Version1.1

By Andy Lindsay

PAALAX 7

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt of product. If you
discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the purchase price. Before returning the
product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the RMA number on the outside of the box used to
return the merchandise to Parallax. Please enclose the following along with the returned merchandise: your name, telephone number,
shipping address, and a description of the problem. Parallax will return your product or its replacement using the same shipping method
used to ship the product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
Inc. will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is void if the product has been altered
or damaged. See the Warranty section above for instructions on returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright © 2006-2009 by Parallax Inc. By downloading or obtaining a printed copy of this documentation or
software you agree that it is to be used exclusively with Parallax products. Any other uses are not permitted and may represent a violation of
Parallax copyrights, legally punishable according to Federal copyright or intellectual property laws. Any duplication of this documentation
for commercial uses is expressly prohibited by Parallax Inc. Duplication for educational use is permitted, subject to the following
Conditions of Duplication: Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for commercial use; it
may be duplicated only for educational purposes when used solely in conjunction with Parallax products, and the user may recover from the
student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is often less than typical
retail duplication charges.

Propeller, Penguin, and Spin are trademarks of Parallax Inc. BASIC Stamp, Stamps in Class, Boe-Bot, SumoBot, Scribbler, Toddler, and
SX-Key are registered trademarks of Parallax, Inc. If you decide to use any trademarks of Parallax Inc. on your web page or in printed
material, you must state that (trademark) is a (registered) trademark of Parallax Inc.” upon the first appearance of the trademark name in
each printed document or web page. Other brand and product names herein are trademarks or registered trademarks of their respective
holders.

ISBN 13: 9-781928-982500
1.1.0-09.03.06-HKTP
DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any legal
theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or any costs of recovering,
reprogramming, or reproducing any data stored in or used with Parallax products. Parallax Inc. is also not responsible for any personal
damage, including that to life and health, resulting from use of any of our products. You take full responsibility for your Propeller
microcontroller application, no matter how life-threatening it may be.

INTERNET DISCUSSION LISTS

We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible from
www.parallax.com via the Support — Discussion Forums menu. These are the forums that we operate from our web site:

e Propeller chip — This list is specifically for our customers using Propeller chips and products.

. BASIC Stamp — This list is widely utilized by engineers, hobbyists and students who share their BASIC Stamp projects
and ask questions.

. Stamps in Class® — Created for educators and students, subscribers discuss the use of the Stamps in Class series of tutorials
in their courses. The list provides an opportunity for both students and educators to ask questions and get answers.

. Parallax Educators — A private forum exclusively for educators and those who contribute to the development of Stamps in
Class and Propeller Education materials. Parallax created this group to obtain feedback on our educational materials and to
provide a place for educators to develop and share classroom resources.

. Robotics — Designed for Parallax robots, this forum is intended to be an open dialogue for robotics enthusiasts. Topics
include assembly, source code, expansion, and manual updates. The Boe-Bot”, Toddler”, SumoBot”, Scribbler® and
Penguin™ robots are discussed here.

. SX Microcontrollers and SX-Key — Discussion of programming the SX microcontroller with Parallax assembly language
SX-Key" tools and 3rd party BASIC and C compilers.

. Javelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module that is programmed using
a subset of Sun Microsystems’ Java® programming language.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us know by sending an
email to editor@parallax.com. We continually strive to improve all of our educational materials and documentation, and frequently revise
our texts. Occasionally, an errata sheet with a list of known errors and corrections for a given text will be posted to our web site,
www.parallax.com. Please check the individual product page’s free downloads for an errata file.

