

ZXRE160_H5 (SC70/SOT353) and

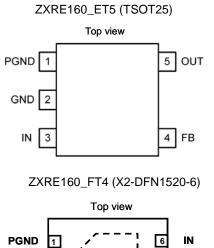
ZXRE160

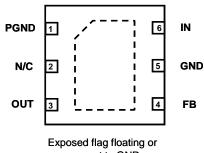
0.6V ENHANCED ADJUSTABLE PRECISION SHUNT REGULATOR

Pin Assignments

Description

The ZXRE160 is a 5-terminal adjustable shunt regulator offering excellent temperature stability and output handling capability. This device offers an enhancement to the ZXRE060 part for use in a comparator mode applications.


In shunt regulator mode, the ZXRE160 simplifies the design of isolated low voltage DC-DC regulators. With its low 0.6V FB pin, it can control the regulation of rails as low 0.6V. This makes the part ideal for state of the art microprocessor, DSP and PLD core voltage POL converters.


The device open-collector output can operate from 0.2V to 18V and regulated output voltage can be set by selection of two external divider resistors. Separating the input from the open collector output enables the ZXRE160 to be used to make low-cost low drop-out regulators operating at low input voltages.

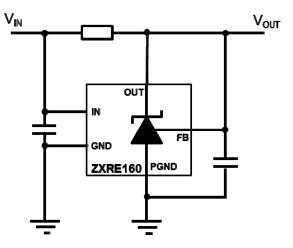
The ZXRE160 is available in two grades with initial tolerances of 0.5% and 1% for the A and standard grades respectively. It is available in space saving low profile 5 pin SC70/SOT353, thin TSOT25 and very small DFN1520 packages.

Features

- Low reference voltage ($V_{FB} = 0.6V$)
- -40°C to +125°C temperature range
- Reference voltage tolerance at +25°C
- 0.5% ZXRE160A
- 1% ZXRE160
- Typical temperature drift
- <4 mV (0°C to +70°C)
- <6 mV (-40°C to +85°C)
- <12mV (-40°C to +125°C)
- 0.2V to 18V open-collector output
- High power supply rejection
- (>45dB at 300kHz)
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

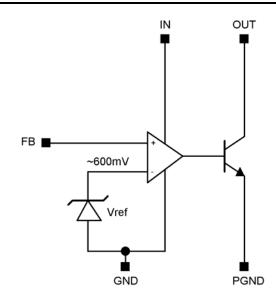
connect to GND

Applications


- Isolated DC-DC converters
- Core voltage POL
- Low Voltage Low-Dropout linear regulators
- Shunt regulators
- Adjustable voltage reference

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. Notes:
 - 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 - 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Applications Circuit


Pin Descriptions

Pin Name Pin Number					
	SC70/ SOT353, TSOT25	X2-DFN1520-6	Function		
PGND	1	1	Power Ground: Ground return for emitter of output transistor: Connect PGND and GND together.		
_	—	2	No connection		
OUT	5	3	Output: Connect a capacitor close to device between OUT and GND for closed loop stability. See the <i>Applications Information</i> section.		
FB	4	4	Feedback Input. Threshold voltage 600mV nominal.		
GND	2	5	Analog Ground: Ground return for reference and amplifier: Connect GND and PGND together.		
IN	3	6	Supply Input: Connect a 0.1µF ceramic capacitor close to the device from IN to GND.		
_	_	Flag	Floating or connect to GND		

Functional Block Diagram

The ZXRE160 differs from most other shunt regulators in that it has separate input and output pins and a low voltage reference. This enables it to regulate rails down to 600mV and makes the part ideal for isolated power supply applications that use opto-couplers in the feedback loop and where the open-collector output is required to operate down to voltages as low as 200mV.

The wide input voltage range of 2V to 18V and output voltage range of 0.2V to 18V enables the ZXRE160 to be powered from an auxiliary rail, while controlling a master rail which is above the

auxiliary rail voltage, or below the minimum $V_{\rm IN}$ voltage. This allows it to operate as a low-dropout voltage regulator for microprocessor/DSP/PLD cores.

