

Technical Note

LCD Segment Driver series 80-segment Drivers (20SEG×4COM)

BU9796FS

No.09044EAT02

Description

This is LCD segment driver for 80 segment type display. There is a lineup which is suitable for multi function display and is integrated display RAM and power supply circuit for LCD driving with 4 common output type: BU9796FS.

Features

- 1) 2wire serial interface
- 2) Integrated RAM for display data (DDRAM) : 20 × 4bit (Max 80 Segment)
- 3) LCD driving port: 4 Common output, 20 Segment output
- 4) Display Duty: 1/4 duty
- 5) Integrated Oscillation circuit
- 6) Integrated Buffer AMP for LCD driving power supply circuit
- 7) Support 1/2bias, 1/3bias select
- 8) No external components
- 9) Low voltage / low power consumption design: 2.5~5.5V

Applications

Telephone, FAX, Portable equipments (POS, ECR, PDA etc.), DSC, DVC, Car audio, Home electrical appliance, Meter equipment etc.

• Absolute Maximum Ratings (Ta=25degree, VSS=0V)

Parameter	Symbol	Limits	Unit	Remarks
Power Supply Voltage1	VDD	-0.5 ~ +7.0	V	Power supply
Power Supply Voltage2	VLCD	-0.5 ~ +7.0	V	LCD drive voltage
Allowable loss	Pd	0.64	W	When use more than Ta=25°C, subtract 6.4mW per degree.
Input voltage range	VIN	-0.5 ~ VDD+0.5	V	
Operational temperature range	Topr	-40 ~ +85	degree	
Storage temperature range	Tstg	-55 ~ +125	degree	

*This product is not designed against radioactive ray.

Recommend operating conditions (Ta=25degree, VSS=0V)

Parameter	Symbol	MIN	TYP	MAX	Unit	Remarks
Power Supply Voltage1	VDD	2.5	-	5.5	V	Power supply
Power Supply Voltage2	VLCD	0	-	VDD-2.4	V	LCD drive voltage

* Please use in the range of VDD-VLCD $\geq~2.4V$

Electrical Characteristics

DC Characteristics (VDD=2.5~5.5V, VLCD=0V, VSS=0V, Ta=-40~85degree, unless otherwise specified)

Deremet	hor	Sumbol	Limit		Linit	Condition		
Paramet	ler	Symbol	MIN	TYP	MAX	Unit	Condition	
"H" level input v	voltage	VIH	0.7VDD	-	VDD	V		
"L" level input v	oltage	VIL	VSS	-	0.3VDD	V		
"H" level input o	current	IIH	-	-	1	uA		
"L" level input c	urrent	IIL	-1	-	-	uA		
LCD Driver	SEG	RON	-	3	-	kΩ	lload=±10uA	
on resistance	COM	RON	-	3	-	kΩ	IIOau=±10uA	
VLCD supply vo	oltage	VLCD	0	-	VDD-2.4	V	VDD-VLCD≧2.4V	
Standby current	t	IDD1	-	-	5	uA	Display off, Oscillation off	
Power consum	otion	IDD2	-	12.5	30	uA	VDD=3.3V, VLCD=0V, Ta=25degree Power save mode SR = Power save mode1, Power save mode FR = Power save mode1 1/3 bias, Frame inverse	
Frame frequence	су	fCLK	56	80	104	Hz	Power save mode FR = Normal mode	

MPU interface Characteristics (VDD=2.5~5.5V, VLCD=0V, VSS=0V, Ta=-40~85degree, unless otherwise specified)

Devementer	Currente e l	Limit			1.1	
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Input rise time	tr	-	-	0.3	us	
Input fall time	tf	-	-	0.3	us	
SCL cycle time	tSCYC	2.5	-	-	us	
"H" SCL pulse width	tSHW	0.6	-	-	us	
"L" SCL pulse width	tSLW	1.3	-	-	us	
SDA setup time	tSDS	100	-	-	ns	
SDA hold time	tSDH	100	-	-	ns	
Buss free time	tBUF	1.3	-	-	us	
START condition hold time	tHD;STA	0.6	-	-	us	
START condition setup time	tSU;STA	0.6	-	-	us	
STOP condition setup time	tSU;STO	0.6	-	-	us	

