57 64		 3.3 V Power and Regulator Input Please refer to Chapter 10, "DC Parameters," on page 58 for more information. Pins 24 and 64 require external bypass capacitors of 4.7 μF minimum. 	
VSS	ePad		The ground pad is the only VSS for the device and must be tied to ground with multiple vias.	
NC	46 48		No Connect pins No trace or signal should be routed/attached to these pins.	

Buffer Type Descriptions 6.2

Table 6.2 USB2660/USB2660i Buffer Type Descriptions

BUFFER	DESCRIPTION
I	Input.
IPU	Input with weak internal pull-up.
IS	Input with Schmitt trigger.
I/O6	Input/output buffer with 6 mA sink and 6 mA source.
I/OD6PU	Input/open drain output buffer with a 6 mA sink.
O8	Output buffer with an 8 mA sink and an 8 mA source.
O8PD	Output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-down resistor.
O8PU	Output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-up resistor.
I/O8	Input/output buffer with an 8 mA sink and an 8 mA source.
I/O8PD	Input/output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-down resistor.
I/O8PU	Input/output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-up resistor.
012	Output buffer with a 12 mA sink and a 12 mA source.
I/O12	Input/output buffer with 12 mA sink and 12 mA source.
I/O12PD	Input/output buffer with 12 mA sink and 12 mA source with a weak internal pull-down resistor.
I/O200	Input/output buffer 12 mA with FET disabled, 100/200 mA source only when the FET is enabled.
ICLKx	XTAL clock input.
OCLKx	XTAL clock output.
I/O-U	Analog input/output as defined in the USB 2.0 Specification.
I-R	RBIAS.

6.3 **Port Power Control**

Port Power control using a USB Power Switch

The USB2660/USB2660i has a single port power control and over-current sense signal for each downstream port. When disabling port power, the driver will actively drive a '0'. To avoid unnecessary power dissipation, the internal pull-up resistor will be disabled at that time. When port power is enabled, the output driver is disabled, and the pull-up resistor is enabled creating an open drain output.

If there is an over-current situation, the USB Power Switch will assert the open drain OCS signal. The Schmitt trigger input will detect this event as a low. The open drain output does not interfere. The internal over-current sense filter handles the transient conditions, such as low voltage, while the device is powering up.

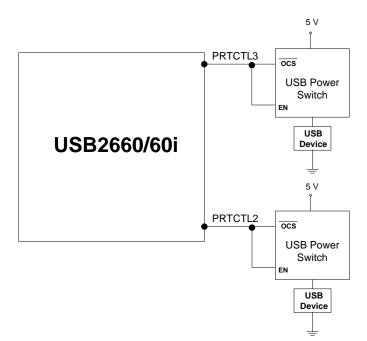


Figure 6.1 Port Power Control with USB Power Switch

Port Power control using a Poly Fuse

When using the USB2660/USB2660i with a poly fuse, an external diode must be used (See Figure 6.2). When disabling port power, the USB2660/USB2660i will drive a '0'. This procedure will have no effect since the external diode will isolate the pin from the load. When port power is enabled, the USB2660/USB2660i output driver is disabled, and the pull-up resistor is enabled which creates an open drain output. This open drain output condition means that the pull-up resistor is providing 3.3 volts to the anode of the diode. If there is an over-current situation, the poly fuse will open. This will cause the cathode of the diode to go to zero volts. The anode of the diode will be at 0.7 volts, and the Schmitt trigger input will register this as a low resulting in an over-current detection. The open drain output does not interfere.

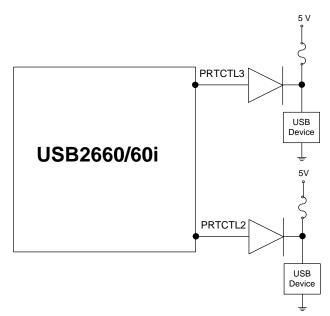


Figure 6.2 Port Power Control with a Single Poly Fuse and Multiple Loads

When using a single poly fuse to power all devices, note that for the ganged situation, all power control pins must be tied together.

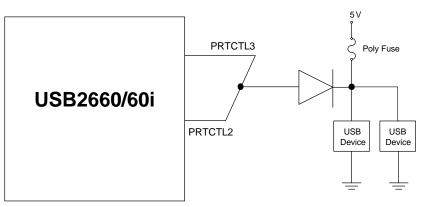
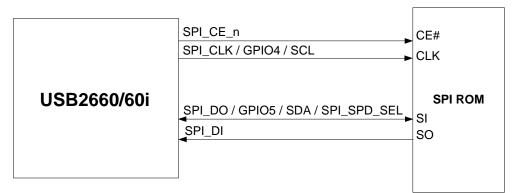
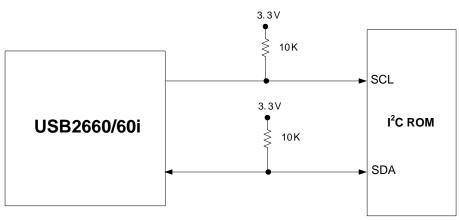


Figure 6.3 Port Power with Ganged Control with Poly Fuse

6.4 **ROM BOOT Sequence**


After power-on reset, the internal firmware checks for an external SPI flash device that contains a valid signature of "2DFU" (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the external ROM is enabled and code execution begins at address 0x0000 in the external SPI device. Otherwise, code execution continues from the internal ROM.

If there is no SPI ROM detected, the internal firmware then checks for the presence of an I^2C ROM. The firmware looks for the signature 'ATA2' at the offset of FCh-FFh and 'ecf1' at the offset of 17Ch-17Fh in the I^2C ROM. The firmware reads in the I^2C ROM to configure the hardware and software internally. Please refer to Section 8.3.2, "EEPROM Data Descriptor," on page 30 for the details of the configuration options.


The SPI ROM required for the USB2660/USB2660i is a recommended minimum of 1 Mbit and support either 30 MHz or 60 MHz. The frequency used is set using the SPI_SPD_SEL. For 30 MHz operation, this pin must be pulled to ground through a 100 k Ω resistor. For 60 MHz operation, this pin must pulled up through a 100 k Ω resistor.

The SPI_SPD_SEL pin is used to choose the speed of the SPI interface. During nRESET assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality. The internal pull-down will be disabled.

The firmware can determine the speed of operation on the SPI port by checking the SPI_SPEED in the SPI_CTL register (0x2400 - RESET = 0x02). Both 1- and 2-bit SPI operation is supported. For optimum throughput, a 2-bit SPI ROM is recommended. Both mode 0 and mode 3 SPI ROMS are also supported.

Figure 6.4 SPI ROM Connection

Chapter 7 Pin Reset States

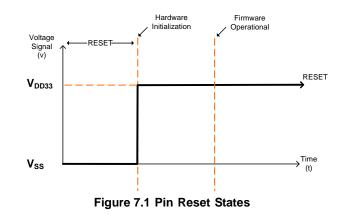
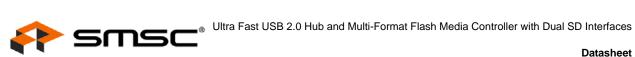


Table 7.1 Legend for Pin Reset States Table

SYMBOL DESCRIPTION		
0	Output driven low	
1	Output driven high	
IP	Input enabled	
PU	Hardware enables pull-up	
PD	Hardware enables pull-down	
none	Hardware disables pad	
	Hardware disables function	
Z	Hardware disables pad. Both output driver and input buffers are disabled.	

7.1 Pin Reset States


Table 7.2 USB2660/USB2660i Reset States Table

		RESET STATE			
PIN	PIN NAME	FUNCTION	INPUT/ OUTPUT	PU/ PD	
1	USBDN_DM2	USBDN_DM2	IP	PD	
2	USBDN_DP2	USBDN_DP2	IP	PD	
3	USBDN_DM3	USBDN_DM3	IP	PD	
4	USBDN_DP3	USBDN_DP3	IP	PD	
6	PRTCTL2	PRTCTL	0		
7	PRTCTL3	PRTCTL	0		

Table 7.2 USB2660/USB2660i Reset States Table

	RESET STATE			
PIN	PIN NAME	FUNCTION	INPUT/ OUTPUT	PU/ PD
8	SD2_nCD / GPIO16	GPIO	IP	PU
9	SD2_D1 / GPIO19	SD2_D1	Z	
10	SD2_D0 / GPIO18	SD2_D0	Z	
11	SD2_D7 / GPIO25	SD2_D7	Z	
12	SD2_D6 / GPIO24	SD2_D6	Z	
13	SD2_CLK / GPIO26	SD2_CLK	Z	
15	GPIO8 (CRD_PWR2)	GPIO	Z	
16	SD2_D5 / GPIO23	SD2_D5	Z	
17	SD2_CMD / GPIO27	SD2_CMD	Z	
18	SD2_D4 / GPIO22	SD2_D4	Z	
19	SD2_D3 / GPIO21	SD2_D3	Z	
20	SD2_D2 / GPIO20	SD2_D2	Z	
21	GPIO6 / SD1_WP / MS_SCLK / xD_D4	GPIO	0	
22	GPIO15 / SD1_nCD	GPIO	IP	PU
25	SD1_D1 / MS_D5 / xD_D3	none	Z	
26	SD1_D0 / MS_D4 / xD_D2	none	Z	
27	SD1_D7 / MS_D6 / xD_D1	none	Z	
28	SD1_D6 / MS_D7 / xD_D0	none	Z	
29	SD1_CLK / MS_BS / xD_nWP	none	Z	
30	xD_nWE	xD_nWE	Z	
31	SD1_D5 / MS_D1 / xD_ALE	none	Z	
32	SD1_CMD / MS_D0 / xD_CLE	none	Z	
34	xD_nCE	xD_nCE	Z	
35	xD_nRE	xD_nRE	Z	
36	xD_nB/R	xD_nB/R	Z	
37	GPIO14 / xD_nCD	GPIO	IP	PU
38	SD1_D4 / MS_D2 / xD_D7	none	Z	
39	GPIO12 / MS_INS	GPIO	IP	PU

