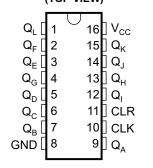
SN74LV4040A-EP 12 BIT ASYNCHRONOUS BINARY COUNTERS


SGDS030-SEPTEMBER 2007

FEATURES

- Controlled Baseline
 - One Assembly
 - Test Site
 - One Fabrication Site
- Extended Temperature Performance of -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- 2-V to 5.5-V V_{CC} Operation
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Voltage Operation on All Ports
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- Individual Switch Controls
- Extremely Low Input Current
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

SN74LV4040A . . . PW PACKAGE (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

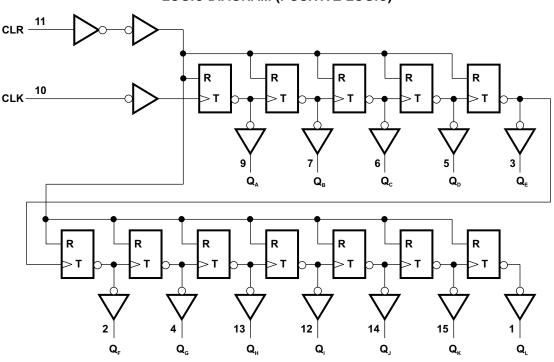
The SN74LV4040A device is a 12 bit asynchronous binary counter with the outputs of all stages available externally. A high level at the clear (CLR) input asynchronously clears the counter and resets all outputs low. The count is advanced on a high-to-low transition at the clock (CLK) input. Applications include time-delay circuits, counter controls, and frequency-dividing circuits.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

ORDERING INFORMATION(1)

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	TSSOP – PW	Reel of 2000	SN74LV4040AMPWREP	LW040A

- For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
 website at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE (each buffer)

INP	UTS	FUNCTION
CLK	CLR	
1	L	No change
↓	L	Advance to next stage
X	Н	All outputs L

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	7	V
VI	Input voltage range (2)		-0.5	7	V
Vo	Voltage range applied to any output in the high	Voltage range applied to any output in the high-impedance or power-off state (2)			V
Vo	Output voltage range (2)(3)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-20	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V_{CC} or GND			±50	mA
θ_{JA}	Package thermal impedance (4)			108	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 5.5 V maximum.

⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
V	Lligh level input voltage	$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$	V _{CC} × 0.7		V
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	V _{CC} × 0.7		V
		$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$	$V_{CC} \times 0.7$		
		V _{CC} = 2 V		0.5	
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$		$V_{CC}\times 0.3$	V
۷IL	Low-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		$V_{\text{CC}} \times 0.3$	V
		$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$		$V_{\text{CC}}\times 0.3$	
V_{I}	Input voltage		0	5.5	V
V_O	Output voltage		0	V _{CC}	V
		$V_{CC} = 2 V$		-50	
	High-level output current	$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$		-2	mA
I _{OH}	riigii-ievei output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-6	ША
		$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$		-12	
		$V_{CC} = 2 V$		50	μΑ
1	Low-level output current	$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$		2	
l _{OL}	Low-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		6	mA
		$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$		12	
		$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$		200	
$\Delta t/\Delta v$	Input transition rise or fall rate	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		100	ns/V
		$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$		20	
T _A	Operating free-air temperature		-55	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	$I_{OH} = -50 \mu A$	2 V to 5.5 V	V _{CC} - 0.1			
V	$I_{OH} = -2 \text{ mA}$	2.3 V	2			V
V _{OH}	$I_{OH} = -6 \text{ mA}$	3 V	2.48			V
	I _{OH} = -12 mA	4.5 V	3.8			
	I _{OL} = 50 μA	2 V to 5.5 V			0.1	V
V	I _{OL} = 2 mA	2.3 V			0.4	
V _{OL}	I _{OL} = 6 mA	3 V			0.44	V
	I _{OL} = 12 mA	4.5 V			0.55	
I _I	V _I = 5.5 V or GND	0 to 5.5 V			±1	μA
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			20	μΑ
I _{off}	V_I or $V_O = 0$ to 5.5 V	0			5	μA
C _i	V _I = V _{CC} or GND	3.3 V		1.9		рF

