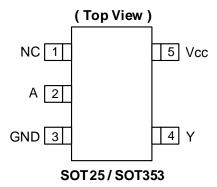




### 74LVC1G07Q


June 2020 © Diodes Incorporated

#### SINGLE BUFFER WITH OPEN DRAIN OUTPUT

### **Description**

The 74LVC1G07Q is an automotive-compliant, single buffer with an open-drain output. The device is designed for operation with a power supply range of 1.65V to 5.5V. The inputs are tolerant to 5.5V allowing this device to be used in a mixed voltage environment. The device is fully specified for partial power down applications using IOFF. The IOFF circuitry disables the output preventing damaging current backflow when the device is powered down. The open-drain output can be connected to other open drain outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum sink current is 32mA at 5V.

### **Pin Assignments**



#### **Features**

- Grade 1 Ambient Temperature Operation: -40°C to +125°C
- Wide Supply Voltage Range from 1.65V to 5.5V
- 24mA Sink Current at 3.3V
- CMOS Low Power Consumption
- Ioff Supports Partial-Power-Down Mode Operation
- Inputs Accept up to 5.5V Regardless of Vcc Level
- ESD Protection Tested per AEC-Q100
- Exceeds 2000V Human Body Model (AEC-Q100-002)
- Exceeds 1000V Charged Device Model (AEC-Q100-011)
- Latch-Up Exceeds 100mA (AEC-Q100-004)
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- The 74LVC1G07Q is suitable for automotive applications requiring specific change control; this part is AEC-Q100 qualified, PPAP capable, and manufactured in IATF 16949 certified facilities.

https://www.diodes.com/quality/product-definitions/

### **Applications**

- Voltage Level Shifting
- General Purpose Logic
- Power Down Signal Isolation
- Wide Array of Products such as:
  - Automotive applications within Grade 1 Temperature Range
  - Industrial Computing/Controls/Automation
  - High Reliability Networking/Communications
  - Industrial/Agricultural Equipment

Notes:


- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.



# **Pin Descriptions**

| Pin Name | Description    |
|----------|----------------|
| NC       | No Connection  |
| А        | Data Input     |
| GND      | Ground         |
| Y        | Data Output    |
| Vcc      | Supply Voltage |

# **Logic Diagram**



# **Function Table**

| Input | Output |
|-------|--------|
| Α     | Y      |
| Н     | Z      |
| L     | L      |

# Absolute Maximum Ratings (Notes 4 & 5)

| Symbol           | Description                                               | Rating           | Unit |
|------------------|-----------------------------------------------------------|------------------|------|
| ESD HBM          | Human Body Model ESD Protection                           | 2                | kV   |
| ESD CDM          | Charged Device Model ESD Protection                       | 1                | kV   |
| V <sub>CC</sub>  | Supply Voltage Range                                      | -0.5 to 6.5      | V    |
| VI               | Input Voltage Range                                       | -0.5 to 6.5      | V    |
| Vo               | Voltage Applied to Output in High Impedance or IOFF State | -0.5 to 6.5      | V    |
| Vo               | Voltage Applied to Output in High or Low State            | -0.5 to Vcc +0.5 | V    |
| I <sub>IK</sub>  | Input Clamp Current V <sub>I</sub> < 0                    | -50              | mA   |
| lok              | Output Clamp Current                                      | -50              | mA   |
| lo               | Continuous Output Current                                 | 50               | mA   |
| Icc, Ignd        | Continuous Current Through Vcc or GND                     | ±100             | mA   |
| TJ               | Operating Junction Temperature                            | -40 to +150      | °C   |
| T <sub>STG</sub> | Storage Temperature                                       | -65 to +150      | °C   |

Notes:

<sup>4.</sup> Stresses beyond the absolute maximum can result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

<sup>5.</sup> Forcing the maximum allowed voltage could cause a condition exceeding the maximum current or conversely forcing the maximum current could cause a condition exceeding the maximum voltage. The ratings of both current and voltage must be maintained within the controlled range.