As with other shunt regulators (and shunt references), the ZXRE160 compares its internal amplifier FB pin to a high accuracy internal reference; if FB is below the reference then OUT turns off, but if FB is above the reference then OUT sinks current – up to a maximum of 15mA.

Absolute Maximum Ratings (Voltages to GND, @TA = +25°C, unless otherwise specified.)

Symbol	Parameter	Rating	Unit
VIN	IN Voltage relative to GND	20	V
Vout	OUT Voltage relative to GND	20	V
V _{FB}	FB Voltage relative to GND	20	V
PGND	PGND Voltage relative to GND	-0.3 to +0.3	V
lout	OUT Pin Current	20	mA
TJ	Operating Junction Temperature	-40 to 150	°C
T _{ST}	Storage Temperature	55 to 150	°C

These are stress ratings only. Operation outside the absolute maximum ratings may cause device failure. Operation at the absolute maximum rating for extended periods may reduce device reliability.

Semiconductor devices are ESD sensitive and may be damaged by exposure to ESD events. Suitable ESD precautions should be taken when handling and transporting these devices.

Package Thermal Data

Package	θ _{JA}	P _{DIS} T _A = 25°C, T _J = 150°C
SC70/SOT353	400°C/W	310mW
TSOT25	250°C/W	500mW
X2-DFN1520-6	TBD	TBD

Recommended Operating Conditions (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Min	Max	Units
VIN	IN Voltage Range (0 to +125°C)	2	18	
VIN	IN Voltage Range (-40°C to 0°C)	2.2	18	V
Vout	OUT Voltage Range	0.2	18	
I _{OUT}	OUT Pin Current	0.3	15	mA
T _A	Operating Ambient Temperature Range	-40	+125	°C

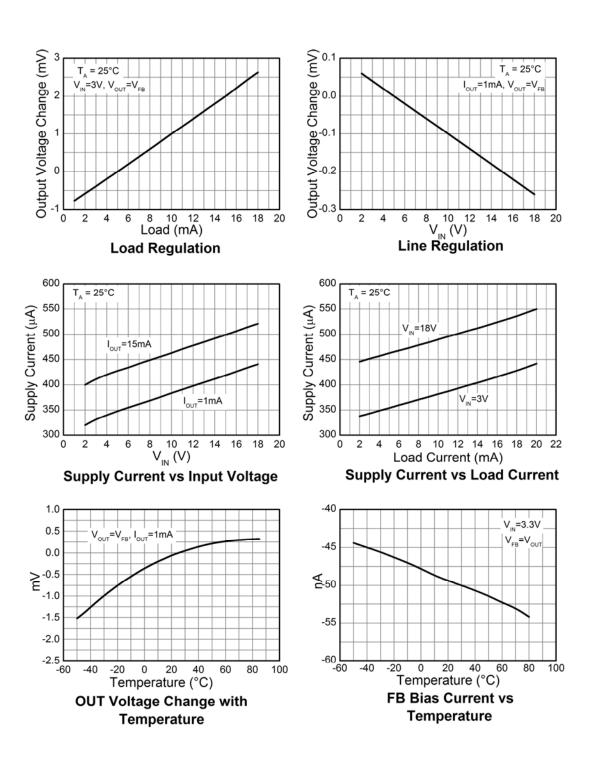
Electrical Characteristics (@T_A = +25°C, V_{DD} = 3V, unless otherwise specified.)

