Octal dual supply translating transceiver; 3-state Rev. 10 — 18 December 2012 Pro-

Product data sheet

General description 1.

The 74LVC4245A is an octal dual supply translating transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. It is designed to interface between a 3 V and 5 V bus in a mixed 3 V and 5 V supply environment.

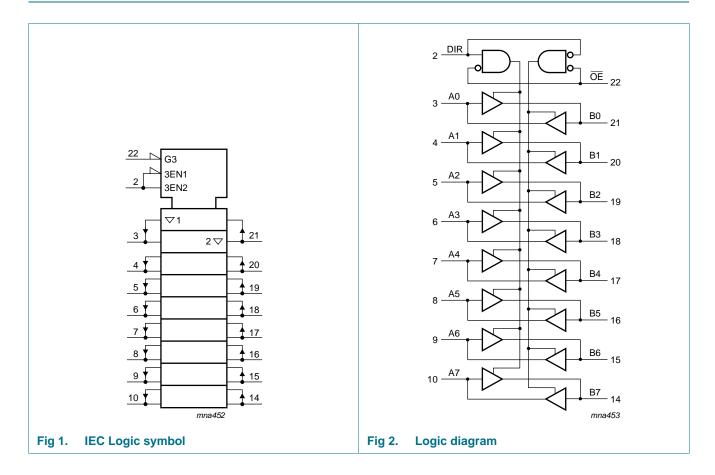
The device features an output enable input (pin OE) for easy cascading and a send/receive input (pin DIR) for direction control. Pin OE controls the outputs so that the buses are effectively isolated.

In suspend mode, when $V_{\rm CC(A)}$ is zero, there will be no current flow from one supply to the other supply. The A-outputs must be set 3-state and the voltage on the A-bus must be smaller than V_{diode} (typical 0.7 V).

 $V_{CC(A)} \ge V_{CC(B)}$, except in suspend mode.

Features and benefits 2.

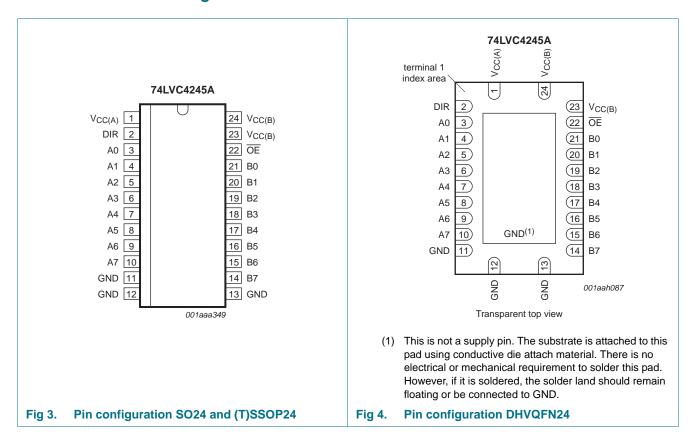
- 5 V tolerant inputs/outputs, for interfacing with 5 V logic
- Wide supply voltage range:
 - ◆ 3 V bus (V_{CC(B)}): 1.5 V to 3.6 V
 - 5 V bus (V_{CC(A)}): 1.5 V to 5.5 V
- CMOS low-power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- High-impedance when V_{CC(A)} = 0 V
- Complies with JEDEC standard no. JESD8B/JESD36
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C



3. Ordering information

Table 1. Ordering information

Type number	Package	Package						
	Temperature range	Name	Description	Version				
74LVC4245AD	–40 °C to +125 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1				
74LVC4245ADB	–40 °C to +125 °C	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1				
74LVC4245APW	–40 °C to +125 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1				
74LVC4245ABQ	–40 °C to +125 °C	DHVQFN24	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5\times5.5\times0.85$ mm	SOT815-1				