# Recommended Operating Conditions (Note 6)

| Symbol |                                    | Parameter                                | Min                   | Max                    | Unit |
|--------|------------------------------------|------------------------------------------|-----------------------|------------------------|------|
| V      | Operating Voltage                  | Operating                                | 1.65                  | 5.5                    | V    |
| Vcc    | Operating Voltage                  | Data retention only                      | 1.5                   | _                      | V    |
|        |                                    | Vcc = 1.65V to 1.95V                     | 0.65 × Vcc            | _                      |      |
| \ /    | High Loyal Input Valtage           | Vcc = 2.3V to 2.7V                       | 1.7                   | _                      | V    |
| ViH    | High-Level Input Voltage           | V <sub>CC</sub> = 3V to 3.6V             | 2                     | _                      | v    |
|        |                                    | V <sub>CC</sub> = 4.5V to 5.5V           | 0.7 × V <sub>CC</sub> | _                      |      |
|        |                                    | V <sub>CC</sub> = 1.65V to 1.95V         | _                     | 0.35 × V <sub>CC</sub> |      |
| .,     | Lavelavellenvt Valtage             | V <sub>CC</sub> = 2.3V to 2.7V           | _                     | 0.7                    | .,   |
| VIL    | Low-Level Input Voltage            | V <sub>CC</sub> = 3V to 3.6V             | _                     | 0.8                    | V    |
|        |                                    | Vcc = 4.5V to 5.5V                       | _                     | 0.3 × Vcc              |      |
| Vı     | Input Voltage                      |                                          | 0                     | 5.5                    | V    |
| Vo     | Output Voltage                     |                                          | 0                     | 5.5                    | V    |
|        |                                    | Vcc = 1.65V                              | _                     | 4                      |      |
|        |                                    | Vcc = 2.3V                               | _                     | 8                      |      |
| la.    | Low Lovel Output Current           | Vcc = 2.7V                               | _                     | 12                     | mA   |
| loL    | Low-Level Output Current           | V 2V                                     | _                     | 16                     | IIIA |
|        |                                    | Vcc = 3V                                 | _                     | 24                     |      |
|        |                                    | Vcc = 4.5V                               | _                     | 32                     |      |
|        |                                    | $V_{CC} = 1.8V \pm 0.15V, 2.5V \pm 0.2V$ | _                     | 20                     |      |
| Δt/ΔV  | Input Transition Rise or Fall Rate | $V_{CC} = 3.3V \pm 0.3V$                 | _                     | 10                     | ns/V |
|        |                                    | $Vcc = 5V \pm 0.5V$                      | _                     | 5                      |      |
| TA     | Operating Free-Air<br>Temperature  | _                                        | -40                   | +125                   | °C   |

Note:

6. Unused inputs should be held at  $V_{\text{CC}}$  or Ground.



# **Electrical Characteristics** (All typical values are at $V_{CC} = 3.3V$ , $T_A = +25$ °C)

| Cumbal | Parameter                  | Took Co                                          | Tost Conditions         |               | -40° | C to +125 | ,C   | Unit |
|--------|----------------------------|--------------------------------------------------|-------------------------|---------------|------|-----------|------|------|
| Symbol | Parameter                  | Test Conditions                                  |                         | Vcc           | Min  | Тур       | Max  | Unit |
|        |                            |                                                  | I <sub>OL</sub> = 100μA | 1.65V to 5.5V |      | _         | 0.1  |      |
|        |                            |                                                  | IoL = 4mA               | 1.65V         | _    | _         | 0.45 |      |
|        |                            |                                                  | IoL = 8mA               | 2.3V          | _    | _         | 0.3  | .,   |
| Vol    | Low Level Output Voltage   | VI = VIL                                         | IoL = 12mA              | 2.7V          | _    | _         | 0.4  | V    |
|        |                            |                                                  | IoL = 24mA              | 3V            | _    | _         | 0.55 |      |
|        |                            |                                                  | IoL = 32mA              | 4.5V          | _    | _         | 0.55 |      |
| lı     | Input Current              | V <sub>I</sub> = 5.5V or GN                      | ID                      | 0 to 5.5V     | _    | ±0.1      | ±1   | μΑ   |
| loff   | Power Down Leakage Current | V <sub>I</sub> or V <sub>O</sub> = 5.5V          |                         | 0V            |      | _         | ±2   | μΑ   |
| loz    | Z-State Leakage Current    | VI = VIH, VO = 5.5V                              |                         | 1.65V or 5.5V | _    | ±0.1      | ±2   | μΑ   |
| Icc    | Supply Current             | V <sub>I</sub> = 5.5V or GND, I <sub>O</sub> = 0 |                         | 5.5V          | _    | 0.1       | 4    | μΑ   |
| ΔΙσο   | Additional Supply Current  | Input at Vcc – 0.6V                              |                         | 3V to 5.5V    | _    | _         | 500  | μΑ   |
| Cı     | Input Capacitance          | VI = Vcc to GNE                                  | )                       | 3.3V          | -    | 5.0       |      | pF   |

