# Silicon Carbide Schottky Diode

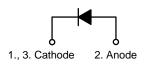
650 V, 30 A

#### Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size & cost.

#### **Features**

- Max Junction Temperature 175°C
- Avalanche Rated 144 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery / No Forward Recovery
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

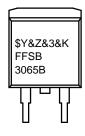

### **Applications**

- Automotive HEV-EV Onboard Chargers
- Automotive HEV-EV DC-DC Converters



#### ON Semiconductor®

www.onsemi.com




**Schottky Diode** 



D<sup>2</sup>PAK-3 (TO-263, 3-LEAD) CASE 418AJ

#### **MARKING DIAGRAM**



\$Y = ON Semiconductor Logo &Z = Assembly Plant Code

&3 = Numeric Date Code &K = Lot Code

FFSB3065B = Specific Device Code

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 2 of this data sheet.

#### **ABSOLUTE MAXIMUM RATINGS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Symbol              | Parameter                                                    | Value                                    | Unit        |    |
|---------------------|--------------------------------------------------------------|------------------------------------------|-------------|----|
| $V_{RRM}$           | Peak Repetitive Reverse Voltage                              |                                          | 650         | V  |
| E <sub>AS</sub>     | Single Pulse Avalanche Energy (Note 1)                       |                                          | 144         | mJ |
| lF                  | Continuous Rectified Forward Current @ T <sub>C</sub> < 25°C |                                          | 73          | А  |
|                     | Continuous Rectified Forward Current @ T <sub>C</sub> <      | 30                                       |             |    |
| I <sub>F, Max</sub> | Non-Repetitive Peak Forward Surge Current                    | T <sub>C</sub> = 25°C, 10 μs             | 1100        | А  |
|                     |                                                              | T <sub>C</sub> = 150°C, 10 μs            | 1000        | А  |
| I <sub>F,SM</sub>   | Non-Repetitive Forward Surge Current $T_C = 25^{\circ}C$     | Half-Sine Pulse, t <sub>p</sub> = 8.3 ms | 120         | А  |
| Ptot                | Power Dissipation                                            | T <sub>C</sub> = 25°C                    | 246         | W  |
|                     |                                                              | T <sub>C</sub> = 150°C                   | 41          | W  |
| $T_J, T_{STG}$      | Operating and Storage Temperature Range                      |                                          | -55 to +175 | °C |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1.  $E_{AS}$  of 144 mJ is based on starting  $T_J = 25^{\circ}C$ , L = 0.5 mH,  $I_{AS} = 24$  A, V = 50 V.

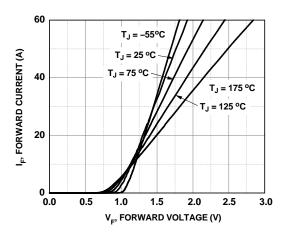
#### THERMAL CHARACTERISTICS

| Symbol         | Parameter                                 | Value | Unit |
|----------------|-------------------------------------------|-------|------|
| $R_{	heta JC}$ | Thermal Resistance, Junction to Case, Max | 0.61  | °C/W |

#### **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub> = 25°C unless otherwise noted)

| Symbol         | Parameter               | Test Condition                                  | Min | Тур  | Max | Unit |
|----------------|-------------------------|-------------------------------------------------|-----|------|-----|------|
| V <sub>F</sub> | Forward Voltage         | I <sub>F</sub> = 30 A, T <sub>C</sub> = 25°C    | -   | 1.38 | 1.7 | V    |
|                |                         | I <sub>F</sub> = 30 A, T <sub>C</sub> = 125°C   | _   | 1.6  | 2.0 |      |
|                |                         | I <sub>F</sub> = 30 A, T <sub>C</sub> = 175°C   | -   | 1.72 | 2.4 |      |
| I <sub>R</sub> | Reverse Current         | $V_R = 650 \text{ V}, T_C = 25^{\circ}\text{C}$ | -   | 0.5  | 40  | μΑ   |
|                |                         | V <sub>R</sub> = 650 V, T <sub>C</sub> = 125°C  | -   | 1    | 80  |      |
|                |                         | V <sub>R</sub> = 650 V, T <sub>C</sub> = 175°C  | -   | 2    | 120 |      |
| Q <sub>C</sub> | Total Capacitive Charge | V = 400 V                                       | -   | 74   | -   | nC   |
| С              | Total Capacitance       | V <sub>R</sub> = 1 V, f = 100 kHz               | -   | 1280 | -   | pF   |
|                |                         | V <sub>R</sub> = 200 V, f = 100 kHz             | -   | 139  | -   |      |
|                |                         | V <sub>R</sub> = 400 V, f = 100 kHz             | -   | 108  | -   |      |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


#### **ORDERING INFORMATION**

| Part Number    | Top Marking | Package                                          | Shipping*         |
|----------------|-------------|--------------------------------------------------|-------------------|
| FFSB3065B-F085 | FFSB3065B   | D <sup>2</sup> PAK-3<br>(Pb-Free / Halogen Free) | 800 / Tape & Reel |

<sup>\*</sup> For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

#### **TYPICAL CHARACTERISTICS**

(T<sub>J</sub> = 25°C unless otherwise noted)