4. Functional diagram

Octal dual supply translating transceiver; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
$V_{CC(A)}$	1	supply voltage (5 V bus)
V _{CC(B)}	23, 24	supply voltage (3 V bus)
GND	11, 12, 13	ground (0 V)
DIR	2	direction control
A[0:7]	3, 4, 5, 6, 7, 8, 9, 10	data input or output
B[0:7]	21, 20, 19, 18, 17, 16, 15, 14	data input or output
ŌE	22	output enable input (active LOW)

Octal dual supply translating transceiver; 3-state

6. Functional description

Table 3. Functional table[1]

Input		Input/output			
OE	DIR	An	Bn		
L	L	A = B	input		
L	Н	input	B = A		
Н	X	Z	Z		

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

				_	
Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		-0.5	+6.5	V
$V_{CC(B)}$	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
V_{I}	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CCO}$ or $V_O < 0 V$	[3] _	±50	mA
V _O	output voltage	output HIGH or LOW state	<u>[1]</u> –0.5	$V_{CC} + 0.5$	V
		output 3-state	<u>[1]</u> –0.5	+6.5	V
I _O	output current	$V_O = 0 V \text{ to } V_{CCO}$	[3] _	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] _	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC(A)}	supply voltage A	$V_{CC(A)} \ge V_{CC(B)};$ see Figure 5 for maximum speed performance	1.5	-	5.5	V
V _{CC(B)}	supply voltage B	$V_{CC(A)} \ge V_{CC(B)};$ see Figure 5 for low-voltage applications	1.5	-	3.6	V
VI	input voltage	for control inputs	0	-	5.5	V

74LVC4245A

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

^[2] For SO24 packages: above 70 °C the value of P_{tot} derates linearly with 8 mW/K. For (T)SSOP24 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K. For DHVQFN24 packages: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.

^[3] V_{CCO} is the supply voltage associated with the output.

Octal dual supply translating transceiver; 3-state

 Table 5.
 Recommended operating conditions ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vo	output voltage output HIGH or LOW state		0	-	V_{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC(B)} = 2.7 \text{ V to } 3.0 \text{ V}$	-	-	20	ns/V
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-	10	ns/V
		$V_{CC(A)} = 3.0 \text{ V to } 4.5 \text{ V}$	-	-	20	ns/V
		$V_{CC(A)} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
$T_{amb} = -4$	0 °C to +85 °C					
V_{IH}	HIGH-level input voltage	$V_{CC(B)} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	V
		V _{CC(A)} = 4.5 V to 5.5 V	2.0	-	-	V
V_{IL}	LOW-level input voltage	$V_{CC(B)} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	V
		V _{CC(A)} = 4.5 V to 5.5 V	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$V_{CC(B)}$ = 2.7 V to 3.6 V; I_{O} = $-100~\mu A$	$V_{CC(B)} - 0.2$	V _{CC(B})	-	V
		$V_{CC(B)} = 2.7 \text{ V}; I_O = -12 \text{ mA}$	$V_{CC(B)} - 0.5$	-	-	V
		$V_{CC(B)} = 3.0 \text{ V}; I_O = -24 \text{ mA}$	$V_{CC(B)} - 0.8$	-	-	V
		$V_{CC(A)}$ = 4.5 V to 5.5 V; I_O = $-100~\mu A$	$V_{CC(A)} - 0.2$	$V_{CC(A)}$	-	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = -12 \text{ mA}$	$V_{CC(A)} - 0.5$	-	-	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = -24 \text{ mA}$	$V_{CC(A)} - 0.8$	-	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$V_{CC(B)}$ = 2.7 V to 3.6 V; I_O = 100 μA	-	-	0.20	V
		$V_{CC(B)} = 2.7 \text{ V}; I_O = 12 \text{ mA}$	-	-	0.40	V
		$V_{CC(B)} = 3.0 \text{ V}; I_O = 24 \text{ mA}$	-	-	0.55	V
		$V_{CC(A)}$ = 4.5 V to 5.5 V; I_O = 100 μA	-	-	0.20	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = 12 \text{ mA}$	-	-	0.40	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = 24 \text{ mA}$	-	-	0.55	V
I _I	input leakage current	$V_I = 5.5 \text{ V or GND}$	-	±0.1	±5	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL}	[2]			
		$V_{CC(B)} = 3.6 \text{ V}; V_O = V_{CC(B)} \text{ or GND}$	-	±0.1	±5	μΑ
		$V_{CC(A)} = 5.5 \text{ V}; V_O = V_{CC(A)} \text{ or GND}$	-	±0.1	±5	μΑ
I _{CC}	supply current	I _O = 0 A				
		$V_{CC(B)} = 3.6 \text{ V};$ other inputs at $V_{CC(B)}$ or GND	-	0.1	10	μА
		$V_{CC(A)} = 5.5 \text{ V};$ other inputs at $V_{CC(A)}$ or GND	-	0.1	10	μА