	Table 7.2 USB2660/USB2660i Reset States Table					
		RESET S	TATE			
PIN	PIN NAME	FUNCTION	INPUT/ OUTPUT	PU/ PD		
40	SD1_D3 / MS_D3 / xD_D6	none	Z			
41	SD1_D2 / xD_D5	none	Z			
43	GPIO10 (CRD_PWR1)	GPIO	Z			
44	GPIO2 / RXD	GPIO	0			
45	SD2_WP / GPIO17	GPIO	0			
49	SPI_CE_n	SPI_CE_n	1			
50	SPI_CLK / GPIO4 / SCL	GPIO	0			
51	SPI_DO / GPIO5 / SDA / SPI_SPD_SEL	GPIO	0			
52	SPI_DI	SPI_DI	IP	PD		
53	GPIO1 / LED / TXD	GPIO	0			
54	nRESET	nRESET	IP			
55	VBUS_DET	VBUS_DET	IP			
56	TEST	TEST	IP	PD		
58	USBUP_DP	USBUP_DP	Z			
59	USBUP_DM	USBUP_DM	Z			

7.2 LISB2660/LISB2660i Reset States Table

Chapter 8 Configuration Options

8.1 Hub

SMSC's USB 2.0 hub is fully compliant to the Universal Serial Bus Specification available from the USB Implementer's Forum found at http://www.usb.org (Revision 2.0 April 27, 2000 and the 12/7/2000 and 5/28/2002 Errata). Please reference Chapter 11 (Hub Specification) for general details regarding hub operation and functionality.

For performance reasons, the hub provides 1 transaction translator (TT) that is shared by both downstream ports defined as a single-TT configuration. The TT contains 4 non-periodic buffers.

8.1.1 Hub Configuration Options

The SMSC hub supports a large number of features (some are mutually exclusive), and must be configured in order to correctly function when attached to a USB host controller. There are two principal ways to configure the hub:

- via the internal default settings or
- by settings stored in an external EEPROM or SPI Flash device.

8.1.1.1 Power Switching Polarity

The hub will only support active high power controllers.

8.1.2 VBus Detect

According to Section 7.2.1 of the USB 2.0 Specification, a device cannot provide power to its D+ or D- pull-up resistors unless the upstream port's VBUS is in the asserted (powered) state. The VBUS_DET pin on the hub monitors the state of the upstream VBUS signal and will not pull-up the D+ resistor if VBUS is not active. If VBUS goes from an active to an inactive state (not powered), the hub will remove power from the D+ pull-up resistor within 10 seconds.

8.2 Card Reader

The SMSC USB2660/USB2660i is fully compliant with the following flash media card reader specifications:

Secure Digital 2.0 / MultiMediaCard 4.2

-SD 2.0, HS-SD, HC-SD

- -TransFlash[™] and reduced form factor media -1/4/8 bit MMC 4.2
- Memory Stick 1.43
- Memory Stick Pro Format 1.02
- Memory Stick Pro-HG Duo Format 1.01
 -Memory Stick, MS Duo, HS-MS, MS Pro-HG, MS Pro
- Memory Stick Duo 1.10
- xD-Picture Card 1.2

8.3 System Configurations

8.3.1 EEPROM/SPI Interface

The USB2660/USB2660i can be configured via a 2-wire (I²C) EEPROM (512x8) or an external SPI flash device containing the firmware for the USB2660/USB2660i. If an external configuration device does not exist the internal default values will be used. If one of the external devices is used for configuration, the OEM can update the values through the USB interface. The hub will then "attach" to the upstream USB host.

The USBDM tool set is available in the USB264x Hub Card reader combo software release package. To download the software package from SMSC's website, please visit:

https://www2.smsc.com/mkt/CW_SFT_PUB.nsf/Agreements/OBJ+Hub+Card+Reader

to go to the OBJ Hub Card Reader Software Download Agreement. Review the license, and if you agree, check the "I agree" box and then select "Confirm". You will then be able to download USB264x Hub Card reader combo release package zip file containing the USBDM tool set.

Please note that the following applies to the system values and descriptions when used:

- N/A = Not applicable to this part
- Reserved = For internal use

8.3.2 EEPROM Data Descriptor

Table 8.1 Internal Flash Media Controller Configurations

ADDRESS	REGISTER NAME	DESCRIPTION	INTERNAL DEFAULT VALUE
00h	USB_SER_LEN	USB Serial String Descriptor Length	1Ah
01h	USB_SER_TYP	USB Serial String Descriptor Type	03h
02h-19h	USB_SER_NUM	USB Serial Number	"000008264001" (See Note 8.1)
1Ah-1Bh	USB_VID	USB Vendor Identifier	0424
1Ch-1Dh	USB_PID	USB Product Identifier	4040
1Eh	USB_LANG_LEN	USB Language String Descriptor Length	04h
1Fh	USB_LANG_TYP	USB Language String Descriptor Type	03h
20h	USB_LANG_ID_LSB	USB Language Identifier Least Significant Byte	09h (See Note 8.3)
21h	USB_LANG_ID_MSB	USB Language Identifier Most Significant Byte	04h (See Note 8.3)
22h	USB_MFR_STR_LEN	USB Manufacturer String Descriptor Length	10h
23h	USB_MFR_STR_TYP	USB Manufacturer String Descriptor Type	03h
24h-31h	USB_MFR_STR	USB Manufacturer String	"Generic" (See Note 8.1)

Table 8.1 Internal Flash Media Controller Configurations (continued)

ADDRESS	REGISTER NAME	DESCRIPTION	INTERNAL DEFAULT VALUE
32h-5Dh	Reserved	-	00h
5Eh	USB_PRD_STR_LEN	USB Product String Descriptor Length	30h
5Fh	USB_PRD_STR_TYP	USB Product String Descriptor Type	03h
60h-99h	USB_PRD_STR	USB Product String	"Ultra Fast Media Reader" (See Note 8.1)
9Ah	USB_BM_ATT	USB BmAttribute	80h
9Bh	USB_MAX_PWR	USB Max Power	30h (96 mA)
9Ch	ATT_LB	Attribute Lo byte	40h (Reverse SD_WP only)
9Dh	ATT_HLB	Attribute Hi Lo byte	80h (Reverse SD2_WP only)
9Eh	ATT_LHB	Attribute Lo Hi byte	00h
9Fh	ATT_HB	Attribute Hi byte	00h
A0h	MS_PWR_LB	Memory Stick Device Power Lo byte	00h
A1h	MS_PWR_HB	Memory Stick Device Power Hi byte	0Ah
A2h-A3h	Not Applicable	-	00h
A4h	SM_PWR_LB	Smart Media Device Power Lo byte	00h (See Note 8.2)
A5h	SM_PWR_HB	Smart Media Device Power Hi byte	0Ah (See Note 8.2)
A6h	SD_PWR_LB	Secure Digital Device Power Lo byte	00h
A7h	SD_PWR_HB	Secure Digital Device Power Hi byte	0Ah
A8h	LED_BLK_INT	LED Blink Interval	02h
A9h	LED_BLK_DUR	LED Blink After Access	28h
AAh - B0h	DEV0_ID_STR	Device 0 Identifier String	N/A
B1h - B7h	DEV1_ID_STR	Device 1 Identifier String	"MS"
B8h - BEh	DEV2_ID_STR	Device 2 Identifier String	"SM" (See Note 8.2)
BFh - C5h	DEV3_ID_STR	Device 3 Identifier String	"SD/MMC"
C6h - CDh	INQ_VEN_STR	Inquiry Vendor String	"Generic"
CEh - D2h	INQ_PRD_STR	Inquiry Product String	82660
D3h		Dynamic Number of LUNs	01h
i	DYN_NUM_LUN	Bynamie Hamber of Lerite	0111
D4h - D7h	DEV_LUN_MAP	Device to LUN Mapping	FFh, 00h, 00h, 00h

Table 8.1 Internal Flash Media Controller Configurations (continued)