**Figure 1. Forward Characteristics** 

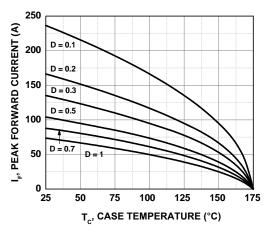



Figure 3. Current Derating




Figure 5. Capacitive Charge vs. Reverse Voltage

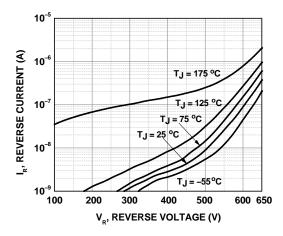



Figure 2. Reverse Characteristics

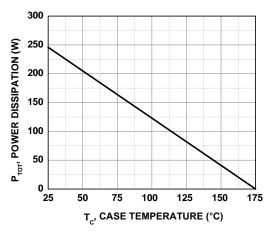



Figure 4. Power Derating

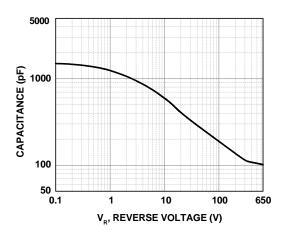



Figure 6. Capacitance vs. Reverse Voltage

#### **TYPICAL CHARACTERISTICS**

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$ 

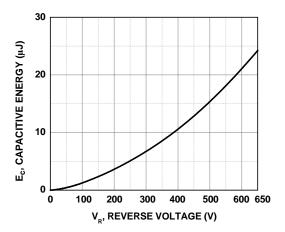



Figure 7. Capacitance Stored Energy

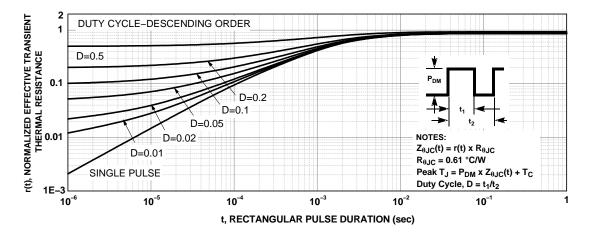
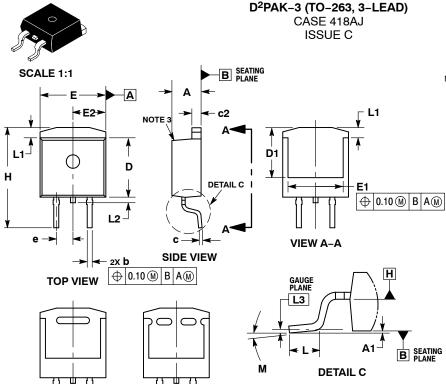




Figure 8. Junction-to-Case Transient Thermal Response Curve

#### **TEST CIRCUIT AND WAVEFORMS**

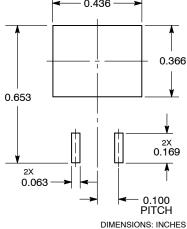
L = 0.5 mH  $R < 0.1 \Omega$   $V_{DD} = 50 \text{ V}$   $EAVL = 1/2LI2 \left[ V_{R(AVL)} / \left( V_{R(AVL)} - V_{DD} \right) \right]$   $Q1 = IGBT \left( BV_{CES} > DUT \ V_{R(AVL)} \right)$   $CURRENT \qquad V_{DD}$   $SENSE \qquad V_{DD}$   $DUT \qquad V_{DD}$ 

Figure 9. Unclamped Inductive Switching Test Circuit & Waveform



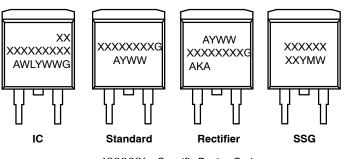
**DATE 03 OCT 2018** 

#### NOTES:


- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ASME
  Y14.5M, 1994.
  2. CONTROLLING DIMENSION: INCHES.
  3. CHAMFER OPTIONAL

- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLAS-TIC BODY AT DATUM H.
- THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1 AND E1.

|            | INCHES    |       | MILLIMETERS |       |
|------------|-----------|-------|-------------|-------|
| DIM        | MIN       | MAX   | MIN         | MAX   |
| Α          | 0.160     | 0.190 | 4.06        | 4.83  |
| <b>A</b> 1 | 0.000     | 0.010 | 0.00        | 0.25  |
| b          | 0.020     | 0.039 | 0.51        | 0.99  |
| С          | 0.012     | 0.029 | 0.30        | 0.74  |
| c2         | 0.045     | 0.065 | 1.14        | 1.65  |
| D          | 0.330     | 0.380 | 8.38        | 9.65  |
| D1         | 0.260     |       | 6.60        |       |
| Е          | 0.380     | 0.420 | 9.65        | 10.67 |
| E1         | 0.245     |       | 6.22        |       |
| е          | 0.100 BSC |       | 2.54 BSC    |       |
| Н          | 0.575     | 0.625 | 14.60       | 15.88 |
| L          | 0.070     | 0.110 | 1.78        | 2.79  |
| L1         |           | 0.066 |             | 1.68  |
| L2         |           | 0.070 |             | 1.78  |
| L3         | 0.010 BSC |       | 0.25 BSC    |       |
| М          | -8°       | 8°    | -8°         | 8°    |


#### VIEW A-A **OPTIONAL CONSTRUCTIONS**

## RECOMMENDED **SOLDERING FOOTPRINT\*** 0.436



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **GENERIC MARKING DIAGRAMS\***



XXXXXX = Specific Device Code

= Assembly Location

WL = Wafer Lot = Year WW = Work Week

W = Week Code (SSG) = Month Code (SSG) M

= Pb-Free Package G AKA = Polarity Indicator

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■" may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON56370E                           | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | D <sup>2</sup> PAK-3 (TO-263, 3-LEAD) |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor datas sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

## **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

# Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

## http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

## Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru\_6 moschip.ru 4 moschip.ru 9