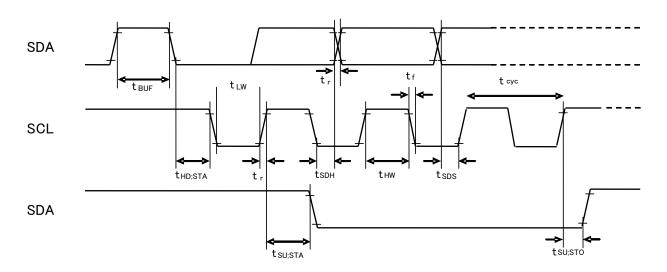
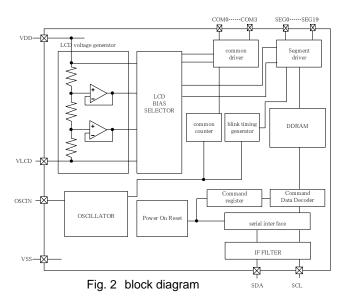



Fig. 1 interface timing

Block Diagram

Pin Arrangement

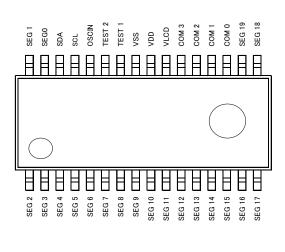


Fig. 3 Pin arrangement

Terminal description

Terminal	Terminal No.	I/O	Function	
TEST1	26	Ι	Test input (ROHM use only) Must be connect to VSS	
TEST2	27	Ι	Test input (ROHM use only) TEST2="L": POR circuit enable TEST2="H": POR circuit disenable, refer to "Cautions in Power ON/OFF"	
OSCIN	28	Ι	External clock input Ext clock and Int clock can be changed by command. Must be connect to VSS when use internal oscillation circuit.	
SDA	30	I/O	serial data in-out terminal	
SCL	29		serial data transfer clock	
VSS	25		GND	
VDD	24		Power supply	
VLCD	23		Power supply for LCD driving	
SEG0-19	31,32 1-18	0	SEGMENT output for LCD driving	
COM0-3	19-22	0	COMMON output for LCD driving	

• Command Description

D7 (MSB) is bit for command or data judgment. Refer to Command and data transfer method.

- C: 0: Next byte is RAM write data.
 - 1: Next byte is command.
- Display control (DISCTL)

MSB							LSB
D7	D6		D4			D1	D0
С	0	1	P4	P3	P2	P1	P0

Set Power save mode FR

Setup	P4	P3	Reset initialize condition
Normal mode	0	0	0
Power save mode1	0	1	
Power save mode2	1	0	
Power save mode3	1	1	

Set LCD drive waveform

Setup	P2	Reset initialize condition
Line inversion	0	0
Frame inversion	1	

Set Power save mode SR

Setup	P1	P0	Reset initialize condition			
Power save mode1	0	0				
Power save mode2	0	1				
Normal mode	1	0	0			
High power mode	1	1				

* Please keep condition VDD-VLCD \geq 3.0V in High power mode.

• Mode Set (MODE SET)

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	
С	1	0	*	P3	P2	*	*	
							(*: Don	't Care)

Set display ON and OFF

Setup	P3	Reset initialize condition
Display OFF	0	0
Display ON	1	

Set bias level

Setup	P3	Reset initialize condition
1/3 Bias	0	0
1/2 Bias	1	

Address set (ADSET)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
С	0	0	P4	P3	P2	P1	P0
The ra	ange of	address	can be	set as C	0000 to	10011(2).