ADDRESS	REGISTER NAME	DESCRIPTION	INTERNAL DEFAULT VALUE
DBh - DDh	Reserved	-	59h, 56h, 97h

ADDRESS	REGISTER NAME	DESCRIPTION	INTERNAL DEFAULT VALUE
DEh	VID_LSB	Vendor ID Least Significant Byte	24h
DFh	VID_MSB	Vendor ID Most Significant Byte	04h
E0h	PID_LSB	Product ID Least Significant Byte	60h
E1h	PID_MSB	Product ID Most Significant Byte	26h
E2h	DID_LSB	Device ID Least Significant Byte	A1h
E3h	DID_MSB	Device ID Most Significant Byte	08h
E4h	CFG_DAT_BYT1	Configuration Data Byte 1	8Bh
E5h	CFG_DAT_BYT2	Configuration Data Byte 2	28h
E6h	CFG_DAT_BYT3	Configuration Data Byte 3	00h
E7h	NR_DEVICE	Non-Removable Devices	02h
E8h	PORT_DIS_SP	Port Disable (Self)	00h
E9h	PORT_DIS_BP	Port Disable (Bus)	00h
EAh	MAX_PWR_SP	Max Power (Self)	01h
EBh	MAX_PWR_BP	Max Power (Bus)	32h
ECh	HC_MAX_C_SP	Hub Controller Max Current (Self)	01h
EDh	HC_MAX_C_BP	Hub Controller Max Current (Bus)	32h
EEh	PWR_ON_TIME	Power-on Time	32h
EFh	BOOST_UP	Boost_Up	00h
F0h	BOOST_3:0	Boost_3:0	00h
F1h	PRT_SWP	Port Swap	00h
F2h	PRTM12	Port Map 12	00h
F3h	PRTM3	Port Map 3	00h

Table 8.2 Hub Controller Configurations

Table 8.3 Other Internal Configurations

ADDRESS	REGISTER NAME	DESCRIPTION	INTERNAL DEFAULT VALUE
F4h	Reserved	Reserved	00h
F5h	Reserved	Reserved	66h
F6h	Reserved	Reserved	00h
F7h	Reserved	Reserved	00h

 Table 8.3 Other Internal Configurations (continued)

ADDRESS	REGISTER NAME	DESCRIPTION	INTERNAL DEFAULT VALUE
F8h-FAh	Reserved	Reserved	59h, 56h, 97h
FBh	Not Applicable	-	00h
FCh-FFh	NVSTORE_SIG	Non-Volatile Storage Signature	"ATA2"

8.4 Set bit 7 of bmAttribute to enable the registers in Table 8.4.

ADDRESS	REGISTER NAME	DESCRIPTION	INTERNAL DEFAULT VALUE
100h - 106h	CLUN0_ID_STR	Combo LUN 0 Identifier String	"COMBO"
107h - 10Dh	CLUN1_ID_STR	Combo LUN 1 Identifier String	"COMBO"
10Eh - 114h	CLUN2_ID_STR	Combo LUN 2 Identifier String	"COMBO"
115h - 11Bh	CLUN3_ID_STR	Combo LUN 3 Identifier String	"COMBO"
11Ch - 122h	CLUN4_ID_STR	Combo LUN 4 Identifier String	"COMBO"
123h - 129h	DEV4_ID_STR	Device 4 Identifier String	"SD/MMC2"
12Ah-145h	Not applicable	-	00h
146h	DYN_NUM_ EXT_LUN	Dynamic Number of Extended LUNs	01h
147h - 14Bh	DEV_LUN_MAP	Device to LUN Mapping	01h, FFh, FFh, FFh, FFh
14Ch	SD2_PWR_LB	Second Secure Digital Power Lo byte	0Ah
14Dh	SD2_PWR_HB	Second Secure Digital Power Hi byte	00h
14Eh-17Bh	Not Applicable	-	00h
17Ch-17Fh	NVSTORE_SIG2	Non-Volatile Storage Signature	"ecf1"

Table 8.4 Internal Flash Media Controller Extended Configurations

- **Note 8.1** This value is a UNICODE UTF-16LE encoded string value that meets the USB 2.0 specification (Revision 2.0, 2000). Values in double quotations without this note are ASCII values.
- Note 8.2 A value of "SM" will be overridden with "xD" once an xD-Picture Card has been identified.
- **Note 8.3** For a list of the most current 16-bit language ID's defined by the USB-IF, please visit http://www.unicode.org or consult *The Unicode Standard, Worldwide Character Encoding*, (Version 4.0), The Unicode Consortium, Addison-Wesley Publishing Company, Reading, Massachusetts.

8.4.1 EEPROM Data Descriptor Register Descriptions

8.4.1.1 00h: USB Serial String Descriptor Length

BYTE	NAME	DESCRIPTION
0	USB_SER_LEN	USB serial string descriptor length as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bLength" which describes the size of the string descriptor (in bytes).

8.4.1.2 01h: USB Serial String Descriptor Type

BYTE	NAME	DESCRIPTION
1	USB_SER_TYP	USB serial string descriptor type as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bDescriptorType" which is a constant value associated with a string descriptor type.

8.4.1.3 02h-19h: USB Serial Number Option

BYTE	NAME	DESCRIPTION
25:2	USB_SER_NUM	Maximum string length is 12 hex digits. Must be unique to each device.

8.4.1.4 1Ah-1Bh: USB Vendor ID Option

BYTE	NAME	DESCRIPTION
1:0	USB_VID	This ID is unique for every vendor. The vendor ID is assigned by the USB Implementer's Forum.

8.4.1.5 1Ch-1Dh: USB Product ID Option

BYTE	NAME	DESCRIPTION
1:0	USB_PID	This ID is unique for every product. The product ID is assigned by the vendor.

8.4.1.6 1Eh: USB Language Identifier Descriptor Length

BYTE	NAME	DESCRIPTION
0	USB_LANG_LEN	USB language ID string descriptor length as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bLength" which describes the size of the string descriptor (in bytes).

8.4.1.7 1Fh: USB Language Identifier Descriptor Type

BYTE	NAME	DESCRIPTION
1	USB_LANG_TYP	USB language ID string descriptor type as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bDescriptorType" which is a constant value associated with a string descriptor type.

8.4.1.8 20h: USB Language Identifier Least Significant Byte

BYTE	NAME	DESCRIPTION
2	USB_LANG_ID _LSB	English language code = '0409'. See Note 8.3 to reference additional language ID's defined by the USB-IF.

8.4.1.9 21h: USB Language Identifier Most Significant Byte

BYTE	NAME	DESCRIPTION
3	USB_LANG_ID _MSB	English language code = '0409'. See Note 8.3 to reference additional language ID's defined by the USB-IF.

8.4.1.10 22h: USB Manufacturer String Descriptor Length

BYT	E NAME	DESCRIPTION
0	USB_MFR_STR _LEN	USB manufacturer string descriptor length as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bLength" which describes the size of the string descriptor (in bytes).

8.4.1.11 23h: USB Manufacturer String Descriptor Type

BYTE	NAME	DESCRIPTION
1	USB_MFR_STR _TYP	USB manufacturer string descriptor type as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bDescriptorType" which is a constant value associated with a string descriptor type.

8.4.1.12 24h-31h: USB Manufacturer String Option

BYTE	NAME	DESCRIPTION
15:2	USB_MFR_STR	The maximum string length is 28 characters.

8.4.1.13 32h-5Dh: Reserved

BYTE	NAME	DESCRIPTION
59:16	Reserved	Reserved.

8.4.1.14 5Eh: USB Product String Descriptor Length

BYTE	NAME	DESCRIPTION
0	USB_PRD_STR _LEN	USB product string descriptor length as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bLength" which describes the size of the string descriptor (in bytes).

8.4.1.15 5Fh: USB Product String Descriptor Type

BYTE	NAME	DESCRIPTION
1	USB_PRD_STR _TYP	USB product string descriptor type as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bDescriptorType" which is a constant value associated with a string descriptor type.

8.4.1.16 60h-99h: USB Product String Option

BYTE	NAME	DESCRIPTION
59:2	USB_PRD_STR	This string will be used during the USB enumeration process in the Windows [®] operating system. Maximum string length is 28 characters.

8.4.1.17 9Ah: USB BmAttribute (1 byte)

BIT	NAME	DESCRIPTION
7:0	USB_BM_ATT	Self- or Bus-Power: Selects between self- and bus-powered operation.
		The hub is either self-powered (draws less than 2 mA of upstream bus power) or bus-powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller).
		When configured as a bus-powered device, the SMSC hub consumes less than 100 mA of current prior to being configured. After configuration, the bus- powered SMSC hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 Specification is not violated.
		When configured as a self-powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.
		80 = Bus-powered operation (default) C0 = Self-powered operation A0 = Bus-powered operation with remote wake-up E0 = Self-powered operation with remote wake-up

8.4.1.18 9Bh: USB MaxPower (1 byte)

BIT	NAME	DESCRIPTION
7:0	USB_MAX_PWR	USB Max Power per the USB 2.0 Specification. Do NOT set this value greater than 100 mA.