Table of Contents

Table of Contents

PREFACE ...ttt ettt ettt et e et e e ea et e e te e e ameeeamee e e emseeeseeeameee e teeeanteeenneeeneeeanneeeanneeeneeans 5
1: PROPELLER MICROCONTROLLER & LABS OVERVIEWccoiiiiiiiee e 7
The Propeller MIiCrOCONTIOIEToiiiieiie et e e et e e e 7
The Propeller EQUCAtion Kit ... e e e e e e eeeeaeeas 12
The Propeller Education Kit Labs..........oooiiiii e e e 14
2: SOFTWARE, DOCUMENTATION & RESOURCES.coo i 17
Download Software and DOCUMENTALIONiiiiiiiiii e 17
Install the Parallax Serial TeIrMINGL.......c..ooii i e et e e e st e e e s sneeeeeans 18
USEIUI WED SIES ...ttt et s e e e st e e s st e e e sssaeeesnnnneeas 18
TECh SUPPOI RESOUICESvveiiieieiiiiitieeie e ettt e e e e e e e e e e e s e st a e e e e eaeeeesansraaeeeaeeesesnnraneaaeens 18
3: SETUP AND TESTING LAB FOR 40-PIN DIP PE PLATFORMccciiiiiiiniiieiecnee e 19
I =T = = x0T o SRR 19
ProCEAUINE OVEIVIEW.......eiiiiee ettt e e ettt e e e e e e e st ae e e e e e e e e s ntaaeeeeeeeeesnnnseneeeeesannnsnneees 23
Inventory EQUIpPMENt and Parts ... 24
Assemble the BreadbOards...... ... ittt e e e e e e e eaae s 25
Set up PE Platform Wiring and Voltage Regulators..............oooi e 27
Test the PE Platform WIrNGeeii et 29
Socket the Propeller Chip and EEPROM............oooiiiiiie et 30
Load a Test Program and Test the [/O PiNScooiiiiiiiiiiee et 32
Before Changing or Ajusting CirCUILSccoiiiiiiiiiiiie ettt e e e s 37
Troubleshooting for the 40-Pin DIP PE Platform Setup........cccccoeoiiiiiiiiieie e 37
4: 1/O AND TIMING BASICS LAB..... .ottt sn e s 43
Parts List and SChemMatiCc..ooiiiiii s 43
Propeller NOMENCIATUIE.c.oouiiii ettt et e e sneee e neeeeas 44
Lights on with Direction and Output Register BitS..........oocceoiiiiiiii e 45
[/O Pin Group OPErationS..........oii ittt ettt sttt ettt e e s bt e e e s rateee e e aateeeesanbeeeesabeeeeeans 47
Reading an Input, Controlling an OULPUL.............oiiiiiiii e 48
Timing Delays with the System CIOCKooiiiiiii e 49
System Clock Configuration and Event Timing...........coooiiiiiiiiii e 51
More Output Register OPErationsccuiiiiiiiiiii ettt e et e e s e e s snsaeeesanneeeas 53
Conditional Repeat COMMEANGSocooiiiiiiiiiiiiiie et e e e e e e e e e e e e etabe e eeaaeeaans 55
Operations in Conditions and Pre and Post Operator PoSitions.............cccooecviiiiiiicc e 56
Some Operator VOCADUIAIY............oviiiiiie ettt e e e e e e e e e re e e e e e e e anes 58
Shifting LED DiISPIAY......uuutiiiiieeieiiitiie ittt e e ettt e e e e e st e e e e e e e s s s sssaeeeeaaeessasasaneeaaeeaeaanns 59
Variable EXAMPIE ...ttt e e e e e nnee 60
Timekeeping APPIICAtIONSooo it e e b e e e et e e 62
ST (0T0 YN N3 TSR 64
5: METHODS AND COGS LAB...... .ottt e et e et e e s mte e e aaeeeameeeaseeeamseeeaneeeenseenes 67
10T [T i o SR 67
Parts List and SChematicueiiiiii e e 67
Defining a Method’s Behavior with Local Variablescociiiiiiiiiiiiee e 68
(07 11114 o =T 1Y =11 o Vo Yo 1 R 68
ParameEter PasSSiNg it e e e e e e e e e e e e e e e e e nnneeees 69
L070To I 1 I g Lo 1= (] oo TR PP P P PRPRT 76
Y (0o Y I3 T PP P P PRPRRR 78
B: OBUECTS LAB ..ttt ettt ekttt et a e e h e e e bt s e et e e 81