Octal dual supply translating transceiver; 3-state

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
ΔI_{CC}	additional supply current	per control pin; I _O = 0 A	[3]			
		$V_{CC(B)}$ = 2.7 V to 3.6 V; V_I = $V_{CC(B)}$ - 0.6 V; other inputs at $V_{CC(B)}$ or GND	-	5	500	μА
		$V_{CC(A)}$ = 4.5 V to 5.5 V; V_I = $V_{CC(A)}$ - 0.6 V; other inputs at $V_{CC(A)}$ or GND	-	5	500	μА
Cı	input capacitance		-	4.0	-	pF
C _{I/O}	input/output capacitance	An and Bn	-	5.0	-	pF
T _{amb} = -4	0 °C to +125 °C					
V_{IH}	HIGH-level input voltage	$V_{CC(B)} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	V
		$V_{CC(A)} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC(B)} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	8.0	V
		V _{CC(A)} = 4.5 V to 5.5 V	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$V_{CC(B)}$ = 2.7 V to 3.6 V; I_{O} = $-100~\mu A$	$V_{CC(B)}-0.3$	-	-	V
		$V_{CC(B)} = 2.7 \text{ V}; I_O = -12 \text{ mA}$	$V_{CC(B)}-0.65$	-	-	V
		$V_{CC(B)} = 3.0 \text{ V}; I_{O} = -24 \text{ mA}$	$V_{CC(B)} - 1.0$	-	-	V
		$V_{CC(A)}$ = 4.5 V to 5.5 V; I_O = $-100~\mu A$	$V_{\text{CC(A)}} - 0.3$	-	-	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = -12 \text{ mA}$	$V_{CC(A)} - 0.65$	-	-	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = -24 \text{ mA}$	$V_{\text{CC(A)}} - 1.0$	-	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$				
		$V_{CC(B)}$ = 2.7 V to 3.6 V; I_O = 100 μA	-	-	0.30	V
		$V_{CC(B)} = 2.7 \text{ V}; I_O = 12 \text{ mA}$	-	-	0.60	V
		$V_{CC(B)} = 3.0 \text{ V}; I_O = 24 \text{ mA}$	-	-	0.80	V
		$V_{CC(A)} = 4.5 \text{ V to } 5.5 \text{ V}; I_O = 100 \mu\text{A}$	-	-	0.30	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = 12 \text{ mA}$	-	-	0.60	V
		$V_{CC(A)} = 4.5 \text{ V}; I_O = 24 \text{ mA}$	-	-	0.80	V
l _l	input leakage current	$V_I = 5.5 \text{ V or GND}$	-	-	±20	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH} \text{ or } V_{IL}$	[2]			
		$V_{CC(B)} = 3.6 \text{ V}; V_O = V_{CC(B)} \text{ or GND}$	-	-	±20	μΑ
		$V_{CC(A)} = 5.5 \text{ V}; V_O = V_{CC(A)} \text{ or GND}$	-	-	±20	μΑ
I _{CC}	supply current	I _O = 0 A				
		$V_{CC(B)} = 3.6 \text{ V};$ other inputs at $V_{CC(B)}$ or GND	-	-	40	μΑ
		$V_{CC(A)} = 5.5 \text{ V};$ other inputs at $V_{CC(A)}$ or GND	-	-	40	μА

