

LTM4630A Dual 18A or Single 36A µModule Regulator

DESCRIPTION

Demonstration circuit 2268A-F is a high efficiency, high density, dual 8A, switch mode step-down power supply on a compact 1.5' × 1.2' PCB. It features the LTM®4630A µModule® regulator. The input voltage is from 4.5V to 15V. The output voltage is programmable from 0.6V to 5.3V. DC2268A-F can deliver up to 18A maximum in each channel. As explained in the data sheet, output current derating is necessary for certain $V_{\mbox{\scriptsize IN}},\,V_{\mbox{\scriptsize OUT}},$ and thermal conditions. The board operates in continuous conduction mode in heavy load conditions. For high efficiency at low load currents, the resistor jumper (R1/R2) selects pulse-skipping mode for noise sensitive applications or Burst-Mode® in less noise sensitive applications. Two outputs can be connected in parallel for a single 36A output solution with optional jumper resistors. The board allows the user to program how its output ramps up and down

through the TRACK/SS pin. Remote output voltage sensing is available for improved output voltage regulation at the load point. An optional input inductor L1 reduces the EMI noise for noise sensitive applications. DC2268A can be easily inserted to an edge connector for testing and debugging. These features and the availability of the LTM4630A in a compact $16\text{mm} \times 16\text{mm} \times 4.41\text{mm}$ LGA package make it ideal for use in many high-density point-of-load regulation applications. The LTM4630A data sheet must be read in conjunction with this demo manual for working on or modifying the DC2268A-F.

Design files for this circuit board are available.

All registered trademarks and trademarks are the property of their respective owners.

BOARD PHOTO

Figure 1. LTM4630A/DC2268A-F Demo Board

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

Table 1.

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		4.5V ~ 15V
Output Voltage V _{OUT1}	V _{IN} = 4.5~15V, I _{OUT1} = 0A ~18A	3.3V ± 1.5%
Output Voltage V _{OUT2}	V _{IN} = 4.5~15V, I _{OUT2} = 0A ~18A	2.5V ± 1.5%
Per-Channel Maximum Continuous Output Current	De-rating is necessary for certain V_{IN} , V_{OUT} and thermal conditions	18A (per channel)
Default Operating Frequency		600kHz
Resistor Programmable Frequency Range		250kHz to 780kHz
External Clock Sync. Frequency Range		400kHz to 780kHz
Efficiency of Channel 1	V _{IN} = 12V, V _{OUT1} = 3.3V, I _{OUT1} = 18A, f _{SW} = 600kHz	93.0%, see Figure 3
Efficiency of Channel 2	V _{IN} = 12V, V _{OUT2} = 2.5V, I _{OUT2} = 18A, f _{SW} = 600kHz	91.1%, see Figure 4
Load Transient of Channel 1	V _{IN} = 12V, V _{OUT1} = 3.3V, I _{STEP} = 9A ~ 13.5A	V _{OPP} = 139mV, see Figure 5
Load Transient of Channel 2	V _{IN} = 12V, V _{OUT2} = 2.5V, I _{STEP} = 9A ~ 13.5A	V _{OPP} = 102mV, see Figure 6

QUICK START PROCEDURE

DC2268A-F is easy to set up to evaluate the performance of the LTM4630A. It can be easily inserted to an edge connector (SAMTEC MEC2-20-01-L-DV--TR) for testing and debugging. Please refer to Figure 2 for proper measurement setup and follow the procedure below:

- 1. Pull up the RUN1(J1 Pin 22) and RUN2(J1 Pin 24) between 1.4V to 5V or leave them floating.
- 2. With power off, connect the input power supply, load and meters as shown in Figure 2. Preset the load to 0A and V_{IN} supply to 12V.
- 3. Turn on the power supply at the input. The output voltage in channel 1 should be $3.3V \pm 1.5\%$ (3.2505V ~ 3.3495V) and the output voltage in channel 2 should be $2.5V \pm 1.5\%$ (2.4625V ~ 1.5375V),

- 4. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, output voltage ripple, efficiency and other parameters. Output ripple should be measured at $C_{0.3}$ and $C_{0.4}$.
- 5. (Optional) LTM4630A can be synchronized to an external clock signal. Remove R2 and apply a clock signal (0V~5V, square wave) to MODE-PLLIN pin.
- 6. (Optional) LTM4630A can be configured for a 2-phase single output at up to 36A on DC2268A-F. Install 0Ω resistors on R26, R27, R28, R29, R32, and remove R14, R18 R30. Output voltage is set by R7 based on equation $V_{OUT} = 0.6V$ (1 + 60.4k/R7).