Propeller Education Kit Labs: Fundamentals - Page 3

Table of Contents

] (oo (8T (o o USRS 81
Equipment, Parts, SChEMALICc.uuiiiiiiie e 82
L1 (g To @ | I o= 1SS 83
Calling Methods in Other Objects with Dot Notation ..., 83
Objects that Launch Processes iNt0 COgS........uiii ittt 86
Conventions for Start and Stop Methods in Library ObJectscceeviiiiiiiiiiiiiiieeee 90
Documentation COMMENTSooiiiiii ettt e e e e e e st e e e e e e e e e et e e e e e e e e e e annnnnneeeaan 90
Public vs. Private Methodsooo e e e e a e e 93
Multiple ObJECE INSTANCES.eiii it e et e e et e e e s anee e e e ssnteeeesnraeeeeanes 94
Propeller Chip — PC Terminal CommuniCatioNcoooiiiiiiiiiii i 95
FullDuplexSerial and Other Library ODJECESccviiiiiiiiiie e 100
Sending Values from Parallax Serial Terminal to the Propeller Chip.......cccccccovveciiiiiiieiiicice, 103
Terminal I/O Pin Input State DiSPlayoveiiiiiiiiieee e e e 105
Terminal LED OUPUt CONTIOL ..ot e e 107
The DAT Block and Address PasSingcoooiiiiiieiiiiiee it 108
The Float and FIoatString ODJECESccoouiiiiie e 110
Objects that Use Variable AAAreSSESooiiiiiiiiiiiii e e 111
Passing Starting Addresses to Objects that Work with Variable Lists...........ccooocooiie 114
1101 | T T PSPPSR 116
7: COUNTER MODULES AND CIRCUIT APPLICATIONS LAB.......coiiiiiiee e 121
T (0o [T i o U UPST 121
HOW CouNter MOAUIES WOTK.........eiiiieiiiiie ettt et et e e st e e s snne e e e e ansseeeeanneee s 122
Measuring RC Decay with a Positive Detector Mode.............cccooeeiiiiiiiiiiiii e, 122
D/A Conversion — Controlling LED Brightness with DUTY ModeSccoeveiiiiiiiiiiieieee e, 129
Special PUrPOSE REGISTIEISoviiiiieiiec e e e e e e e e e e eeareee s 134
Generating Piezospeaker Tones with NCO MOE.........ccuuiiiiiiiiiiiiii e 137
Applications - IR Object and Distance Detection with NCO and DUTY Modesccccceevieeeenns 147
Counting Transitions with POSEDGE and NEGEDGE MOdEScccoviviiiiiiiiiiiniiee e 153
PWM With the NCO MOUEScci ittt et e e et e e e s s e e s snsaeeasanssaeaesnnneensn 156
Probe and Display PWM — Add an Object, Cog and Pair of Counters............coccceiiiiiiiniiceee. 160
PLL Modes for High-Frequency AppliCatioNnscooiiiiiiiiie e 166
Metal Detection with PLL and POS Detector Modes and an LC CirCuit..........cccoccvveveviiieeesinnenn. 171
7010 | T TSR 180
APPENDIX A: OBJECT CODE LISTINGScoiiiiiiie ittt ettt st ntee e e 187
FUIIDUPIEXSEIIAIPIUS.SPINetiieiiie ettt e e e e e e e e et e e e e e e e e eanbaaeeeeaeeeesennrenneeas 187
Yo (= Lo\ A= AV TR =T oo PSRRI 193
APPENDIX B: STUDY SOLUTIONScoiiiiiiie ittt e e e eaae e s eare e e e e nreea e e e 195
I/0 and Timing Basics Lab Study SOIUtIONScooiiiiiiii e 195
Methods and Cogs Lab Study SOIULIONScooiiiiiiiiiii e 201
Objects Lab Study SOIUTIONS.......couueiiiiiee e 203
Counter Modules and Circuit Applications Lab Study Solutionsccccooiiiiiiii e 209
APPENDIX C: PE KIT COMPONENTS LISTINGcuttiiiiiiiie et e enee e nree e 219
APPENDIX D: PROPELLER MICROCONTROLLER BLOCK DIAGRAM........ccccciieiiiiraeeciiea e 221
APPENDIX E: LM2940CT-5.0 CURRENT LIMIT CALCULATIONS.......ccoiiiie e 222
INDEX .ottt ie ettt ettt e e ettt e e ettt e e s ettt e s at et e e e nn et e e e annaee e e e nbeeeeeanneeeeeannteee e e s teeeeeanteeeenteeeeenraeeeeannees 224

Page 4 - Propeller Education Kit Labs: Fundamentals

Preface

Preface

Since the Propeller chip comes in a 40-Pin DIP package, a pluggable breadboard kit for the Propeller
chip made a lot of sense. The support circuits for the Propeller chip, including EEPROM program
memory, voltage regulators, crystal oscillator, and Propeller Plug programming tool are all also
available in versions that can be plugged into a breadboard, so why not? It also makes a great deal of
sense from the college and university lab standpoint. Provide a simple kit that students can afford,
that is reusable, with a microcontroller that excels in a multitude of electronics, robotics, and
embedded systems projects. With that in mind, the PE DIP Plus Kit was put together, as a bag that
includes the Propeller microcontroller, “plus” all the other parts you might need to make it work.