Octal dual supply translating transceiver; 3-state

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
ΔI_{CC}	additional supply current	per control pin; I _O = 0 A	<u>[3]</u>			
		$V_{CC(B)}$ = 2.7 V to 3.6 V; $V_I = V_{CC(B)} - 0.6$ V; other inputs at $V_{CC(B)}$ or GND	-	-	5000	μΑ
		$V_{CC(A)}$ = 4.5 V to 5.5 V; V_1 = $V_{CC(A)}$ - 0.6 V; other inputs at $V_{CC(A)}$ or GND	-	-	5000	μΑ

^[1] All typical values are measured at $V_{CC(A)} = 5.0 \text{ V}$, $V_{CC(B)} = 3.3 \text{ V}$ and $T_{amb} = 25 \,^{\circ}\text{C}$.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). $V_{CC(A)} = 4.5 \text{ V}$ to 5.5 V; $t_r = t_f \le 2.5 \text{ ns}$. For test circuit see <u>Figure 8</u>.

		, ,							
Symbol	Parameter	Conditions	V _{CC(B})	-40	°C to +8	85 °C	-40 °C to	o +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t_{PHL}	HIGH to LOW	An to Bn;	2.7 V	1.0	3.6	6.3	1.0	8.0	ns
	propagation delay	see Figure 6	3.0 V to 3.6 V	1.0	3.3	6.3	1.0	8.0	ns
	uelay	Bn to An;	2.7 V	1.0	3.4	6.1	1.0	8.0	ns
		see Figure 6	3.0 V to 3.6 V	1.0	3.4	6.1	1.0	8.0	ns
t _{PLH}	LOW to HIGH	An to Bn;	2.7 V	1.0	3.3	6.7	1.0	8.5	ns
	propagation delay	see Figure 6	3.0 V to 3.6 V	1.0	2.8	6.5	1.0	8.5	ns
	delay	Bn to An;	2.7 V	1.0	3.0	5.0	1.0	6.5	ns
		see Figure 6	3.0 V to 3.6 V	1.0	3.0	5.0	1.0	6.5	ns
t_{PZL}	OFF-state to	W see <u>Figure 7</u>	2.7 V	1.0	4.5	9.0	1.0	11.5	ns
	LOW propagation delay		3.0 V to 3.6 V	1.0	4.5	9.0	1.0	11.5	ns
		OE to Bn; see Figure 7	2.7 V	1.0	4.4	8.7	1.0	11.0	ns
	-		3.0 V to 3.6 V	1.0	3.8	8.1	1.0	10.5	ns
t _{PZH}	OFF-state to	OE to An;	2.7 V	1.0	4.5	8.1	1.0	10.5	ns
	HIGH propagation	see Figure 7	3.0 V to 3.6 V	1.0	4.5	8.1	1.0	10.5	ns
	delay	OE to Bn;	2.7 V	1.0	4.3	8.7	1.0	11.0	ns
		see Figure 7	3.0 V to 3.6 V	1.0	3.2	8.1	1.0	10.5	ns
t_{PLZ}	LOW to	OE to An;	2.7 V	1.0	2.9	7.0	1.0	9.0	ns
	OFF-state propagation	see Figure 7	3.0 V to 3.6 V	1.0	2.9	7.0	1.0	9.0	ns
	delay	OE to Bn;	2.7 V	1.0	3.9	7.7	1.0	10.0	ns
	-	see Figure 7	3.0 V to 3.6 V	1.0	3.5	7.7	1.0	10.0	ns
t _{PHZ}	HIGH to	OE to An;	2.7 V	1.0	2.8	5.8	1.0	7.5	ns
	OFF-state propagation	see <u>Figure 7</u>	3.0 V to 3.6 V	1.0	2.8	5.8	1.0	7.5	ns
	delay	OE to Bn;	2.7 V	1.0	3.3	7.8	1.0	10.0	ns
	dolay	see Figure 7	3.0 V to 3.6 V	1.0	2.9	7.8	1.0	10.0	ns

74LVC4245A

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

^[2] For transceivers, the parameter I_{OZ} includes the input leakage current.