• Set IC Operation (ICSET)

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	
С	1	1	0	1	*	P1	P0	
							(*: Don	't Care)

Set software reset execution

Setup	P1
No operation	0
Software Reset execute	1

Set oscillator mode

setup	P0	Reset initialize condition
Internal oscillation	0	0
External clock input	1	

• Blink control (BLKCTL)

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	_
С	1	1	1	0	*	P1	P0	
	-						(*: Don	't Care)

Set blink mode

Blink mode (Hz)	P1	P0	Reset initialize condition
OFF	0	0	0
0.5	0	1	
1	1	0	
2	1	1	

• All Pixel control (APCTL)

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	
С	1	1	1	1	1	P1	P0	Ī

All display set ON, OFF

APON	P1	Reset initialize condition
Normal	0	0
All pixel ON	1	

APOFF	P0	Reset initialize condition
Normal	0	0
All pixel OFF	1	

Function description

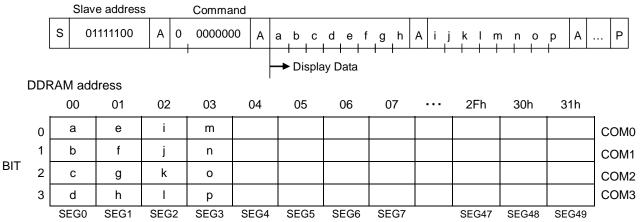
• Command transfer method

1byte after Slave Address always becomes command input.

MSB ("command or data judge bit") of command decide to next data is command or display data. When set "command or data judge bit"='1', next byte will be command.

When set "command or data judge bit"='0', next byte data is display data.

S Slave address A 1 Com	ommand A 1 Command A	Command A 0	Command A Display Data P
-------------------------	----------------------	-------------	--------------------------


Once it becomes display data transfer condition, it cannot input command.

When want to input command again, please generate "START condition" once.

• Write display and transfer method

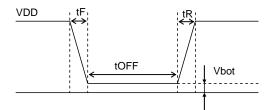
This device has Display Data RAM (DDRAM) of 50×4=200bit.

The relationship between data input and display data, DDRAM data and address are as follows;

Data transfer to DDRAM happens every 4bit data. So It will be finished to transfer with no need to wait ACK.

• Reset initialize condition

Initial condition after execute Software Reset is as follows.


- Display is OFF.
- DDRAM address is initialized (DDRAM Data is not initialized).
- Refer to Command Description about initialize value of register.

Cautions in Power ON/OFF

This device has "P.O.R" (Power-On Reset) circuit and Software Reset function. Please keep the following recommended Power-On conditions in order to power up properly.

Please set power up conditions to meet the recommended tR, tF, tOFF, and Vbot spec below in order to ensure P.O.R operation

* It has to set TEST2="L" to be valid in POR circuit.

Recommenda	tion condition of	of tR, tF, tOFF,	Vbot (Ta=25°C
tR	tF	tOFF	Vbot
Less than	Less than	More than	Less than
1ms	1ms	100ms	0.1V

Fig. 4 Power ON/OFF waveform

If it is difficult to meet above conditions, execute the following sequence after Power-On.

* It has to keep the following sequence in the case of TEST2="H". As POR circuit is invalid status. But it is not able to accept Command input in Power off status, it has to take care that software reset is not perfectly alternative method of POR function.

(1) Generate STOP condition

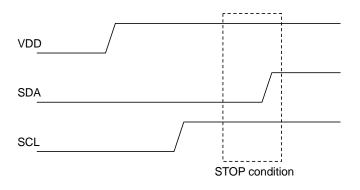


Fig. 5 Stop condition

- (2) Generate START condition.
- (3) Issue slave address
- (4) Execute Software Reset (ICSET) command