8.4.1.19 9Ch-9Fh: Attribute Byte Descriptions

ВҮТЕ	BYTE NAME	BIT	DESCRIPTION
0	ATT_LB	3:0	Always reads '0'.
		4	Inquire Manufacturer and Product ID Strings
			'1' - Use the Inquiry Manufacturer and Product ID Strings.
			'0' (default) - Use the USB Descriptor Manufacturer and Product ID Strings.
		5	Always reads '0'.
		6	Reverse SD Card Write Protect Sense
			'1' (default) - SD cards will be write protected when SW_nWP is high, and writable when SW_nWP is low.
			'0' - SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high.
		7	Extended Configuration Enable
			'1' - This bit must be set to '1' to enable editing, updating, and reading from registers 100h-17Fh.
			'0' - The internal configuration is loaded. When this bit is not set (and it equals '0'). It will not read from registers 100h-17Fh.
1	ATT_HLB	3:0	Always reads '0'.
		4	Activity LED True Polarity
			'1' - Activity LED to Low True.
			'0' (default) - Activity LED polarity to High True.
		5	Common Media Insert / Media Activity LED
			'1' - The activity LED will function as a common media inserted/media access LED.
			'0' (default) - The activity LED will remain in its idle state until media is accessed.
		6	Always reads '0'.
		7	Reverse SD2 Card Write Protect Sense
			'1' (default) - SD cards in LUN 1 will be write protected when SW_nWP is high, and writable when SW_nWP is low.
			'0' - SD cards in LUN 1 will be write protected when SW_nWP is low, and writable when SW_nWP is high.

BYTE	BYTE NAME	BIT	DESCRIPTION	
2	ATT_LHB	0	Attach on Card Insert / Detach on Card Removal	
			'1' - Attach on Insert is enabled.	
			'0' (default) - Attach on Insert is disabled.	
		1	Always reads '0'.	
		2	Enable Device Power Configuration	
			'1' - Custom Device Power Configuration stored in the NVSTORE is used.	
			'0' (default) - Default Device Power Configuration is used.	
		7:3	Always reads '0'.	
3	ATT_HB	6:0	Always reads '0'.	
		7	xD Player Mode	

8.4.2 A0h-A7h: Device Power Configuration

The USB2660/USB2660i has two internal FETs which can be utilized for card power. For information about the other internal FET, please see Section 8.4.5.10, "14Ch-14Dh: Second Secure Digital Device Power Configuration," on page 52. This section describes the default internal configuration. The settings are stored in NVSTORE and provide the following features:

- 1. A card can be powered by an external FET or by an internal FET.
- 2. The power limit can be set to 100 mA or 200 mA (Default) for the internal FET.

Each media uses two bytes to store its device power configuration. Bit 3 selects between internal or external card power FET options. For internal FET card power control, bits 0 through 2 are used to set the power limit. The "Device Power Configuration" bits are ignored unless the "Enable Device Power Configuration" bit is set. See Section 8.4.1.19, "9Ch-9Fh: Attribute Byte Descriptions," on page 37.

8.4.2.1 A0h-A1h: Memory Stick Device Power Configuration

FET	TYPE	BITS	BIT TYPE	DESCRIPTION
0	FET Lo Byte MS PWR LB	3:0	Low Nibble	0000b Disabled
1		7:4	High Nibble	
2	FET Hi Byte MS_PWR_HB	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
3		7:4	High Nibble	0000b Disabled

8.4.2.2 A2h-A3h: Not Applicable

BYTE	NAME	DESCRIPTION
1:0	Not Applicable	Not applicable.

8.4.2.3 A4h-A5h: Smart Media Device Power Configuration

FET	TYPE	BITS	BIT TYPE	DESCRIPTION
0	FET Lo Byte SM PWR LB	3:0	Low Nibble	0000b Disabled
1	SIVI_FWR_LD	7:4	High Nibble	
2	FET Hi Byte SM_PWR_HB	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
3		7:4	High Nibble	0000b Disabled

8.4.2.4 A6h-A7h: Secure Digital Device Power Configuration

FET	TYPE	BITS	BIT TYPE	DESCRIPTION
0	FET Lo Byte SD PWR LB	3:0	Low Nibble	0000b Disabled
1	SU_PWK_LD	7:4	High Nibble	
2	FET Hi Byte SD_PWR_HB	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
3		7:4	High Nibble	0000b Disabled

8.4.2.5 A8h: LED Blink Interval

BYTE	NAME	DESCRIPTION
0	LED_BLK_INT	The blink rate is programmable in 50 ms intervals. The high bit (7) indicates an idle state:
		'0' - Off '1' - On
		The remaining bits (6:0) are used to determine the blink interval up to a max of 128 x 50 ms.

8.4.2.6 A9h: LED Blink Duration

BYTE	NAME	DESCRIPTION
1	LED_BLK_DUR	LED Blink After Access. This byte is used to designate the number of seconds that the GPIO1 LED will continue to blink after a drive access. Setting this byte to "05" will cause the GPIO 1 LED to blink for 5 seconds after a drive access.

8.4.3 Device ID Strings

These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the device to LUN mapping bytes in applications where the OEM wishes to reorder and rename the LUNs. If multiple devices are mapped to the same LUN (a COMBO LUN), then the CLUN#_ID_STR will be used to name the COMBO LUN instead of the individual device strings. When applicable, the "SM" value will be overridden with xD once an xD-Picture Card has been identified.

8.4.3.1 AAh-B0h: Device 0 Identifier String

BYTE	NAME	DESCRIPTION
6:0	DEV0_ID_STR	Not applicable.

8.4.3.2 B1h-B7h: Device 1 Identifier String

BYTE	NAME	DESCRIPTION
6:0	DEV1_ID_STR	This ID string is associated with the Memory Stick device.

8.4.3.3 B8h-BEh: Device 2 Identifier String

BYTE	NAME	DESCRIPTION
6:0	DEV2_ID_STR	This ID string is associated with the Smart Media (Note 8.2) device.

8.4.3.4 BFh-C5h: Device 3 Identifier String

BYTE	NAME	DESCRIPTION
6:0	DEV3_ID_STR	This ID string is associated with the Secure Digital / MultiMediaCard device.

8.4.3.5 C6h-CDh: Inquiry Vendor String

BYTE	NAME	DESCRIPTION
7:0	INQ_VEN_STR	If bit 4 of the 1st attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB descriptor manufacturer and product ID strings.

8.4.3.6 CEh-D2h: Inquiry Product String

BYTE	NAME	DESCRIPTION
4:0	INQ_PRD_STR	If bit 4 of the 1st attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB descriptor manufacturer and product ID strings.

8.4.3.7 D3h: Dynamic Number of LUNs

BIT	NAME	DESCRIPTION
7:0	DYN_NUM_LUN	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces.
		If this field is set to "FF", the program assumes that you are using the default value and icons will be configured per the default configuration.

8.4.3.8 D4h-D7h: Device to LUN Mapping

BYTE	NAME	DESCRIPTION
3:0	DEV_LUN_MAP	These registers map a device controller (SD/MMC, SM (Note 8.2), and MS) to a Logical Unit Number (LUN). The device reports the mapped LUNs to the USB host in the USB descriptor during enumeration. The icon installer associates custom icons with the LUNs specified in these fields. Setting a register to "FF" indicates that the device is not mapped. Setting all of the DEV_LUN_MAP registers for all devices to "FF" forces the use of the default mapping configuration. Not all configurations are valid. Valid configurations depend on the hardware, packaging, and OEM board layout. The number of unique LUNs mapped must match the value in the Section 8.4.3.7, "D3h: Dynamic Number of LUNs," on page 41.

8.4.3.9 D8h-DDh: Reserved

BYTE	NAME	DESCRIPTION
2:0	Reserved	Reserved.

8.4.4 Hub Controller Configurations

8.4.4.1 DEh: Vendor ID (LSB)

BIT	BYTE NAME	DESCRIPTION
7:0	VID_LSB	Least Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the vendor of the user device (assigned by USB Implementer's Forum).

8.4.4.2 DFh: Vendor ID (MSB)

BIT	BYTE NAME	DESCRIPTION
7:0	VID_MSB	Most Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the vendor of the user device (assigned by USB Implementer's Forum).

8.4.4.3 E0h: Product ID (LSB)

BIT	NAME	DESCRIPTION
7:0	PID_LSB	Least Significant Byte of the Product ID. This is a 16-bit value that the vendor can assign that uniquely identifies this particular product.

8.4.4.4 E1h: Product ID (MSB)

BIT	NAME	DESCRIPTION
7:0	PID_MSB	Most Significant Byte of the Product ID. This is a 16-bit value that the vendor can assign that uniquely identifies this particular product.

8.4.4.5 E2h: Device ID (LSB)

BIT	NAME	DESCRIPTION
7:0	DID_LSB	Least Significant Byte of the Device ID. This is a 16-bit device release number in BCD (binary coded decimal) format.

8.4.4.6 E3h: Device ID (MSB)

BIT	NAME	DESCRIPTION
7:0	DID_MSB	Most Significant Byte of the Device ID. This is a 16-bit device release number in BCD format.

8.4.4.7 E4h: Configuration Data Byte 1 (CFG_DAT_BYT1)

BIT	NAME	DESCRIPTION
7	SELF_BUS_PWR	Self- or Bus-Power: Selects between self- and bus-powered operation.
		The hub is either self-powered (draws less than 2 mA of upstream bus power) or bus-powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller).
		When configured as a bus-powered device, the SMSC hub consumes less than 100 mA of current prior to being configured. After configuration, the bus- powered SMSC hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 specifications are not violated.
		When configured as a self-powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.
		'0' = Bus-powered operation '1' = Self-powered operation
6	Reserved	Reserved
5	HS_DISABLE	Hi-Speed Disable: Disables the capability to attach as either a Hi-/Full-Speed device, and forces attachment as Full-Speed only (i.e. no Hi-Speed support).
		'0' = Hi-/Full-Speed '1' = Full-Speed-Only (Hi-Speed disabled!)