 $T_A = +25^{\circ}C$, $V_{IN} = 3.3V$, $V_{OUT} = V_{FB}$, $I_{OUT} = 5mA$, unless otherwise specified.) (Note 4)

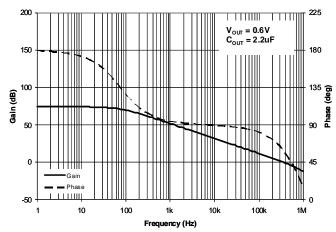
Symbol	Parameter		Conditions		Min	Тур	Max	Units
				ZXRE160A	0.597	0.6	0.603	
				ZXRE160	0.594	0.6	0.606	
		$T_{A} = 0^{\circ}C + 25^{\circ}C$	T. 0°C to 195°C		0.595		0.605	ļ
		$T_A = 0^{\circ}C \text{ to } +85^{\circ}C$		ZXRE160	0.592		0.608	
V_{FB}	Feedback voltage	T _A = -40°C to +85°	°C	ZXRE160A	0.594		0.606	V
		14 - 40 0 10 103	0	ZXRE160	0.591		0.609	
		T _A = -40°C to +125	5°C	ZXRE160A	0.593		0.607	
		14 - 40 0 10 1120		ZXRE160	0.590		0.610	
FB _{LOAD}	Feedback pin load	$I_{OUT} = 1$ to 15mA				3.8	6	mV
1 DLOAD	regulation			T _A = -40 to +125°C			10	
FB _{LINE}	Feedback pin line	V _{IN} = 2V to 18V				0.3	1	mV
	regulation	V _{IN} = 2.2V to 18V		T _A = -40 to +125°C			1.5	mv
	Output voltage	$V_{OUT} = 0.2V$ to 18V	<i>ι</i> ,				1	
FB _{OVR} regulation		I _{OUT} = 1mA (Ref. Figure 1)		T _A = -40 to +125°C			1.5	mV
						-45		nA
I _{FB}	FB input bias current	V _{IN} = 18V	T _A = -40 to +125°C	-200		0		
				V _{FB} = 0.7V	-50		50	
		$V_{IN} = 2V$ to $18V$				0.35	0.7	m (
		V _{IN} = 2.2V to 18V	I _{OUT} = 0.3mA	T _A = -40 to +125°C			1	mA
I _{IN}	Input current	V _{IN} = 2V to 18V	I _{OUT} = 10mA			0.48	1	
		V _{IN} = 2.2V to 18V		T _A = -40 to +125°C			1.5	mA
		$V_{IN} = 18V, I_{OUT} = 0$.3mA	V _{FB} = 0.7V			3	
		V _{IN} = 18V,					0.1	,
I _{OUT(LK)}	OUT leakage current	DUT leakage current V _{OUT} = 18V, V _{FB} =0V		T _A = +125°C			1	μA
_	Dynamic Output	$I_{OUT} = 1$ to 15mA				0.25	0.4	
Z _{OUT}	Impedance	f < 1kHz		T _A = -40 to +125°C			0.6	Ω
PSRR	Power supply rejection ratio	F = 300kHz V _{AC} = 0.3V _{PP}				>45		dB
BW	Amplifier Unity Gain Frequency	Ref: Figure 2		1		600		kHz
G	Amplifier Transconductance					5000		mA/V

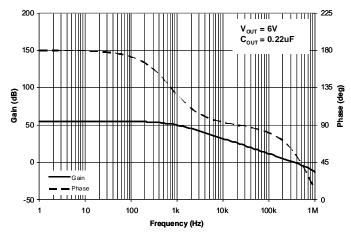
Note:

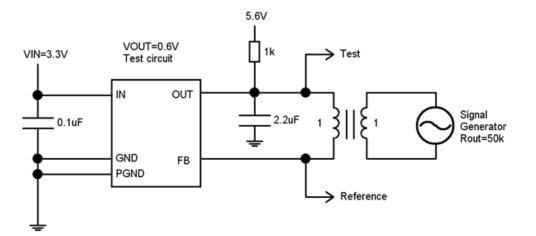
4. Production testing of the device is performed at +25°C. Functional operation of the device and parameters specified over the operating temperature range are guaranteed by design, characterization and process control.