The PE DIP Plus Kit made sense for folks who have already have breadboards and some experience,
but what about a student who maybe just completed the Stamps in Class What’s a Microcontroller
tutorial, and is interested in approaching the Propeller chip as a kit and tutorial as well? With this
student in mind, another bag of parts was assembled, along with a series of activities that put the parts
in the bag to work with the Propeller microcontroller. The bag of parts ended up with the name PE
Project Parts, and the activities became the PE Kit Labs.

The PE Kit Labs in this text are written primarily for college and university students with some
previous programming and electronics experience, preferably with microcontrollers. Subjects
introduced include:

Microcontroller basics such as I/O control and timing with the system clock

Programming topics such as operators, method calls, and objects, and variable addresses
Programmed multiprocessor control

Microcontroller-circuit interactions with indicator lights, pushbuttons, circuits that sense the
environment and can be measured with RC decay, frequency circuits (speakers), and
frequency selective circuits

e Advanced topics include utilizing counter modules to perform tasks in the background

This collection of PE Kit Labs is intended give the reader a good start with programming the
Propeller chip and using it in projects. However, this book is just a start. Introducing all aspects of
the Propeller microcontroller with PE Kit Labs would take several such books, so additional labs are
available online. More labs and applications will be posted periodically.

This text also includes pointers to the wealth of information available for the Propeller chip in the
Propeller Manual, Propeller Datasheet, Propeller Forum, and Propeller Object Exchange, as well as
examples of using these resources. The reader is especially encouraged to utilize the Propeller
Manual as a reference while going through these labs. The Propeller Manual’s contents and index
will provide references to more information about any topic introduced in these labs.

The Propeller Chip Forum at forums.parallax.com has a Propeller Education Kit Labs sticky-thread
with links to discussions about each lab. The reader is encouraged to utilize this resource for posting
questions about topics in the PE Kit Labs as well as comments and suggestions. Parallax collects this
feedback and incorporates it into future revisions of each lab. Also, if you (or your students)
prototyped something cool with the PE Kit, by all means, post your documented project to the forums
so that others can see what you did and how you did it.

Propeller Education Kit Labs: Fundamentals - Page 5

Preface

Acknowlegements
Parallaxians:
e Author: Andy Lindsay, Applications Engineer
Cover art: Jennifer Jacobs, Art Director
Editing: Stephanie Lindsay, Technical Editor
[lustrations: Andy Lindsay, with help from Rich Allred, Manufacturing Manager
Photography: Rich Allred
Review: Jessica Uelmen, Education Associate

Parallax Community — thanks to:

e Aaron Klapheck for commented code illustrating cog variable bookkeeping in the Advanced
Topic: Inside start and stop methods section of the Objects Lab.

e Engineering students at University of California Davis and California State University
Sacramento who used the PE Kit in their projects and submitted great questions and bug
reports.

e Steve Nicholson for his incisive and thorough review of earlier drafts of the PE Kit Labs.

Page 6 - Propeller Education Kit Labs: Fundamentals

1: Propeller Microcontroller & Labs Overview

1: Propeller Microcontroller & Labs Overview

This chapter provides an abbreviated overview of the Propeller Microcontroller and some
introductory information about the Propeller Education Kit and Labs. More detailed information
about the Propeller microcontroller, its architecture, and programming languages can be found in the
Propeller Manual and Propeller Datasheet. Both are available from the Downloads link at
www.parallax.com/Propeller.

The Propeller Microcontroller

The Propeller Microcontroller in Figure 1-1 (a) is a single chip with eight built-in 32-bit processors,
called cogs. Cogs can be programmed to function simultaneously, both independently and
cooperatively with other cogs. In other words, cogs can all function simultaneously, but whether they
function independently or cooperatively is defined by the program. Groups of cogs can be
programmed to work together, while others work on independent tasks.