BIT	NAME	DESCRIPTION
4	Reserved	Reserved
3	EOP_DISABLE	EOP Disable: Disables EOP generation of EOF1 when in Full-Speed mode. During FS operation only, this permits the hub to send EOP if no downstream traffic is detected at EOF1. See Section 11.3.1 of the USB 2.0 Specification for additional details.
		'0' = An EOP is generated at the EOF1 point if no traffic is detected. '1' = EOP generation at EOF1 is disabled (normal USB operation).
		Note: Generation of an EOP at the EOF1 point may prevent a host controller (operating in FS mode) from placing the USB bus in suspend.
2:1	CURRENT_SNS	Over-Current Sense: Selects current sensing on a port-by-port basis, all ports ganged, or none (only for bus-powered hubs). The ability to support current sensing on a per port or ganged basis is dependent upon the hardware implementation.
		 '00' = Ganged sensing (all ports together) '01' = Individual (port-by-port) '1x' = Over-current sensing not supported (must only be used with buspowered configurations!)
0	PORT_PWR	Port Power Switching: Enables power switching on all ports simultaneously (ganged), or port power is individually switched on and off on a port-by-port basis (individual). The ability to support power enabling on a port or ganged basis is dependent upon the hardware implementation.
		'0' = Ganged switching (all ports together)'1' = Individual port-by-port switching

8.4.4.8 E5h: Configuration Data Byte 2 (CFG_DAT_BYT2)

BIT	NAME	DESCRIPTION
7:6	Reserved	Reserved
5:4	OC_TIMER	OverCurrent Timer: Over-current timer delay. '00' = 50 ns '01' = 100 ns '10' = 200 ns '11' = 400 ns
3	COMPOUND	Compound Device: Allows OEM to indicate that the hub is part of a compound device (per the USB 2.0 Specification). The applicable port(s) must also be defined as having a "non-removable device".
		Note: When configured via strapping options, declaring a port as non-removable automatically causes the hub controller to report that it is part of a compound device.
		'0' = No '1' = Yes, the hub is part of a compound device
2:0	Reserved	Reserved

8.4.4.9 E6h: Configuration Data Byte 3 (CFG_DAT_BYT3)

BIT	NAME	DESCRIPTION
7:4	Reserved	Reserved
3	PRTMAP_EN	 Port Mapping Enable: Selects the method used by the hub to assign port numbers and disable ports. '0' = Standard Mode. Strap options or the following registers are used to define which ports are enabled, and the ports are mapped as port 'n' on the hub is reported as port 'n' to the host, unless one of the ports is disabled, then the higher numbered ports are remapped in order to report contiguous port numbers to the host. Register 300Ah: Port disable for self-powered operation (Reset = 0x00). Register 300Bh: Port disable for bus-powered operation (Reset = 0x00). '1' = Port Map mode. The mode enables remapping via the registers defined below.
		Register 30FBh: Port Map 12 (Reset = 0x00) Register 30FCh: Port Map 3 (Reset = 0x00)
2:0	Reserved	Reserved

8.4.4.10 E7h: Non-Removable Device

BIT	BYTE NAME	DESCRIPTION
7:0	NR_DEVICE	Indicates which port(s) include non-removable devices.
		'0' = Port is removable '1' = Port is non-removable
		Informs the host if one of the active ports has a permanent device that is undetachable from the hub. The device must provide its own descriptor data.
		When using the internal default option, the NON_REM[1:0] pins will designate the appropriate ports as being non-removable.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= Controls physical port 3 Bit 2= Controls physical port 2 Bit 1= Controls physical port 1 Bit 0= Reserved
		Note: Bit 1 must be set to a '1' by the firmware for proper identification of the card reader as a non-removable device.

8.4.4.11 E8h: Port Disable For Self-Powered Operation

BIT	BYTE NAME	DESCRIPTION
7:0	PORT_DIS_SP	Disables 1 or more ports.
		'0' = Port is available '1' = Port is disabled
		During self-powered operation this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order since the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= Controls physical port 3 Bit 2= Controls physical port 2 Bit 1= Controls physical port 1 Bit 0= Reserved

8.4.4.12 E9h: Port Disable For Bus-Powered Operation

BIT	BYTE NAME	DESCRIPTION
7:0	PORT_DIS_BP	Disables 1 or more ports.
		'0' = Port is available '1' = Port is disabled
		During self-powered operation, this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order, the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function.
		When using the internal default option, the PRT_DIS[1:0] pins will disable the appropriate ports.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= Controls physical port 3 Bit 2= Controls physical port 2 Bit 1= Controls physical port 1 Bit 0 is Reserved

8.4.4.13 EAh: Max Power For Self-Powered Operation

BIT	BYTE NAME	DESCRIPTION
7:0	MAX_PWR_SP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.
		Note: The USB 2.0 Specification does not permit this value to exceed 100 mA.

8.4.4.14 EBh: Max Power For Bus-Powered Operation

BIT	BYTE NAME	DESCRIPTION
7:0	MAX_PWR_BP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.

8.4.4.15 ECh: Hub Controller Max Current For Self-Powered Operation

BIT	BYTE NAME	DESCRIPTION
7:0	HC_MAX_C_SP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value does NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device.
		Note: The USB 2.0 Specification does not permit this value to exceed 100 mA.
		A value of 50 (decimal) indicates 100 mA, which is the default value.

8.4.4.16 EDh: Hub Controller Max Current For Bus-Powered Operation

BIT	BYTE NAME	DESCRIPTION
7:0	HC_MAX_C_BP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value will include the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value will NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device. A value of 50 (decimal) would indicate 100 mA, which is the default value.

8.4.4.17 EEh: Power-On Time

BIT	BYTE NAME	DESCRIPTION
7:0	PWR_ON_TIME	The length of time that it takes (in 2 ms intervals) from the time the host initiated power-on sequence begins on a port until power is adequate on that port. If the host requests the power-on time, the system software uses this value to determine how long to wait before accessing a powered-on port.

8.4.4.18 EFh: Boost_Up

BIT	NAME	DESCRIPTION
7:2	Reserved	Reserved
1:0	BOOST_IOUT	USB electrical signaling drive strength boost bit for the upstream port 'A'.
		 '00' = Normal electrical drive strength = No boost '01' = Elevated electrical drive strength = Low (approximately 4% boost) '10' = Elevated electrical drive strength = Medium (approximately 8% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost)
		Note: "Boost" could result in non-USB compliant parameters. OEM should use a '00' value unless specific implementation issues require additional signal boosting to correct for degraded USB signaling levels.

8.4.4.19 F0h: Boost_3:0

BIT	NAME	DESCRIPTION
7:6	Reserved	Reserved
5:4	BOOST_IOUT_3	Upstream USB electrical signaling drive strength boost bit for downstream port '3'.
		 '00' = Normal electrical drive strength = No boost '01' = Elevated electrical drive strength = Low (approximately 4% boost) '10' = Elevated electrical drive strength = Medium (approximately 8% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost)
3:2	BOOST_IOUT_2	Upstream USB electrical signaling drive strength boost bit for downstream port '2'.
		 '00' = Normal electrical drive strength = No boost '01' = Elevated electrical drive strength = Low (approximately 4% boost) '10' = Elevated electrical drive strength = Medium (approximately 8% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost)
		Note: "Boost" could result in non-USB Compliant parameters. OEM should use a '00' value unless specific implementation issues require additional signal boosting to correct for degraded USB signaling levels.
1:0	Reserved	Always reads '0'.

8.4.4.20 F1h: Port Swap

BIT	BYTE NAME	DESCRIPTION
7:0	PRT_SWP	Swaps the upstream and downstream USB DP and DM pins for ease of board routing to devices and connectors.
		$^{\prime}0^{\prime}$ = USB D+ functionality is associated with the DP pin and D- functionality is associated with the DM pin.
		'1' = USB D+ functionality is associated with the DM pin and D- functionality is associated with the DP pin.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= Controls physical port 3 Bit 2= Controls physical port 2 Bit 1= Reserved Bit 0= Controls physical port 0

8.4.4.21 F2h: Port Map 12

BIT	BYTE NAME			DESCRIPTION
7:0	PRTM12	PortMap register fo	or ports 1 &	2
		permitted to report a numerical range	how many i or assignme of the hub s	a USB host controller, the hub is only ports it has; the hub is not permitted to select ent. The host controller will number the tarting with the number '1', up to the number having.
		physical port on the mode is enabled (s	e hub is the see PRTMA lownstream	rred to as "logical port number" and the e "physical port number". When remapping P_EN in Register 08h: Configuration Data port numbers can be remapped to different d by the host).
		used, star enabled p	ting from nu orts; this er	re that contiguous logical port numbers are umber '1' up to the maximum number of nsures that the hub's ports are numbered in way a host will communicate with the ports.
		Tab	le 8.5 Port	Map Register for Ports 1 & 2
		Bit [7:4]	'0000'	Physical port 2 is disabled
			'0001'	Physical port 2 is mapped to Logical port 1
			'0010'	Physical port 2 is mapped to Logical port 2
			'0011'	Physical port 2 is mapped to Logical port 3
			'0100' to '1111'	Illegal; Do not use
		Bit [3:0]	'0000'	Physical port 1 is disabled
			'0001'	Physical port 1 is mapped to Logical port 1
			'0010'	Physical port 1 is mapped to Logical port 2
			'0011'	Physical port 1 is mapped to Logical port 3
			'0100' to '1111'	Illegal; Do not use