Typical Characteristics

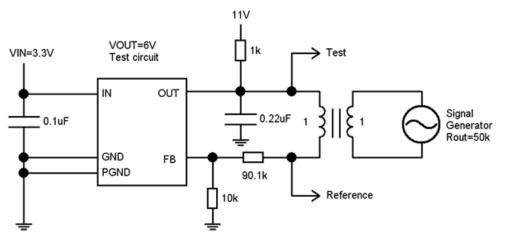

NEW PRODUCT

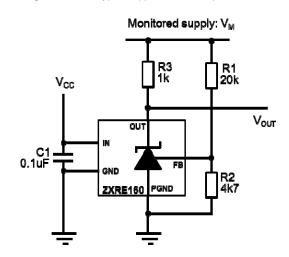



Typical Operating Characteristics

Gain and Phase vs Frequency, V_{OUT} =0.6V

Gain and Phase vs Frequency, V_{OUT} =6V




Figure 2. Test Circuits for Gain and Phase Plots

Application Information

The following show some typical application examples for the ZXRE160.

Figure 3. 15V Supply Monitor

Figure 3 shows a typical configuration for the ZXRE160 in comparator mode.

Here the comparator switches low when:

$$V_{M} \geq \frac{V_{FB}(R_{1} + R_{2})}{R_{2}}$$

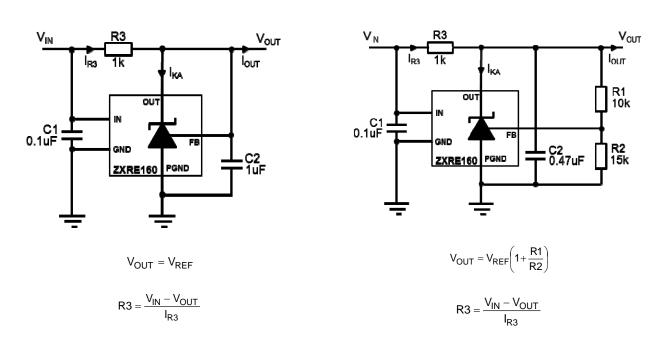
Alternative values of R1, R2 may be used to provide different threshold voltages. R3 can also be adjusted to set the bias current for different values of V_M . R2 should be kept as low as possible to minimize errors due to the bias current of the FB pin.

This circuit has no hysteresis, so a small capacitor of approx.4.7nF between FB and GND is recommended to provide cleaner transitions at the output.

In shunt regulator mode it is necessary to include the compensation capacitor C2 to guarantee stability. C2 may range in value from 0.1μ F to 10μ F depending on the application. The minimum value of C2 can be determined from the following equation (resistor values are in k Ω):

$$C2_{MIN} \ge \frac{R_2}{R_3(R_1 + R_2)} \mu F$$

Both C1 and C2 should be as close to the ZXRE160 as possible and connected to it with the shortest possible track. In the case of Figure 10 and Figure 11, it means the opto-coupler will have to be carefully positioned to enable this.



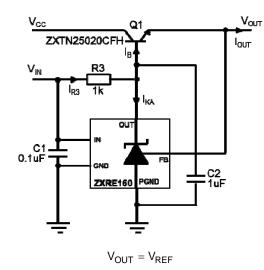

Figure 4. 0.6V Shunt Regulator

Figure 5. 1.0V Shunt Regulator

Application Information (cont.)

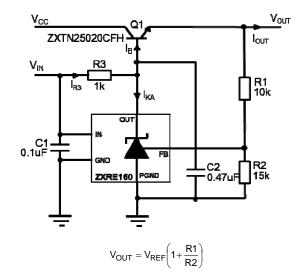
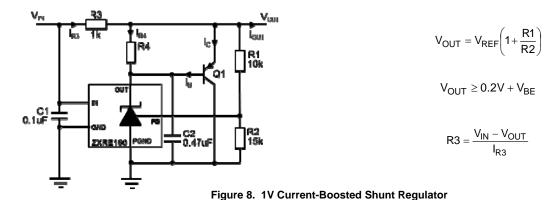


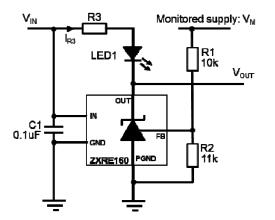
Figure 6. 0.6V Series LDO Regulator

Figure 7. 1.0V Series LDO Regulator

Design guide:

- 1. Determine I_{OUT} and choose a suitable transistor taking power dissipation into consideration.
- 2. Determine I_B from I_B = $\frac{I_{OUT(max)}}{(h_{FE(min)} + 1)}$
- 3. Determine I_{R3} from $I_{R3} \ge I_B + I_{KA(min)}$. The design of the ZXRE160 effectively means there is no $I_{KA(min)}$ limitation as in conventional references. There is only an output leakage current which is a maximum of 1µA. Nevertheless, it is necessary to determine an $I_{KA(min)}$ to ensure that the device operates within its linear range at all times. $I_{KA(min)} \ge 10\mu$ A should be adequate for this.
- 4. Determine R3 from $R3 = \frac{V_{IN} (V_{OUT} + V_{BE})}{I_{R3}}$.


Although unlikely to be a problem, ensure that $I_{R3} \le 15$ mA.


Application Information (cont.)

Design guide

- 1. Determine I_{OUT} and choose a suitable transistor taking power dissipation into consideration.
- 2. Determine I_B from I_B = $\frac{I_{OUT(max)}}{(h_{FE(min)} + 1)}$
- 3. Determine I_{R3} from $I_{R3} = I_{OUT(max)}$
- 4. Determine R3 from R3 = $\frac{V_{IN} V_{OUT}}{I_{R3}}$
- It is best to let the ZXRE160 supply as much current as it can before bringing Q1 into conduction. Not only does this minimize the strain on Q1, it also guarantees the most stable operation. Choose a nominal value between 10mA and <15mA for this current, I_{R4}.

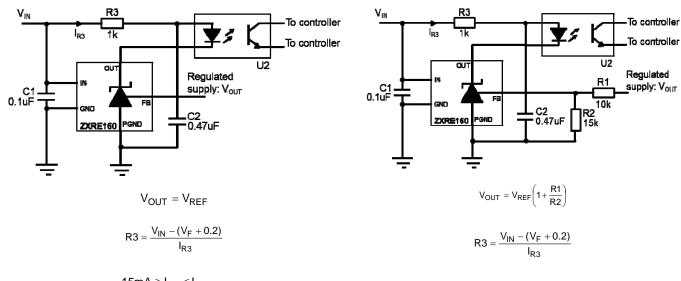
Calculate R4 from R4 = $\frac{V_{BE}}{I_{R4}}$


VOUT goes low and LED is lit when monitored supply

$$V_{M} > V_{REF} \left(1 + \frac{R1}{R2} \right)$$

$$R3 = \frac{V_{IN} - (V_F + 0.2)}{I_{R3}}$$

 $15mA \ge I_{R3} \le I_{F(MAX)}$


V_F and I_F are forward voltage drop and current of LED1.

Application Information (cont.)

 $15mA \geq I_{R3} \leq I_{F(MAX)}$

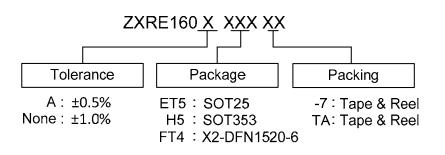
Figure 10. Opto-Isolated 0.6V Shunt Regulator

 $15mA \geq I_{R3} \leq I_{F(MAX)}$

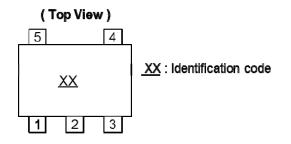
Figure 11. Opto-Isolated 1.0V Shunt Regulator

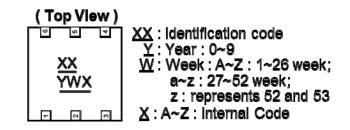
VF and IF are forward voltage drop and forward current respectively for the optocoupler LED

More applications information is available in the following publications which can be found on Diodes' web site.