# **Package Characteristics**

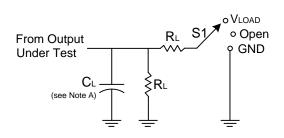
| Symbol | Parameter           | Package       | Test Conditions | Min | Тур | Max | Unit |
|--------|---------------------|---------------|-----------------|-----|-----|-----|------|
| 0      | Thermal Resistance  | SOT25         | Note 7          | 1   | 184 | 1   | 900  |
| θја    | Junction-to-Ambient | SOT353        | Note 7          | -   | 385 | 1   | °C/W |
| 0      | Thermal Resistance  | SOT25         | Note 7          | _   | 62  | _   | 2011 |
| θЈС    | Junction-to-Case    | SOT353 Note 7 |                 | _   | 164 | _   | °C/W |

Note: 7. Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

# **Switching Characteristics**

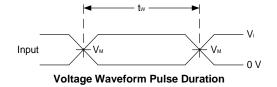
Figure 1 Typical Values at  $T_A = +25^{\circ}C$  and nominal voltages 1.8V, 2.5V, 2.7V, 3.3V, and 5.0V.

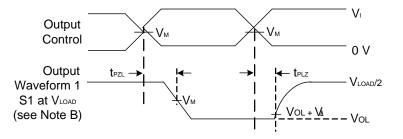
| Parameter       | From  | То           | Vcc             | T <sub>A</sub> = -4 | Unit |     |       |
|-----------------|-------|--------------|-----------------|---------------------|------|-----|-------|
| Farameter       | Input | Output       | VCC             | Min                 | Тур  | Max | Ollic |
|                 |       | 1.8V ± 0.15V | 1.0             | 2.6                 | 8.4  |     |       |
|                 |       | Y            |                 | $2.5V \pm 0.2V$     | 0.5  | 1.7 | 7.0   |
| t <sub>PD</sub> | Α     |              | 2.7V            | 0.5                 | 2.3  | 6.0 | ns    |
|                 |       |              | $3.3V \pm 0.3V$ | 0.5                 | 2.2  | 5.5 |       |
|                 |       |              | $5.0V \pm 0.5V$ | 0.5                 | 1.6  | 4.5 |       |


# **Operating Characteristics**

 $T_A = +25$ °C

| Parameter       |                                  | Test<br>Conditions | Vcc = 1.8V | Vcc = 2.5V | Vcc = 3.3V | Vcc = 5V | Unit |  |
|-----------------|----------------------------------|--------------------|------------|------------|------------|----------|------|--|
|                 |                                  |                    | Тур        | Тур        | Тур        | Тур      |      |  |
| C <sub>PD</sub> | Power Dissipation<br>Capacitance | f = 10MHz          | 5          | 5          | 6          | 6        | pF   |  |





### **Measurement Information**



| TEST                               | S1         | CLRL      |
|------------------------------------|------------|-----------|
| t <sub>PLZ</sub> /t <sub>PZL</sub> | $V_{LOAD}$ | Per Table |