8.4.4.22 F3h: Port Map 3

Datasheet

BIT	BYTE NAME			DESCRIPTION
7:0	PRTM3	PortMap register for	or port 3.	
		permitted to report a numerical range	how many p or assignme of the hub s	a USB host controller, the hub is only ports it has; the hub is not permitted to select ent. The host controller will number the starting with the number '1', up to the number having.
		physical port on th mode is enabled (s	e hub is the see PRTMA downstream	Prred to as "logical port number" and the e "physical port number". When remapping P_EN in Register 08h: Configuration Data port numbers can be remapped to different d by the host).
		used, star enabled p	rting from nu oorts; this er	re that contiguous logical port numbers are umber '1' up to the maximum number of nsures that the hub's ports are numbered in way a host will communicate with the ports.
		-	Table 8.6 P	ort Map Register for Port 3
		Bit [7:4]	'0000'	Reserved
			'0001'	Reserved
			'0010'	Reserved
			'0011'	Reserved
			'0100' to '1111'	Illegal; Do not use
		Bit [3:0]	ʻ0000'	Physical port 3 is disabled
			'0001'	Physical port 3 is mapped to Logical port 1
			'0010'	Physical port 3 is mapped to Logical port 2
			'0011'	Physical port 3 is mapped to Logical port 3
			'0100' to '1111'	Illegal; Do not use

8.4.4.23 F4h-FAh: Reserved

BYTE	BYTE NAME	DESCRIPTION
6:0	Reserved	Reserved.

8.4.4.24 FBh: Not Applicable

BIT	BYTE NAME	DESCRIPTION
7:0	Not Applicable	Not applicable.

8.4.4.25 FCh-FFh: Non-Volatile Storage Signature

BYTE	NAME	DESCRIPTION
3:0	NVSTORE_SIG	This signature is used to verify the validity of the data in the first 256 bytes of the configuration area. The signature must be set to 'ATA2' for USB2660/USB2660i.

8.4.5 Internal Flash Media Controller Extended Configurations

Enable Registers 100h - 17Fh by setting bit 7 of bmAttribute.

8.4.5.1 100h-106h: Combo LUN 0 Identifier String

BYTE	NAME	DESCRIPTION
6:0	CLUN0_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.

8.4.5.2 107h-10Dh: Combo LUN 1 Identifier String

BYTE	NAME	DESCRIPTION
6:0	CLUN1_ID_STR	If the device to LUN bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.

8.4.5.3 10Eh-114h: Combo LUN 2 Identifier String

BYTE	NAME	DESCRIPTION
6:0	CLUN2_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.

8.4.5.4 115h-11Bh: Combo LUN 3 Identifier String

BYTE	NAME	DESCRIPTION
6:0	CLUN3_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.

8.4.5.5 11Ch-122h: Combo LUN 4 Identifier String

BYTE	NAME	DESCRIPTION	
6:0	CLUN4_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.	

8.4.5.6 123h-129h: Device 4 Identifier String

BYTE NAME		DESCRIPTION		
6:0	DEV4_ID_STR	This ID string is associated with the second Secure Digital / MultiMediaCard "SD/MMC2" device.		

8.4.5.7 130h-145h: Not Applicable

BYTE	NAME	DESCRIPTION
21:0	Not Applicable	Not applicable.

8.4.5.8 146h: Dynamic Number of Extended LUNs

BIT	NAME	DESCRIPTION	
7:0	DYN_NUM_ EXT_LUN	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces. If this field is set to "FF", the program assumes that you are using the default value and icons will be configured per the default configuration.	

8.4.5.9 147h-14Bh: Device to LUN Mapping

BYTE	NAME	DESCRIPTION	
4:0	DEV_LUN_MAP	These registers map a device controller (SD/MMC, SM (Note 8.2), and MS) to a Logical Unit Number (LUN). The device reports the mapped LUNs to the USB host in the USB descriptor during enumeration. The icon installer associates custom icons with the LUNs specified in these fields. Setting a register to "FF" indicates that the device is not mapped. Setting all of the DEV_LUN_MAP registers for all devices to "FF" forces the use of the default mapping configuration. Not all configurations are valid. Valid configurations depend on the hardware, packaging, and OEM board layout. The number of unique LUNs mapped must match the value in the Section 8.4.3.7, "D3h: Dynamic Number of LUNs," on page 41.	

8.4.5.10 14Ch-14Dh: Second Secure Digital Device Power Configuration

The device has two internal FETs which can be utilized for card power. For information about the other internal FET, please see Section 8.4.2.3, "A4h-A5h: Smart Media Device Power Configuration," on page 39. The settings are stored in NVSTORE. This section describes the default internal configuration.

- 1. A card can be powered by an external FET or by an internal FET.
- 2. The power limit can be set to 100 mA or 200 mA (Default) for the internal FET.

Each media uses two bytes to store its device power configuration. Bit 3 selects between internal or external card power FET options. For internal FET card power control, bits 0 through 2 are used to set the power limit. The "Device Power Configuration" bits are ignored unless the "Enable Device Power Configuration" bit is set. See Section 8.4.1.19, "9Ch-9Fh: Attribute Byte Descriptions," on page 37.

FET	TYPE	BITS	BIT TYPE	DESCRIPTION
0	FET Lo Byte SD2_PWR_LB	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
1		7:4	High Nibble	0000b Disabled
2	FET Hi Byte SD2 PWR HB	3:0	Low Nibble	0000b Disabled
3	SU2_FVIK_ND	7:4	High Nibble	0000b Disabled

8.4.5.11 14Eh-17Bh: Not Applicable

BIT	NAME	DESCRIPTION
47:0	Not Applicable	Not applicable.

8.4.5.12 17Ch -17Fh: Non-Volatile Storage Signature for Extended Configuration

BYTE	NAME	DESCRIPTION	
3:0	NVSTORE_SIG2	This signature is used to verify the validity of the data in the upper 256 bytes if a 512 byte EEPROM is used, otherwise this bank is a read-only configuration area. The signature must be set to 'ecf1'.	

8.4.6 I²C EEPROM

The I²C EEPROM interface implements a subset of the I²C Master Specification (Please refer to the Philips Semiconductor Standard I²C-Bus Specification for details on I²C bus protocols). The device's I²C EEPROM interface is designed to attach to a single "dedicated" I²C EEPROM, and it conforms to the Standard-mode I²C Specification (100 kbps transfer rate and 7-bit addressing) for protocol and electrical compatibility.

Note: Extensions to the I²C Specification are not supported. The device acts as the master and generates the serial clock SCL, controls the bus access (determines which device acts as the transmitter and which device acts as the receiver), and generates the START and STOP conditions.

8.4.6.1 Implementation Characteristics

The device will only access an EEPROM using the sequential read protocol.

8.4.6.2 Pull-Up Resistor

The circuit board designer is required to place external pull-up resistors (10 k Ω recommended) on the SPI_DO / GPIO5 / SDA / SPI_SPD_SEL and SPI_CLK / GPIO4 / SCL lines (per SMBus 1.0 Specification and EEPROM manufacturer guidelines) to VDD33 in order to assure proper operation.

8.4.7 In-Circuit EEPROM Programming

The EEPROM can be programmed via automatic test equipment (ATE). Pulling nRESET low tri-states the device's EEPROM interface and allows an external source to program the EEPROM.

8.5 Default Configuration Option

The SMSC device can be configured via its internal default configuration. Please see Section 8.3.2, "EEPROM Data Descriptor" for specific details on how to enable default configuration. Please refer to Table 8.1 for the internal default values that are loaded when this option is selected.

8.5.1 External Hardware nRESET

SMS

A valid hardware reset is defined as assertion of nRESET for a minimum of 1 μs after all power supplies are within operating range. While reset is asserted, the device (and its associated external circuitry) consumes less than 500 μA of current from the upstream USB power source.

Assertion of nRESET (external pin) causes the following:

- 1. All downstream ports are disabled and PRTCTL power to downstream devices is removed.
- 2. The PHYs are disabled and the differential pairs will be in a high-impedance state.
- 3. All transactions immediately terminate; no states are saved.
- 4. All internal registers return to the default state (in most cases, 00h).
- 5. The external crystal oscillator is halted.
- 6. The PLL is halted.