AN58 - Designing with Diodes' References – Shunt Regulation
AN59 - Designing with Diodes' References – Series Regulation
AN60 - Designing with Diodes' References – Fixed Regulators and Opto-Isolation
AN61 - Designing with Diodes' References – Extending the operating voltage range
AN62 - Designing with Diodes' References – Other Applications
AN63 - Designing with Diodes' References – ZXRE060 Low Voltage Regulator

Ordering Information

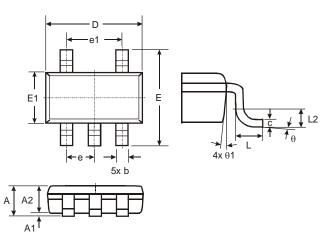

NEW PRODUCT

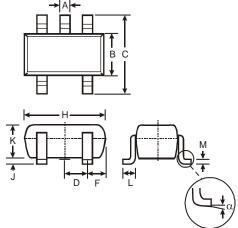

	Tol.	Part Number	Package	Identification Code	Reel Size	Tape Width	Quantity/Reel
		ZXRE160AET5TA	TSOT25	R8	7", 180mm	8mm	3000
Pb,	0.5%	ZXRE160AH5TA	SC70/SOT353	R9	7", 180mm	8mm	3000
Cead-free Green		ZXRE160AFT4-7	DFN1520H4-6	R8	7", 180mm	8mm	3000
		ZXRE160ET5TA	TSOT25	Z8	7", 180mm	8mm	3000
Pb,	1%	ZXRE160H5TA	SC70/SOT353	Z9	7", 180mm	8mm	3000
		ZXRE160FT4-7	X2-DFN1520-6	Z8	7", 180mm	8mm	3000

Marking Information

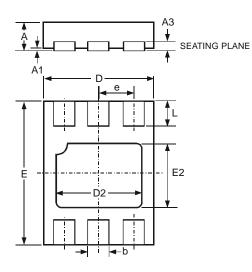
1. TSOT25, SC70/SOT353

2. X2-DFN1520-6




Package Outline Dimensions (All dimensions in mm.)

TSOT25



TSOT25					
Dim	Min	Max	Тур		
Α	-	1.00	-		
A1	0.01	0.10	-		
A2	0.84	0.90	-		
D	-	1	2.90		
Е	_	-	2.80		
E1	_	-	1.60		
b	0.30	0.45	_		
С	0.12	0.20	-		
е	-	-	0.95		
e1	-	-	1.90		
L	0.30	0.50			
L2	_	-	0.25		
θ	0°	8°	4°		
θ1	4°	12°	_		
All D	imensi	ons in	mm		

SC70/SOT353

X2-DFN1520-6

Α	0.10	0.30		
В	1.15	1.35		
С	2.00	2.20		
D	0.65 Typ			
F	0.40	0.45		
н	1.80	2.20		
J	0	0.10		
κ	0.90	1.00		
L	0.25	0.40		
М	0.10	0.22		
α	0°	8°		
All Dimensions in mm				

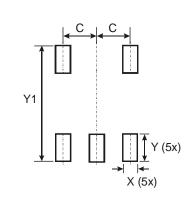
SOT353

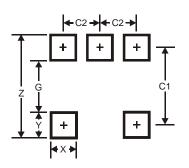
Min

Max

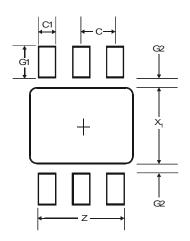
Dim

)	X2-DFN1520-6						
Dim	Min	Max	Тур				
Α	1	0.40	-				
A1	0	0.05	-				
A3	1	-	0.13				
b	0.20	0.30	-				
D	1.45	1.575	-				
D2	1.00	1.20	-				
е	I	-	0.50				
Е	1.95	2.075	-				
E2	0.70	0.90	-				
L	0.25	0.35	_				
All D	imens	ions ir	n mm				




Suggested Pad Layout

TSOT25


Dimensions	Value (in mm)
С	0.950
х	0.700
Y	1.000
Y1	3.199

SC70/SOT353

Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Y	0.6
C1	1.9
C2	0.65

X2-DFN1520-6

Dimensions	Value (in mm)
Z	1.25
G1	0.45
G2	0.15
X1	1.10
C	0.50
C1	0.25

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2012, Diodes Incorporated

www.diodes.com

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9