^[3] $V_{CC(B)} = 2.7$ V to 3.6 V: other inputs at $V_{CC(B)}$ or GND. $V_{CC(A)} = 4.5$ V to 5.5 V: other inputs at $V_{CC(A)}$ or GND.

Octal dual supply translating transceiver; 3-state

 Table 7.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). $V_{CC(A)} = 4.5 \text{ V}$ to 5.5 V; $t_r = t_f \le 2.5 \text{ ns}$. For test circuit see Figure 8.

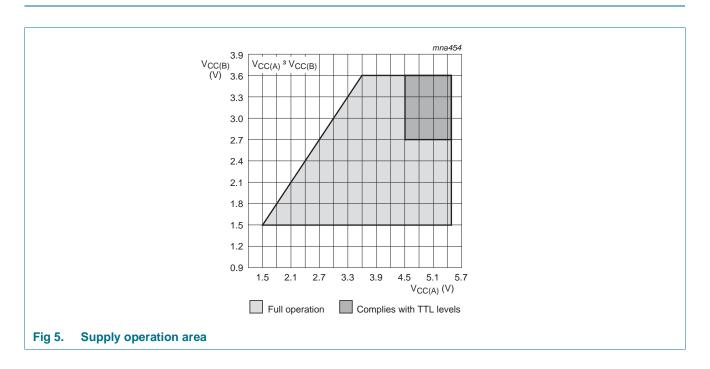
Symbol	Parameter	Conditions	V _{CC(B})	-40	-40 °C to +85 °C		-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t _{sk(o)}	output skew time		<u>[2]</u>	-	-	1.0	-	1.5	ns
10	power dissipation capacitance	5 V bus: Bn to An; $V_I = GND$ to $V_{CC(A)}$; $V_{CC(A)} = 5.0 \text{ V}$	<u>[3]</u>						
		outputs enabled	-	-	17	-	-	-	pF
		outputs disabled	-	-	5	-	-	-	pF
		3 V bus: An to Bn; $V_I = GND$ to $V_{CC(B)}$; $V_{CC(B)} = 3.3 \text{ V}$	<u>[3]</u>						
		outputs enabled	-	-	17	-	-	-	pF
		outputs disabled	-	-	5	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C, $V_{CC(A)}$ = 5.0 V, and $V_{CC(B)}$ = 2.7 V and 3.3 V respectively.

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

f_i = input frequency in MHz; f_o = output frequency in MHz

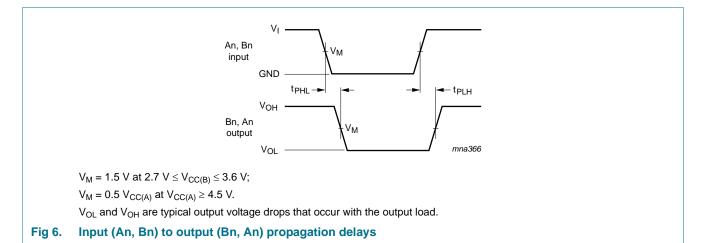

C_L = output load capacitance in pF

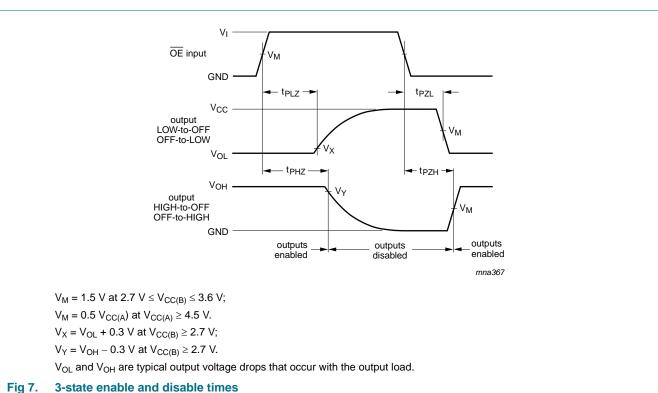
V_{CC} = supply voltage in Volts

N = number of inputs switching

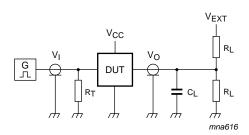
 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs

11. AC waveforms


74LVC4245A


All information provided in this document is subject to legal disclaimers

^[2] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.