QUICK START PROCEDURE

Table 2. DC2268A Demo Circuit

DEMO BOARD NUMBER	μModule REGULATOR ON THE BOARD	OUTPUT CURRENT	
DC2268A-A	LTM4620	13A,13A	
DC2268A-B	LTM4620A	13A,13A	
DC2268A-C	LTM4628	8A, 8A	
DC2268A-D	LTM4630	18A,18A	
DC2268A-E	LTM4630-1	18A,18A	
DC2268A-F	LTM4630A	18A, 18A	
DC2268A-G	LTM4631	10A, 10A	
DC2268A-H	LTM4650-1	25A, 25A	
DC2268A-I	LTM4650A-1	25A, 25A	

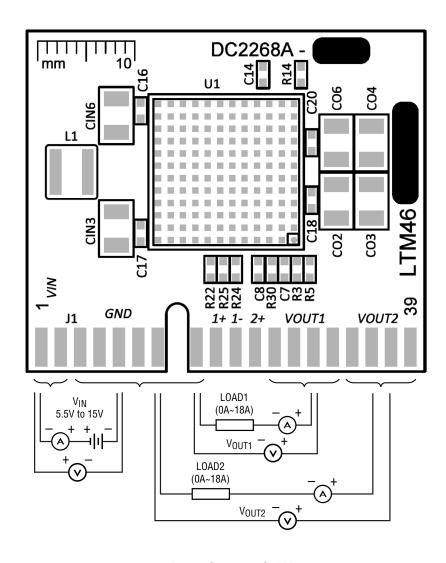


Figure 2. Test Setup of DC2268A-F

QUICK START PROCEDURE

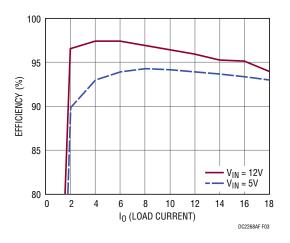


Figure 3. Measured Efficiency on Channel 1 (V_{OUT1} = 3.3V, f_{SW} = 600kHz, Channel 2 Disabled)

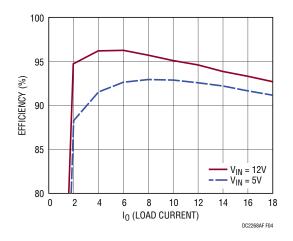


Figure 4. Measured Efficiency on Channel 2 ($V_{OUT2} = 2.5V$, $f_{SW} = 600kHz$, Channel 1 Disabled)

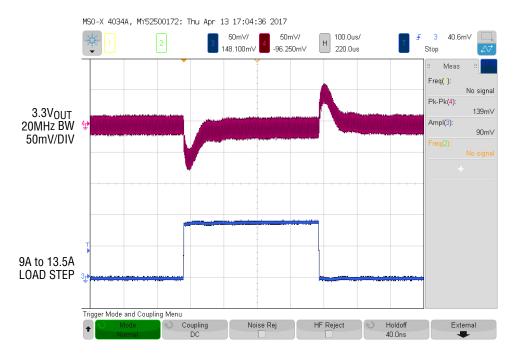


Figure 5. Measured Channel 1 9A to 13.5A Load Transient (V_{IN} = 12V, V_{OUT1} = 3.3V)

QUICK START PROCEDURE

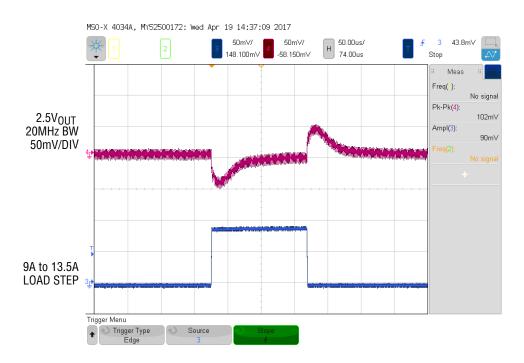


Figure 6. Measured Channel 2 9A to 13.5A Load Transient (V_{IN} = 12V, V_{OUT2} = 2.5V)

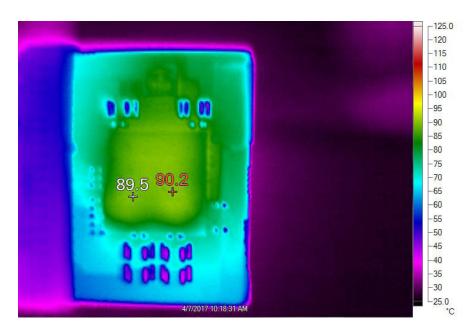
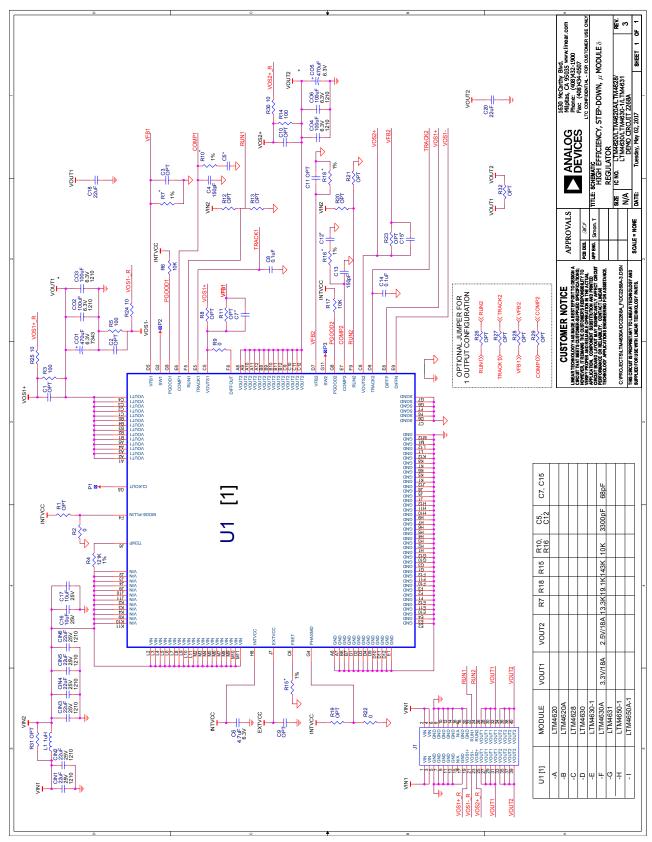