A configurable system clock supplies all the cogs with the same clock signal (up to 80 MHz). Figure
1-1 (b) shows how each cog takes turns at the option for exclusive read/write access of the Propeller
chip’s main memory via the Hub. Exclusive read/write access is important because it means that two
cogs cannot try to modify the same item in memory at the same instance. It also prevents one cog
from reading a particular address in memory at the same time another cog is writing to it. So,
exclusive access ensures that there are never any memory access conflicts that could corrupt data.

Figure 1-1: Propeller Microcontroller Packages and Hub and Cog Interaction

Hub and Cog Interaction

(a) Propeller microcontrollers in 40-pin DIP, (b) Excerpt from Propeller Block Diagram
TSOP and QFN packages describing Hub and Cog interaction. See Appendix
D: Propeller Microcontroller Block Diagram

32 KB of the Propeller chip’s main memory is RAM used for program and data storage, and another
32 KB is ROM, and stores useful tables such as log, antilog, sine, and graphic character tables. The
ROM also stores boot loader code that cog 0 uses at startup and interpreter code that any cog can use
to fetch and execute application code from main memory. Each cog also has the ability to read the
states of any or all of the Propeller chip’s 32 I/O pins at any time, as well as set their directions and
output states at any time.

Propeller Education Kit Labs: Fundamentals - Page 7

http://www.parallax.com/Propeller

Propeller Microcontroller & Labs Overview

The Propeller chip’s unique multiprocessing design makes a variety of otherwise difficult
microcontroller applications relatively simple. For example, processors can be assigned to audio
inputs, audio outputs, mouse, keyboard, and maybe a TV or LCD display to create a microcontroller
based computer system, with processors left over to work on more conventional tasks such as
monitoring inputs and sensors and controlling outputs and actuators. Figure 1-2 (a) shows a Propeller
chip-generated video image that could be used in that this kind of application. The Propeller also
excels as a robotic controller, with the ability to assign processors to tasks such as PWM DC motor
control, video processing, sensor array monitoring, and high speed communication with nearby robots
and/or PCs. Figure 1-2 (b) shows an example of a Propeller controlled balancing robot with video
sensor. The initial prototype was developed with a Propeller Education Kit.

Although the Propeller chip is very powerful, that doesn’t mean it is difficult to use. The Propeller
chip also comes in handy for simple projects involving indicator lights, buttons, sensors, speakers,
actuators, and smaller displays found in common product designs. You will see examples of such
simple circuits in the following Propeller Education Kit Labs.

Figure 1-2: Application Examples

(a) Propeller microcontroller generated graphic TV (b) Hanno Sander’s balancing robot, initial prototype
display. This application also uses a standard PS/2 developed with the Propeller Education Kit and
mouse to control the graphics (not shown). ViewPort software. Photo courtesy of

mydancebot.com.

Applications with the Propeller Chip

Programs for the Propeller chip are written with PC software and then loaded into the Propeller chip,
typically via a USB connection. The languages supported by Parallax’ free Propeller Tool software
include a high-level language called Spin, and a low-level assembly language. Applications
developed in Spin language can optionally contain assembly language code. These applications are
stored on your PC as .spin files.

Other programming languages have been developed for programming the Propeller chip. Some are free
® and available through resources like the Parallax forums and Source Forge; others are available for purchase
or free in a limited version through the Parallax web site and other companies that sell compilers.

Before a cog can start executing a Spin application, it has to first load an Interpreter from the
Propeller chip’s ROM (Figure 1-3 a). Spin applications get stored in main memory’s RAM as tokens,
which the interpreter code makes the cog repeatedly fetch and execute (Figure 1-3 b & c). A few

Page 8 - Propeller Education Kit Labs: Fundamentals

1: Propeller Microcontroller & Labs Overview

examples of actions the cog might take based on the token values are shown in Figure 1-3 (c¢). They
include read/writes to configuration registers, variables, and I/O pins as well as reads from ROM.
Cogs can also execute the machine codes generated by assembly language. As shown in Figure 1-4,
these machine codes get loaded into the cog’s 2 KB (512 longs) of RAM and executed at a very high
speed, up to 20 million instructions per second (MIPS). Cog RAM not used by machine instructions
can also provide high speed memory for the cog with four clock cycles (50 ns at 80 MHz) per
read/write.