8.5.1.1 nRESET for EEPROM Configuration

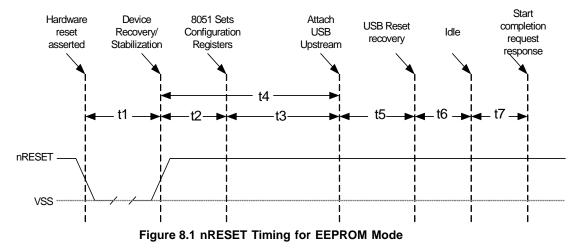


 Table 8.7 nRESET Timing for EEPROM Mode

NAME	DESCRIPTION	MIN	ТҮР	МАХ	UNITS
t1	nRESET asserted	1			μsec
t2	Device recovery/stabilization			500	μsec
t3	8051 programs device configuration		20	50	msec
t4	USB attach (See Note)			100	msec
t5	Host acknowledges attach and signals USB reset	100			msec
t6	USB idle		Undefined		msec
t7	Completion time for requests (with or without data stage)			5	msec

Note: All power supplies must have reached the operating levels mandated in Chapter 10, DC Parameters, prior to (or coincident with) the assertion of nRESET.

8.5.2 USB Bus Reset

In response to the upstream port signaling a reset to the device, the device does the following:

Note: The device does not propagate the upstream USB reset to downstream devices.

- 1. Sets default address to '0'.
- 2. Sets configuration to: Unconfigured.
- 3. Negates PRTCTL[3:2] to all downstream ports.
- 4. Clears all TT buffers.
- 5. Moves device from suspended to active (if suspended).
- 6. Complies with Section 11.10 of the USB 2.0 Specification for behavior after completion of the reset sequence.

The host then configures the device and the device's downstream port devices in accordance with the USB 2.0 Specification.

Chapter 9 AC Specifications

າສາ

9.1 Oscillator/Crystal

SI

Parallel Resonant, Fundamental Mode, 24 MHz \pm 350 ppm.

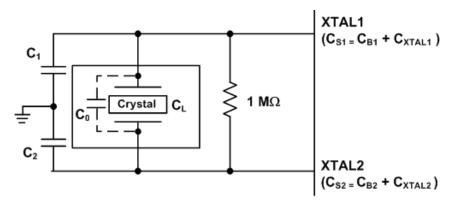


Figure 9.1 Typical Crystal Circuit

Table 0.1	Crystal Circuit L	bropo
Table 9.1	Crystal Circuit L	egena

SYMBOL	DESCRIPTION	IN ACCORDANCE WITH		
C ₀	Crystal shunt capacitance	Crystel manufacturer's aposition (See Note 0.1)		
CL	Crystal load capacitance	Crystal manufacturer's specification (See Note 9.1)		
C _B	Total board or trace capacitance	OEM board design		
C _S	Stray capacitance	SMSC IC and OEM board design		
C _{XTAL}	XTAL pin input capacitance	SMSC IC		
C ₁	Load capacitors installed on	Calculated values based on Figure 9.2,		
C ₂	OEM board	"Capacitance Formulas" (See Note 9.2)		

$$C_1 = 2 \times (C_L - C_0) - C_{S1}$$

$$C_2 = 2 \times (C_L - C_0) - C_{S2}$$

Figure 9.2 Capacitance Formulas

- **Note 9.1** C_0 is usually included (subtracted by the crystal manufacturer) in the specification for C_L and should be set to '0' for use in the calculation of the capacitance formulas in Figure 9.2, "Capacitance Formulas". However, the OEM PCB itself may present a parasitic capacitance between XTAL1 and XTAL2. For an accurate calculation of C_1 and C_2 , take the parasitic capacitance between traces XTAL1 and XTAL2 into account.
- Note 9.2 Each of these capacitance values is typically approximately 18 pF.

9.2 Ceramic Resonator

24 MHz \pm 350 ppm

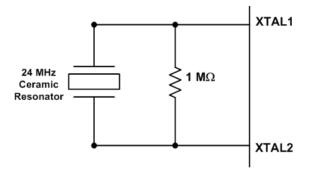


Figure 9.3 Ceramic Resonator Usage with SMSC IC

9.3 External Clock

50% Duty cycle \pm 10%, 24 MHz \pm 350 ppm, Jitter < 100 ps rms.

The external clock is recommended to conform to the signaling level designated in the JESD76-2 specification on 1.8 V CMOS Logic. XTAL2 should be treated as a no connect.

9.3.1 I²C EEPROM

Frequency is fixed at 58.6 kHz \pm 20%

9.3.2 USB 2.0

The SMSC device conforms to all voltage, power, and timing characteristics and specifications as set forth in the USB 2.0 Specification. Please refer to the USB 2.0 Specification for more information.

Chapter 10 DC Parameters

10.1 Maximum Guaranteed Ratings

PARAMETER	SYMBOL	MIN	МАХ	UNITS	COMMENTS
Storage Temperature	T _{STOR}	-55	150	°C	
Lead Temperature				°C	Please refer to JEDEC specification J-STD-020D.
3.3 V supply voltage	VDD33	-0.5	4.0	V	
Voltage on USB+ and USB- pins		-0.5	(3.3 V supply voltage + 2) \leq 6	V	
Voltage on GPIO8 and GPIO10		-0.5	VDD33 + 0.3	V	When internal power FET operation of these pins are enabled, these pins may be simultaneously shorted to ground or any voltage up to 3.63 V indefinitely, without damage to the device as long as VDD33 is less than 3.63 V and T_A is less than 70°C.
Voltage on any signal pin		-0.5	VDD33 + 0.3	V	
Voltage on XTAL1		-0.5	3.6	V	
Voltage on XTAL2		-0.5	2.0	V	

Note: Stresses above the specified parameters may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at any condition above those indicated in the operation sections of this specification is not implied. When powering this device from laboratory or system power supplies the absolute maximum ratings must not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. When this possibility exists, a clamp circuit should be used.

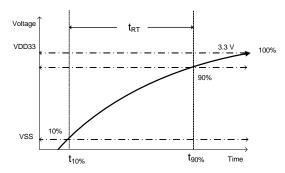
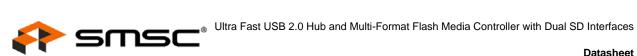


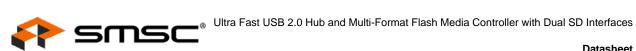
Figure 10.1 Supply Rise Time Model



10.2 Operating Conditions

PARAMETER	SYMBOL	MIN	МАХ	UNITS	COMMENTS
Commercial USB2660 Operating Temperature	T _A	0	70	°C	Ambient temperature in still air.
Industrial USB2660i Operating Temperature	T _A	-40	85	°C	Ambient temperature in still air.
3.3 V supply voltage	VDD33	3.0	3.6	V	A 3.3 V regulator with an output tolerance of 1% must be used if the output of the internal power FET's must support a 5% tolerance.
3.3 V supply rise time	t _{RT}	0	400	μS	(Figure 10.1)
Voltage on USB+ and USB- pins		-0.3	5.5	V	If any 3.3 V supply voltage drops below 3.0 V, then the MAX becomes: (3.3 V supply voltage) + $0.5 \le 5.5$
Voltage on any signal pin		-0.3	VDD33	V	
Voltage on XTAL1		-0.3	2.0	V	
Voltage on XTAL2		-0.3	2.0	V	

10.3 DC Electrical Characteristics


PARAMETER	SYMBOL	MIN	ТҮР	МАХ	UNITS	COMMENTS
I, IPU, IPD Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TTL Levels
High Input Level	V _{IHI}	2.0			V	
Pull Down	PD		72		μA	
Pull Up	PU		58		μA	
IS Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TTL Levels
High Input Level	V _{IHI}	2.0			V	
Hysteresis	V _{HYSI}		420		mV	

PARAMETER	SYMBOL	MIN	TYP	МАХ	UNITS	COMMENTS
ICLK Input Buffer						
Low Input Level	V _{ILCK}			0.5	V	
High Input Level	V _{IHCK}	1.4			V	
Input Leakage	Ι _{ΙL}	-10		+10	μA	$V_{IN} = 0$ to VDD33
Input Leakage (All I and IS buffers)						
Low Input Leakage	I _{IL}	-10		+10	μA	$V_{IN} = 0$
High Input Leakage	I _{IH}	-10		+10	μA	V _{IN} = VDD33
I/O6, I/OD6PU Type Buffers						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 6 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -6 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μA	V _{IN} = 0 to VDD33 (Note 10.1)
Pull Down	PD		72		μA	
Pull Up	PU		58		μA	
O8, O8PD, 08PU, I/O8, I/O8PD, and I/O8PU Type Buffers						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 8 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -8 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μA	V _{IN} = 0 to VDD33 (Note 10.1)
Pull Down	PD		72		μA	
Pull Up	PU		58		μΑ	

