CMXDM7002A

DUAL N-CHANNEL ENHANCEMENT-MODE SURFACE MOUNT MOSFET

Semiconductor Corp.

DESCRIPTION:

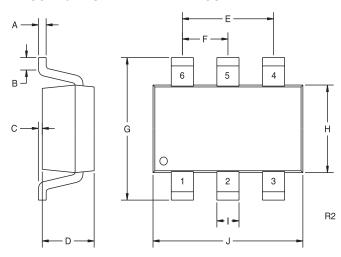
The CENTRAL **SEMICONDUCTOR** CMXDM7002A is special dual version of the 2N7002 Enhancement-mode N-Channel Field Effect Transistor, manufactured by the N-Channel DMOS Process, designed for high speed pulsed amplifier and driver applications. This special Dual Transistor device offers low r_{DS(ON)} and low V_{DS} (ON). **Marking Code is X02A**

MAXIMUM RATINGS (T_A=25°C)

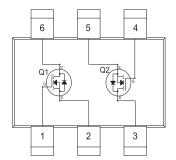
MAXIMOM IXATINGO (1A-20 0)			
• • • • • • • • • • • • • • • • • • • •	SYMBOL		UNITS
Drain-Source Voltage	V_{DS}	60	V
Drain-Gate Voltage	V_{DG}^{DG}	60	V
Gate-Source Voltage	VGS	40	V
Continuous Drain Current	ID	280	mA
Continuous Source Current (Body Diode)	Is	280	mA
Maximum Pulsed Drain Current	IDM	1.5	Α
Maximum Pulsed Source Current	I _{SM}	1.5	Α
Power Dissipation	PD	350	mW
Operating and Storage	J		
Junction Temperature	T_J, T_stg	-65 to +150	°C
Thermal Resistance	ΘJA	357	°C/W

ELECTRICAL CHARACTERISTICS PER TRANSISTOR (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MÍŇ	MAX	UNITS
I _{GSSF}	V_{GS} =20V, V_{DS} =0V		100	nA
IGSSR	V _{GS} =20V, V _{DS} =0V		100	nA
IDSS	V_{DS} =60V, V_{GS} =0V		1.0	μA
IDSS	V _{DS} =60V, V _{GS} =0V, T _i =125°C		500	μA
I _D (ON)	$V_{GS}=10V, V_{DS} \ge 2V_{DS(ON)}$	500		mA
BV_{DSS}	V _{GS} =0V, I _D =10μA	60		V
VGS(th)	V _{DS} =V _{GS} , I _D =250μA	1.0	2.5	V
VDS(ON)	V _{GS} =10V, I _D =500mA		1.0	V
VDS(ON)	V _{GS} =5.0V, I _D =50mA		0.15	V
rDS(ON)	V _{GS} =10V, I _D =500mA		2.0	Ω
rDS(ON)	V _{GS} =10V, I _D =500mA, T _i =125°C		3.5	Ω
rDS(ON)	V _{GS} =5.0V, I _D =50mA		3.0	Ω
rDS(ON)	V _{GS} =5.0V, I _D =50mA, T _i =125°C		5.0	Ω
9FS	$V_{DS} \ge 2V_{DS(ON)}$, $I_{D}=200$ mA	80		mmhos
C _{rss}	$V_{DS}=25V$, $V_{GS}=0$, $t=1.0MHz$		5.0	pF
C _{iss}	V_{DS} =25V, V_{GS} =0, f=1.0MHz		50	pF
Coss	V_{DS} =25V, V_{GS} =0, f=1.0MHz		25	pF
ton	V_{DD} =30V, V_{GS} =10V, I_{D} =200mA,		20	ns
toff	$R_G=25\Omega$, $R_L=150\Omega$		20	ns
V _{SD}	V _{GS} =0V, I _S =400mA		1.2	V


R0 (05-December 2001)

CMXDM7002A


DUAL N-CHANNEL ENHANCEMENT-MODE SURFACE MOUNT MOSFET

SOT-26 CASE - MECHANICAL OUTLINE

Marking Code: X02A

DIMENSIONS						
	INCHES		MILLIMETERS			
SYMBOL	MIN	MAX	MIN	MAX		
Α	0.004	0.007	0.11	0.19		
В	0.016	-	0.40	-		
С	-	0.004	-	0.10		
D	0.039	0.047	1.00	1.20		
E	0.074	0.075	1.88	1.92		
F	0.037	0.038	0.93	0.97		
G	0.102	0.118	2.60	3.00		
Н	0.059	0.067	1.50	1.70		
Ī	0.016		0.41			
J	0.110	0.118	2.80	3.00		
SOT-26 (REV: R2)						

LEAD CODE:

- 1) Gate Q1
- 2) Source Q1
- 3) Drain Q2
- 4) Gate Q2
- 5) Source Q2
- 6) Drain Q1

R0 (05-December 2001)

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9