Figure 1-3: Cog Interpreting Spin Language

Main (Hub) Memory Main (Hub) Memory Fetch/Execute Main (Hub) Memory

32| Configuration Configuration Configuration

KB Application R | Application R | Application

R A A

A M M

M | Stack + VAR Stack + VAR Stack + VAR
Character Character Character

32 Set Set Set

KB R R

R | Log, Antilog, & o | Log, Antilog, & o | Log, Antilog, &

O | Sine Tables M | Sine Tables M | Sine Tables 3 =

M 3 E

Boot Loader Boot Loader Boot Loader E Y E

Interpreter Interpreter Interpreter 3 E

“

(a) Interpreter loaded into cog (b) Cog fetches token from Main
from Main Memory’s ROM through Memory’s RAM
Hub

(c) Cog executes token. Examples
include RAM, I/0O or config
read/write, or ROM read

A cog executing assembly language can also access the Propeller chip’s main memory through the
Hub. The Hub grants main memory access to each cog every 16 clock cycles. Depending on when
the cog decides to check with main memory, the access time could take anywhere from 7 to 22 clock
cycles, which equates to a worst case memory access time of 275 ns at 80 MHz. After the first
access, assembly code can synchronize with the cog’s round-robin access window to main memory,
keeping the subsequent access times fixed at 16 clock cycles (200 ns).

Main (Hub) Memory
Configuration \
R | Application
A
M
Stack + VAR
Figure 1-4: Cog Executing
Character +—> Assembly Language
Set 71022
R clock cycles,
o | Log, Antilog, & 16wchy;|1es
M| Sine Tables synchronized
Boot Loader
Interpreter

Propeller Education Kit Labs: Fundamentals - Page 9

Propeller Microcontroller & Labs Overview

Since each cog has access to the Propeller chip’s RAM in main memory, they can work cooperatively
by exchanging information. The Spin language has built-in features to pass the addresses of one or
more variables used in code to other objects and cogs. This makes cog cooperation very simple.
Code in one cog can launch code into another cog and pass it one or more variable addresses (see
Figure 1-5). These variable addresses can then be used for the two cogs to exchange information.

Main (Hub) Memory

Configuration

Application

S
CcoG
Stack + VAR . .
< o Figure 1-5: Two (or more) Cog’s Working
Character J Cooperatively through Shared Memory
Set >

R
A
M

Log, Antilog, &
Sine Tables

=E0x

Boot Loader
Interpreter

The Propeller chip’s cogs are numbered cog 0 through cog 7. After the application is loaded into the
Propeller chip, it loads an interpreter into cog 0, and this interpreter starts executing Spin code tokens
stored in main memory. Commands in the Spin code can then launch blocks of code (which might be
Spin or assembly language) into other cogs as shown in Figure 1-6. Code executed by the other cogs
can launch still other cogs regardless of whether they are Spin or assembly, and both languages can
also stop other cogs for the sake of ending unnecessary processes or even replacing them with
different ones.

\\\“
> 20
\\‘ -« ~
~ B -
S Gos . .
o /v v Figure 1-6: Cog Launching
“\ 0 ‘Q e \ S Code in one cog launching other cogs, which can in
cBe - turn launch others...
- Cogs can also stop other cogs to free them up for
COG"
" other tasks.
~ 4
« S
S >
CcoG

Writing Application Code

Spin is an object-based programming language. Objects are designed to be the building blocks of an
application, and each .spin file can be considered an object. While an application can be developed as
a single object (one program), applications are more commonly a collection of objects. These objects
can provide a variety of services. Examples include solutions for otherwise difficult coding
problems, communication with peripheral devices, controlling actuators and monitoring sensors.
These building block objects are distributed through the Propeller Object Exchange
(obex.parallax.com) and also in the Propeller Tool software’s Propeller Library folder. Incorporating
these pre-written objects into an application can significantly reduce its complexity and development
time.

Page 10 - Propeller Education Kit Labs: Fundamentals

1: Propeller Microcontroller & Labs Overview

Figure 1-7 shows how objects can be used as application building blocks, in this case, for a robot that
maintains a distance between itself and a nearby object it senses. The application code in the
Following Robot.spin object makes use of pre-written objects for infrared detection (IR
Detector.spin), control system calculations (PID.spin), and motor drive (Servo Control.spin).

Note that these pre-written objects can in turn use other objects to do their jobs. Instead of harvesting
objects that do jobs for your application, you can also write them from scratch, and if they turn out to
be useful, by all means, submit them for posting to the Propeller Object Exchange at
obex.parallax.com.