●IO Equivalent Circuit

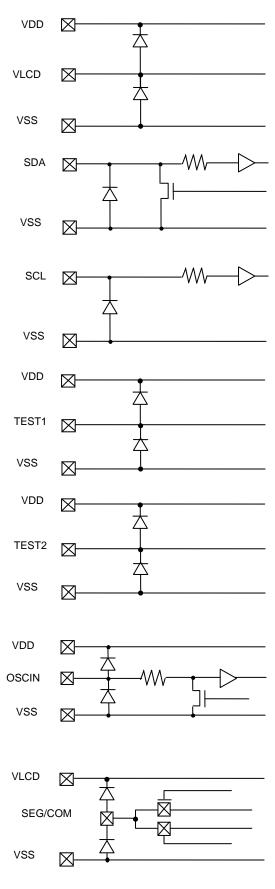


Fig. 6 I/O equivalent circuit

Notes for use

(1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings

is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.

(2) Operating conditions

These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.

(3) Reverse connection of power supply connector

The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection,

such as mounting an external diode between the power supply and the IC's power supply terminal.

(4) Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, or the digital block power

supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for

the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.

Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use

an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of

capacity dropout at a low temperature, thus determining the constant.

(5) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure

no terminals are at a potential lower than the GND voltage including an actual electric transient.

(6) Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore,

if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.

(7) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.

(8) Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge

from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF

the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount

it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.

(9) Input terminals

In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention

not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will

operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power

supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.

(10) Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal

GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to

a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of

external parts as well.

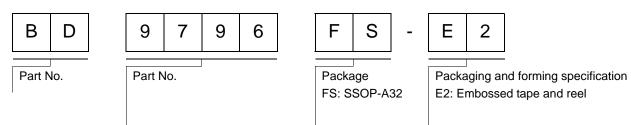
(11) External capacitor

In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance

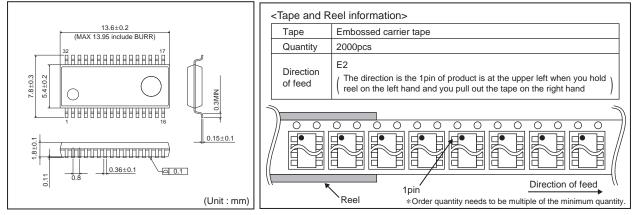
due to DC bias and changes in the capacitance due to temperature, etc.

(12) No Connecting input terminals

In terms of extremely high impedance of CMOS gate, to open the input terminals causes unstable state. And unstable state brings the inside


gate voltage of p-channel or n-channel transistor into active. As a result, battery current may increase. And unstable state can also causes

unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or GND line.


(13) Rush current

When power is first supplied to the CMOS IC, it is possible that the internal logic may be unstable and rush current may flow instantaneously. Therefore, give special condition to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.

Ordering part number

SSOP-A32

	Notes
	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conten	t specified herein is subject to change for improvement without notice.
"Products")	It specified herein is for the purpose of introducing ROHM's products (hereinafte b. If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein e standard usage and operations of the Products. The peripheral conditions mus to account when designing circuits for mass production.
However, s	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such , ROHM shall bear no responsibility for such damage.
examples of implicitly, a other partie	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o ny license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment	ets specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu vices, electronic appliances and amusement devices).
The Produc	ts specified in this document are not designed to be radiation tolerant.
	M always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of ar shall bear r	sure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the product, such as derating, redundancy, fire control and fail-safe designs. ROHM responsibility whatsoever for your use of any Product outside of the prescribed of in accordance with the instruction manual.
system whi may result instrument fuel-contro any of the F	cts are not designed or manufactured to be used with any equipment, device or ch requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica , transportation equipment, aerospace machinery, nuclear-reactor controller ller or other safety device). ROHM shall bear no responsibility in any way for use of Products for the above special purposes. If a Product is intended to be used for any al purpose, please contact a ROHM sales representative before purchasing.
be controlle	d to export or ship overseas any Product or technology specified herein that may ed under the Foreign Exchange and the Foreign Trade Law, you will be required to ense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9