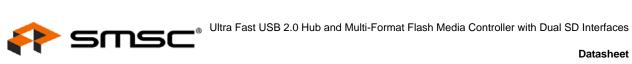
PARAMETER	SYMBOL	MIN	ТҮР	МАХ	UNITS	COMMENTS
O12, I/O12, and I/O12PD Type Buffers						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 12 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -12 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μA	V _{IN} = 0 to VDD33 (Note 10.1)
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
IO-U						Note 10.2
I-R						Note 10.3
I/O200 Integrated Power FET for GPIO8 and GPIO10						
High Output Current	I _{OUT}	200			mA	Vdrop _{FET} = 0.46 V
Low Output Current (Note 10.4)	I _{OUT}	100			mA	Vdrop _{FET} = 0.23 V
On Resistance (Note 10.4)	R _{DSON}			2.1	Ω	I _{FET} = 70 mA
Output Voltage Rise Time	t _{DSON}			800	μS	$C_{LOAD} = 10 \ \mu F$
Integrated Power FET Set to 100 mA						
Output Current (Note 10.4)	I _{OUT}	100			mA	Vdrop _{FET} = 0.22 V
Short Circuit Current Limit	I _{SC}			140	mA	Vout _{FET} = 0 V
On Resistance (Note 10.4)	R _{DSON}			2.1	Ω	I _{FET} = 70 mA
Output Voltage Rise Time	t _{DSON}			800	μS	$C_{LOAD} = 10 \ \mu F$
Integrated Power FET Set to 200 mA						
Output Current (Note 10.4)		200			mA	Vdrop _{FET} = 0.46 V
Short Circuit Current Limit	I _{OUT}	200		181	mA	$Voltop_{FET} = 0.40$ V Vout _{FET} = 0 V
On Resistance (Note 10.4)	I _{SC} Broon			2.1	Ω	I _{FET} = 70 mA
Output Voltage Rise Time	R _{DSON}			800		$C_{LOAD} = 10 \ \mu F$
	t _{DSON}			000	μS	VLOAD - 10 HF

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	COMMENTS
Supply Current Unconfigured						Note 10.5
Hi-Speed Host						
USB2660 USB2660i	I _{CCINTHS} I _{CCINTHS}		70 70	80 80	mA mA	
Full Speed Host						
USB2660 USB2660i	I _{CCINITES}		65 65	75 75	mA mA	
Supply Current Configured Hi-Speed Host, 1 downstream port						(Note 10.5)
USB2660 USB2660i	I _{HCH1} I _{HCH1}		260 260	270 275	mA mA	
Supply Current Configured Hi-Speed Host, each additional downstream port						
USB2660 USB2660i			25 25	30 35	mA mA	
Supply Current Configured Full-Speed Host, 1 downstream port						
USB2660 USB2660i	I _{FCC1} I _{FCC1}		200 200	210 215	mA mA	
Supply Current Configured Full-Speed Host, each additional downstream port						
USB2660 USB2660i			20 20	25 25	mA mA	
Supply Current Suspend						(Note 10.5)
USB2660 USB2660i	I _{CSBY} I _{CSBY}		500 500	950 1200	μA μA	
Supply Current Reset						
USB2660 USB2660i	I _{RST} I _{RST}		230 230	700 900	μA μA	

Note 10.1 Output leakage is measured with the current pins in high impedance.

Note 10.2 See the USB 2.0 Specification, Chapter 7, for USB DC electrical characteristics

- **Note 10.3** RBIAS is a 3.3 V tolerant analog pin.
- Note 10.4 Output current range is controlled by program software. The software disables the FET during short circuit condition.
- Note 10.5 Typical and maximum values were characterized using the following temperature ranges: The USB2660 supports the commercial temperature range of 0°C to +70°C The USB2660i supports the industrial temperature range of -40°C to +85°C

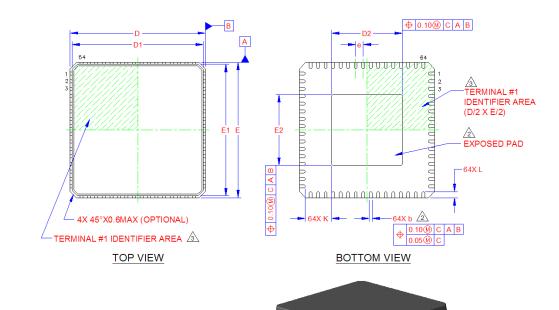


10.4 Capacitance

 $T_{\rm A}$ = 25°C; fc = 1 MHz; VDD33= 3.3 V

Table 10.1 Pin Capacitance

		LIMITS				
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Clock Input Capacitance	C _{XTAL}			2	pF	All pins (except USB pins and pins under test) are tied to AC ground.
Input Capacitance	C _{IN}			10	pF	
Output Capacitance	C _{OUT}			20	pF	


Chapter 11 GPIO Usage

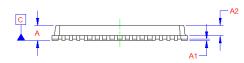
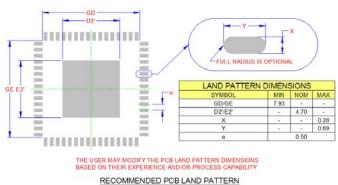

NAME	ACTIVE LEVEL	SYMBOL	DESCRIPTION AND NOTE
GPIO1	Н	TxD / LED	Serial port transmit line / LED indicator
GPIO2	Н	RxD	Serial port receive line
GPIO4	Н	SCL	Serial EEPROM clock
GPIO5	Н	SDA	Serial EEPROM data
GPIO6	L	SD1_WP	Secure Digital card write protect assertion
GPIO8	L	CRD_PWR_CTRL	Card power control
GPIO10	L	CRD_PWR_CTRL	Card power control
GPIO12	L	MS_nCD	Memory Stick card detect
GPIO14	L	xD_nCD	xD-Picture card detect
GPIO15	L	SD1_nCD	Secure Digital card detect
GPIO16	L	SD2_nCD	Second SD card detect
GPIO17	L	SD2_WP	Second SD card write protect
GPIO[25:18]	Н	SD2_D[7:0]	Second SD data pins
GPIO26	Н	SD2_CLK	Output clock signal to the SD/MMC2 device
GPIO27	Н	SD2_CMD	SD/MMC2 Command signal

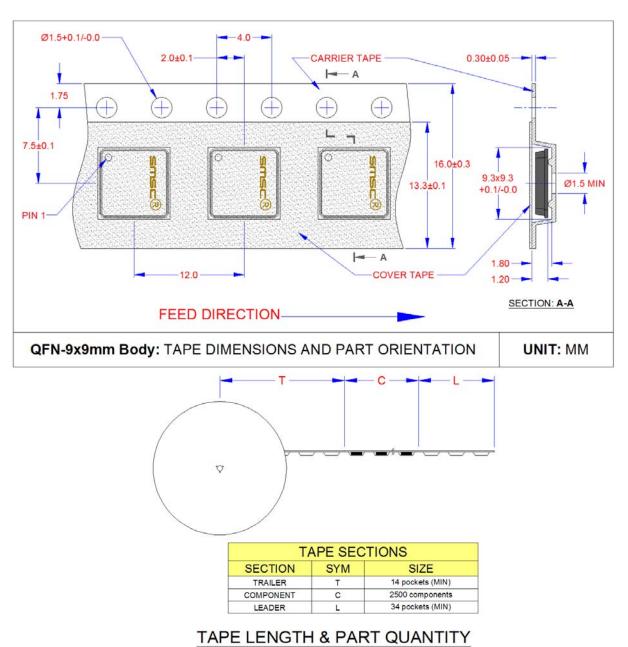
Table 11.1 USB2660/USB2660i GPIO Usage

Chapter 12 Package Specifications



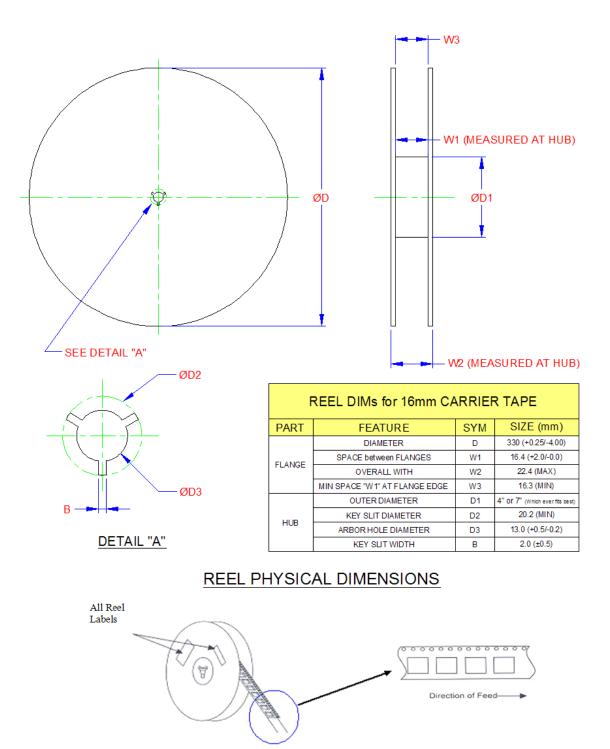
3-D VIEWS

accordence and


COMMON DIMENSIONS SYMBOL MIN REMARK NOM MAX NOTE 0.80 0.85 1.00 OVERALL PACKAGE HEIGHT A A1 0 0.02 0.05 STANDOFF A2 0.65 0.80 MOLD CAP THICKNESS X/Y BODY SIZE D/E 8.90 9.00 9.10 D1/E1 8.65 8.75 8.85 X/Y MOLD CAP SIZE D2/E2 4.60 4.70 4.80 2 X/Y EXPOSED PAD SIZE E 0.30 0.40 0.50 4 TERMINAL LENGTH 2 TERMINAL WIDTH 0.18 0.25 0.30 b 0.50 BSC TERMINAL PITCH ė

NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETER 2. DIMENSIONS 'b' APPLIES TO PLATED TERMINALS AND IT IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. 3. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE AREA INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.

Figure 12.1 USB2660/USB2660i 64-Pin QFN



12.1 Tape and Reel Specifications

Figure 12.2 64-Pin Package Tape Specifications

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9