74LVC4245A **Nexperia**

Octal dual supply translating transceiver; 3-state

Octal dual supply translating transceiver; 3-state

Test data is given in Table 8. Definitions for test circuit:

R_L = Load resistance.

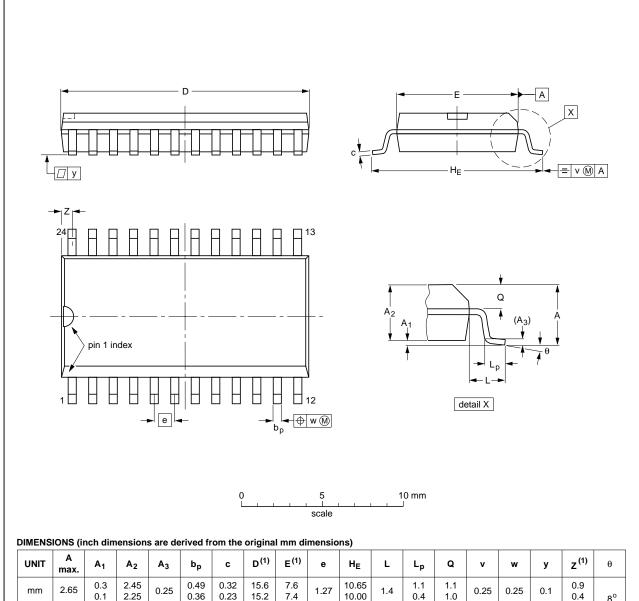
 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

Fig 8. Load circuitry for switching times

Table 8. Test data

Supply voltage		Input	Load	Load		V _{EXT}		
V _{CC(A)}	V _{CC(B)}	V _I [1]	C _L	R_L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [2]	
< 2.7 V	< 2.7 V	V_{CCI}	50 pF	500Ω	open	GND	$2\times V_{CCO}$	
-	2.7 V to 3.6 V	2.7 V	50 pF	500Ω	open	GND	$2 \times V_{CCO}$	
4.5 V to 5.5 V	-	3.0 V	50 pF	500Ω	open	GND	$2 \times V_{CCO}$	


^[1] V_{CCI} is the supply voltage associated with the data input port.

^[2] V_{CCO} is the supply voltage associated with the output port.

12. Package outline

SO24: plastic small outline package; 24 leads; body width 7.5 mm

SOT137-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	15.6 15.2	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.61 0.60	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

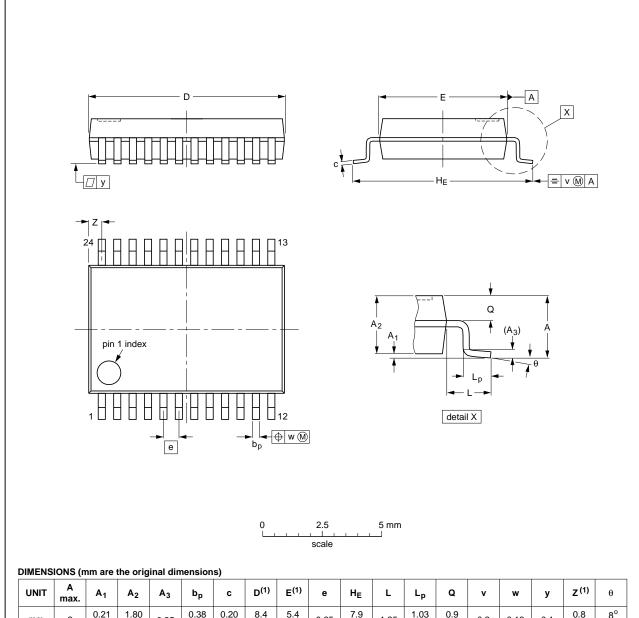

OUTLINE		REFER		EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE
SOT137-1	075E05	MS-013				-99-12-27 03-02-19
			1	I.		