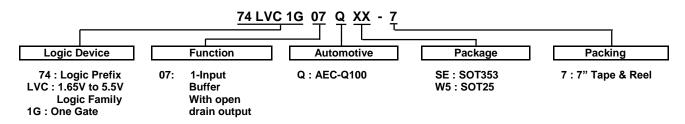
| V               | Inp  | uts                            | V              | V                 |      | ъ.   | $oldsymbol{V}\Delta$ |
|-----------------|------|--------------------------------|----------------|-------------------|------|------|----------------------|
| V <sub>CC</sub> | Vı   | t <sub>R</sub> /t <sub>F</sub> | V <sub>M</sub> | V <sub>LOAD</sub> | CL   | R∟   | VΔ                   |
| 1.8V±0.15V      | Vcc  | ≤2ns                           | Vcc/2          | 2 × Vcc           | 30pF | 1kΩ  | 0.15V                |
| 2.5V±0.2V       | Vcc  | ≤2ns                           | Vcc/2          | 2 × Vcc           | 30pF | 500Ω | 0.15V                |
| 2.7V            | 2.7V | ≤2.5ns                         | 1.5V           | 6V                | 50pF | 500Ω | 0.3V                 |
| 3.3V±0.3V       | 3V   | ≤2.5ns                         | 1.5V           | 6V                | 50pF | 500Ω | 0.3V                 |
| 5V±0.5V         | Vcc  | ≤2.5ns                         | Vcc/2          | 2 × Vcc           | 50pF | 500Ω | 0.3V                 |





**Voltage Waveform Enable and Disable Times** Low and High Level Enabling

Figure 1. Load Circuit and Voltage Waveforms


Notes:

- A. Includes test lead and test apparatus capacitance.

- A. Includes test lead at pulse repetition rate ≤ 10MHz.
  C. The input is one transition per measurement.
  D. For the open drain device t<sub>PLZ</sub> and t<sub>PZL</sub> are the same as t<sub>PD</sub>.
- E. t<sub>PZL</sub> is measured at V<sub>M</sub>.
- F.  $t_{PLZ}$  is measured at  $V_{OL}$  + $V_{\Delta}$ .



# Ordering Information (Note 8)



| Part Number    | Package | Package        | Package                                                           | 7" Tape and Reel |                    |  |
|----------------|---------|----------------|-------------------------------------------------------------------|------------------|--------------------|--|
| Fait Number    | Code    | (Notes 9 & 10) | Size                                                              | Quantity         | Part Number Suffix |  |
| 74LVC1G07QSE-7 | SE      | SOT353         | 2.15mm × 2.1mm × 1.1mm<br>0.65mm lead pitch                       | 3000/Tape & Reel | -7                 |  |
| 74LVC1G07QW5-7 | W5      | SOT25          | $3.0$ mm $\times$ $2.8$ mm $\times$ $1.2$ mm $0.95$ mm lead pitch | 3000/Tape & Reel | -7                 |  |

Notes:

8. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.
9. Pad layout as shown in Diodes Incorporated's package outline PDFs, which can be found on our website at http://www.diodes.com/package-outlines.html.

10. The taping orientation is located on our website at https://www.diodes.com/assets/Packaging-Support-Docs/ap02007.pdf.

### **Marking Information**

#### (Top View)

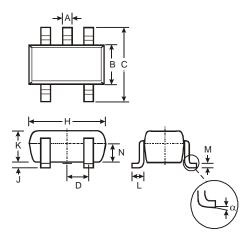
XXX YWX

XXX: Identification Code : Year 0~9

: Week: A~Z 1~26 week a~z 27~52 week

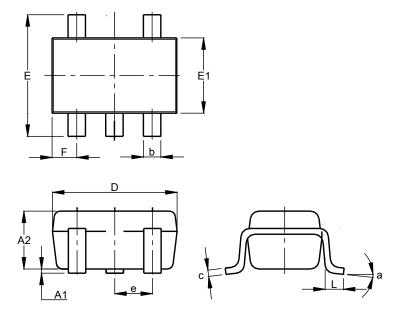
z represents week 52 and 53

X : A~ Z: Internal Code


SOT 25 / SOT 353

| Part Number    | Package | Identification Code |  |  |
|----------------|---------|---------------------|--|--|
| 74LVC1G07QW5-7 | SOT25   | UNQ                 |  |  |
| 74LVC1G07QSE-7 | SOT353  | UNQ                 |  |  |