Figure 7. Thermal Performance at V $_{\rm IN}$ = 12V, V $_{\rm OUT1}$ = 3.3V/15A, V $_{\rm OUT2}$ = 2.5V/15A, f $_{\rm SW}$ = 600kHz, T $_{\rm A}$ = 23°C, 400LFM Airflow

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Ci	rcuit Comp	onents		
1	6	CIN1, CIN2, CIN3, CIN4, CIN5, CIN6	CAP, 1210 22µF 10% 25V X5R	AVX 12103D226KAT2A
2	2	CO1, CO5	CAP, 7343 330µF 20% 6.3V POSCAP	PANASONIC 6TPF330M9L
3	4	C02, C03, C04, C06	CAP, 1210 100µF 10% 6.3V X5R	AVX 12106D107KAT2A
4	1	C6	CAP, 0603 4.7µF 20% 6.3V X5R	AVX 06036D475MAT2A
5	2	C7, C15	CAP, 0603 68pF 5% 50V COG / NP0	AVX 06035A680JAT2A
6	2	C8, C14	CAP, 0603 0.1µF 10% 25V X7R	AVX 06033C104KAT2A
7	2	C5, C12	CAP, 0603 3300pF 5% 16V C0G	AVX 0603YC332JAT2A
8	2	C16, C17	CAP, 0603 10µF 20% 25V X5R	TDK C1608X5R1E106M080AC
9	2	C18, C20	CAP, 0603 22µF 20% 6.3V X5R	TDK C1608X5R0J226M080AC
10	1	L1	IND, 1.0μH	COILCCRAFT XAL5030-102MEC
11	2	R2, R22	RES, 0603 0Ω JUMPER	VISHAY CRCW06030000Z0EA
12	3	R3, R5, R14	RES, 0603 100Ω 5% 0.1W	VISHAY CRCW0603100RJNEA
13	1	R4	RES, 0603 121kΩ 1% 0.1W	VISHAY CRCW0603121KFKEA
14	2	R6, R17	RES, 0603 10kΩ 5% 0.1W	VISHAY CRCW060310K0JNEA
15	1	R7	RES, 0603 13.3kΩ 1% 0.1W	VISHAY CRCW060313K3FKEA
16	1	R9	RES, 0603 0Ω	VISHAY CRCW06030000Z0EA
17	2	R10, R16	RES, 0603 10kΩ 1% 0.1W	VISHAY CRCW060310K0FKEA
18	1	R15	RES, 0603 143kΩ 1% 0.1W	VISHAY CRCW0603143KFKEA
19	1	R18	RES, 0603 19.1kΩ 1% 0.1W	VISHAY CRCW060319K1FKEA
20	3	R24, R25, R30	RES, 0603 10Ω 5% 0.1W	VISHAY CRCW060310R0JNEA
21	1	U1	IC, VOLTAGE REGULATOR LGA	ANALOG DEVICES LTM4628EV#PBF
\dditional [emo Boar	d Circuit Components		
1	0	C1, C2, C3, C4, C9, C10, C11, C13	CAP, 0603 OPTION	OPTION
2	0	R1, R8, R11, R12, R13, R19, R20, R21, R23, R26, R27, R28, R29	RES, 0603 OPTION	OPTION
3	0	R31, R32	RES, 2512 OPTION	OPTION
Hardware: F	or Demo E	Board Only		
1	1	J1	CONN., CARD EDGE 1.6mm	SAMTEC MEC2-20-01-L-DVTR

SCHEMATIC DIAGRAM

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board and agreed to the Agreement. You use of the Evaluation Board shall signify your acceptance of the Agreement This Agreement is made by and between you ("Customer" and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is not access the Evaluation Board and proprietary information of ADI. Customer may not discisse or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or a

ANALOGDEVICES

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9