5
3

‘E
Top Object File
Following Robaot.spin

Launches a cog
S

- — -1 Figure 1-7: Object
Building Blocks for

Spin code only Applications

Ir Detector.spin PID Algorithm.spin Servo Control.spin

Launches a cog

>

& & 3

Spin + ASM
Square Wave.spin Float32.spin Float5tring.spin

In Figure 1-7, the Following Robot.spin object is called the top object file. This file has the first
executable line of code where the Propeller chip starts when the application runs. In every case, cog 0
is launched and begins executing code from the top object. Our top object example, Following
Robot.spin, contains code to initialize the three objects below it, making it the “parent object” of the
three. Two of these three building blocks in turn initialize “child object” building blocks of their own.
Two of the building block objects launch additional cogs to do their jobs, so a total of three cogs are
used by this application. Regardless of whether a parent object launches a cog to execute Spin code
or assembly code, the child objects have built-in Spin code and documentation that provide a simple
interface for code in their parent objects to control/monitor them.

Though it is not shown in our example, recall from Figure 1-6 that an object can launch more than
one cog. Also, an object can launch a process into a cog and then shut it down again to make it
available to other objects. Although any object can actually start and stop any cog, it's a good
practice to make stopping a cog the responsibility of the object that started it.

How the Propeller Chip Executes Code

The Parallax Propeller Tool software can be used to develop applications and load them into the
Propeller chip. When an application is loaded into the Propeller chip, the Spin code is compiled into
tokens and the optional assembly code is compiled into machine codes. The Propeller Tool then

Propeller Education Kit Labs: Fundamentals - Page 11

Propeller Microcontroller & Labs Overview

transfers the application to the Propeller chip, typically with a serial-over-USB connection. The
programmer can choose to load it directly into the Propeller chip’s main RAM, or into an EEPROM
(electrically erasable programmable read-only memory). As shown in Figure 1-8, if the program is
loaded directly into RAM, the Propeller chip starts executing it immediately. If the program is loaded
into an EEPROM, the Propeller chip copies this information to RAM before it starts executing.

Figure 1-8: Loading a Program into RAM or EEPROM

Prgpgller Propeller Copy to Load from EEPROM
ode Code EEPROM after Reset
—— —_—_ |
Serial . : . Serial
over over

usB USB
(a) Load program directly into Propeller RAM (b) Load program into EEPROM

Loading programs from a PC into RAM takes around 1 second, whereas loading programs into
EEPROM takes a few seconds (under 10 seconds for most). While loading programs into RAM can
be a lot quicker for testing the results of changes during code development, programs should be
loaded into EEPROM when the application is deployed, or if it is expected to restart after a power
cycle or reset. Programs loaded into RAM are volatile, meaning they can be erased by a power
interruption or by resetting the Propeller chip. In contrast, programs loaded into EEPROM are
nonvolatile. After a power cycle or reset, the Propeller chip copies the program from EEPROM into
RAM and then starts executing it again.

The Propeller Education Kit

The Propeller Education (PE) Kit is a complete Propeller microcontroller development system that
can be used for projects and product prototypes. This kit also includes parts for projects that are
documented by the PE Kit Labs. These labs will help you learn how to develop applications with the
Propeller Microcontroller.

= e
o ,\ -

] Figure 1-9: Propeller Education Kit
(40-Pin DIP Version)

Page 12 - Propeller Education Kit Labs: Fundamentals

1: Propeller Microcontroller & Labs Overview

The PE Kit comes in two different versions: 40-pin DIP and PropStick USB. Both feature an
arrangement of interlocking breadboards with the following parts mounted on them:

Propeller microcontroller

5.0 V and 3.3 V voltage regulators

EEPROM for non-volatile program storage

5.00 MHz external crystal oscillator for precise clock signal

Reset button for manual program restarts

LED power indicator

9 V battery-to-breadboard connector

Serial to USB connection for downloads and bidirectional communication with the PC.

Collectively, the interlocking breadboards with Propeller microcontroller system mounted on it are
referred to in this document as the PE Platform. The PE Platform with the 40-pin DIP kit is also
shown in Figure 1-10 (a). With this platform, each part and circuit in the list above is plugged
directly into the breadboard. Although this version of the PE Platform takes a little w