# **Package Outline Dimensions**

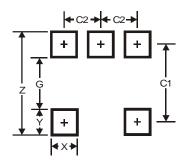
### (1) Package Type: SOT25



| SOT25                |       |      |      |  |  |
|----------------------|-------|------|------|--|--|
| Dim                  | Min   | Max  | Тур  |  |  |
| Α                    | 0.35  | 0.50 | 0.38 |  |  |
| В                    | 1.50  | 1.70 | 1.60 |  |  |
| С                    | 2.70  | 3.00 | 2.80 |  |  |
| D                    | -     | -    | 0.95 |  |  |
| Н                    | 2.90  | 3.10 | 3.00 |  |  |
| J                    | 0.013 | 0.10 | 0.05 |  |  |
| K                    | 1.00  | 1.30 | 1.10 |  |  |
| L                    | 0.35  | 0.55 | 0.40 |  |  |
| M                    | 0.10  | 0.20 | 0.15 |  |  |
| N                    | 0.70  | 0.80 | 0.75 |  |  |
| α                    | 0°    | 8°   | -    |  |  |
| All Dimensions in mm |       |      |      |  |  |

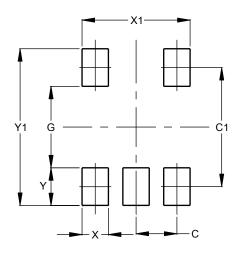
### (2) Package Type: SOT353




| SOT353               |           |      |       |  |  |
|----------------------|-----------|------|-------|--|--|
| Dim                  | Min       | Max  | Тур   |  |  |
| A1                   | 0.00      | 0.10 | 0.05  |  |  |
| A2                   | 0.90      | 1.00 | 0.95  |  |  |
| b                    | 0.10      | 0.30 | 0.25  |  |  |
| С                    | 0.10      | 0.22 | 0.11  |  |  |
| D                    | 1.80      | 2.20 | 2.15  |  |  |
| Е                    | 2.00      | 2.20 | 2.10  |  |  |
| E1                   | 1.15      | 1.35 | 1.30  |  |  |
| е                    | 0.650 BSC |      |       |  |  |
| F                    | 0.40      | 0.45 | 0.425 |  |  |
| L                    | 0.25      | 0.40 | 0.30  |  |  |
| а                    | 0°        | 8°   |       |  |  |
| All Dimensions in mm |           |      |       |  |  |



# **Suggested Pad Layout**


Please see http://www.diodes.com/package-outlines.html for the latest version.

#### (1) Package Type: SOT25



| Dimensions | Value |  |
|------------|-------|--|
| Z          | 3.20  |  |
| G          | 1.60  |  |
| Х          | 0.55  |  |
| Y          | 0.80  |  |
| C1         | 2.40  |  |
| C2         | 0.95  |  |

#### (2) Package Type: SOT353



| Dimensions | Value<br>(in mm) |
|------------|------------------|
| С          | 0.650            |
| C1         | 1.900            |
| G          | 1.300            |
| Х          | 0.420            |
| X1         | 1.720            |
| Y          | 0.600            |
| Y1         | 2.500            |

### **Mechanical Data**

#### SOT25

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208
- Weight: 0.0158 grams (Approximate)

#### **SOT353**

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 @3
- Weight: 0.0064 grams (Approximate)



#### **IMPORTANT NOTICE**

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

#### LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
  - 1. are intended to implant into the body, or
  - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated

www.diodes.com

# **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

# Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

### http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

### Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru\_6 moschip.ru\_4 moschip.ru\_9