Fig 9. Package outline SOT137-1 (SO24)

74LVC4245A

SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm

SOT340-1

	(.					,												
UNI	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	8.4 8.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.8 0.4	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

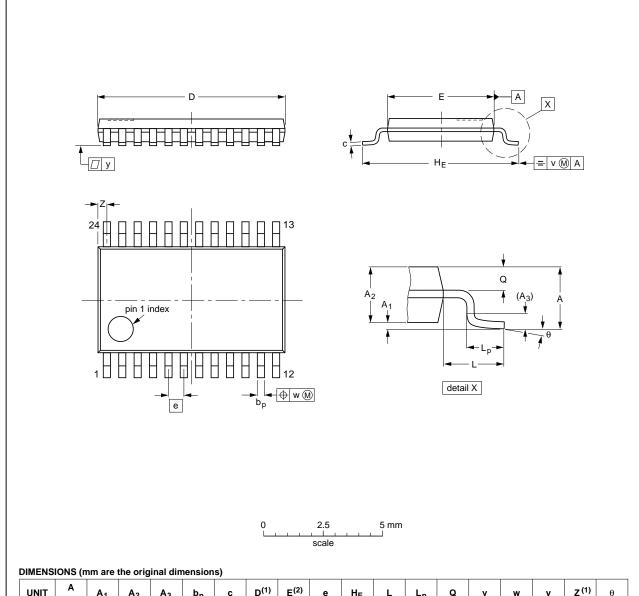

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT340-1		MO-150			99-12-27 03-02-19	
501340-1		MO-150			(

Fig 10. Package outline SOT340-1 (SSOP24)

74LVC4245A

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

- 3							-,												
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	7.9 7.7	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

JEDEC	JEITA		PROJECTION	ISSUE DATE
		1		
MO-153				-99-12-27 03-02-19
	MO-153	MO-153	MO-153	MO-153

Fig 11. Package outline SOT355-1 (TSSOP24)

74LVC4245A

All information provided in this document is subject to legal disclaimers.

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85$ mm

SOT815-1

Fig 12. Package outline SOT815-1 (DHVQFN24)

74LVC4245A

All information provided in this document is subject to legal disclaimers.

Octal dual supply translating transceiver; 3-state

13. Abbreviations

Table 9. Abbreviations

Acronym	Description
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 10. Revision history

	•			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC4245A v.10	20121218	Product data sheet	-	74LVC4245A v.9
Modifications:	 V_{CC(A)} and V_{CC} 	$_{C(B)}$ changed into $V_{CC(A)}$ and	d V _{CC(B)} (errata)	
74LVC4245A v.9	20121120	Product data sheet	-	74LVC4245A v.8
Modifications:	• Figure 4: Pin co	onfiguration drawing correc	ted for DHVQFN24 pac	kage
74LVC4245A v.8	20111122	Product data sheet	-	74LVC4245A v.7
74LVC4245A v.7	20110812	Product data sheet	-	74LVC4245A v.6
74LVC4245A v.6	20080118	Product data sheet	-	74LVC4245A v.5
74LVC4245A v.5	20040330	Product specification	-	74LVC4245A v.4
74LVC4245A v.4	20040211	Product specification	-	74LVC4245A v.3
74LVC4245A v.3	19990615	Product specification	-	74LVC4245A v.2
74LVC4245A v.2	19980729	Product specification	-	74LVC4245A v.1
74LVC4245A v.1	19980729	Product specification	-	-

Octal dual supply translating transceiver; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC4245A

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

Octal dual supply translating transceiver; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Nexperia

Octal dual supply translating transceiver; 3-state

17. Contents

1	General description
2	Features and benefits
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 4
9	Static characteristics 5
10	Dynamic characteristics
11	AC waveforms 8
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks
16	Contact information 17
17	Contents

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9