SN74LV4040A-EP 12 BIT ASYNCHRONOUS BINARY COUNTERS

Timing Requirements

over recommended operating free-air temperature range, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted) (see Figure 1)

			T _A = 25°C MIN MAX		MIN MAX		UNIT	
					IVIIIV	IVIAA	UNIT	
t Dules direction	CLK high or low	7		7		20		
ı _w	t _w Pulse duration	CLR high	6.5		6.5		ns	
t _{su}	Setup time	CLR inactive before CLK↓	6.5		6.5		ns	

Timing Requirements

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)

			T _A = 25°C MIN MAX		MINI	MAX	UNIT	
					MIN	WAX	UNII	
	Dulas duration	CLK high or low	5		5		ns	
ι _w	t _w Pulse duration	CLR high	5		5			
t _{su}	Setup time	CLR inactive before CLK↓	5		5		ns	

Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 25°C		T _A = 25°C MIN M			
			MIN	MAX	IVIIIN	MAX	UNIT	
Date describes	Dulas duration	CLK high or low	5		5		ns	
ı _w	t _w Pulse duration	CLR high	5		5			
t _{su}	Setup time	CLR inactive before CLK↓	5		5		ns	

Switching Characteristics

over recommended operating free-air temperature range, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT
PARAMETER				MIN	TYP	MAX	IVIIIN	WIAA	UNIT
f _{max}			$C_L = 50 pF$	40	95		35		MHz
t _{PLH}	CLK	Q _A	C _L = 50 pF		10.5	24.1	1	28	ns
t _{PHL}					10.5	24.1	1	28	115
t _{PHL}	CLR	Any Q	C _L = 50 pF		11.7	24.5	1	28	ns
Δt_{pd}	Q_n	Q _{n+1}	$C_L = 50 pF$		1.7	11.1		10.8	ns

SN74LV4040A-EP 12 BIT ASYNCHRONOUS BINARY COUNTERS

SGDS030-SEPTEMBER 2007

Switching Characteristics

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT
PARAMETER				MIN	TYP	MAX	IVIIIN	WAA	UNIT
f _{max}			C _L = 50 pF	55	130		50		MHz
t _{PLH}	CLK	0	C _L = 50 pF		7.5	15.4	1	17.5	
t _{PHL}	CLK	Q_A	CL = 50 pr		7.5	15.4	1	17.5	ns
t _{PHL}	CLR	Any Q	$C_L = 50 pF$		9	16.3	1	18.5	ns
Δt_{pd}	Q _n	Q _{n+1}	$C_L = 50 pF$		1.2	5.4		6.6	ns

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

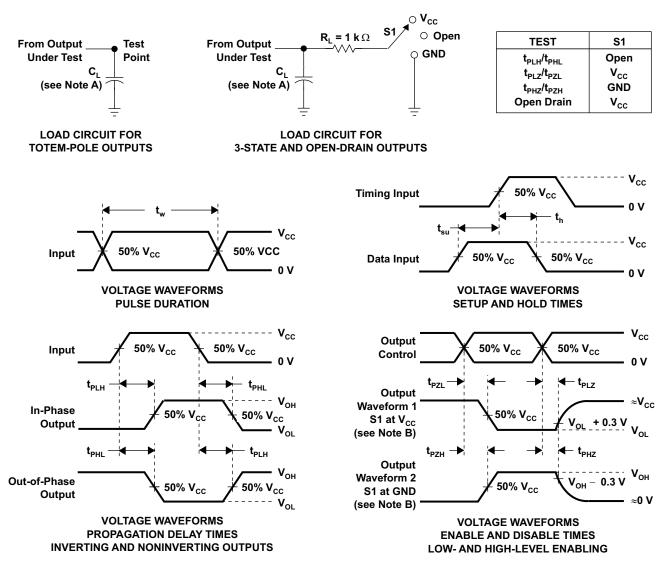
PARAMETER	FROM	TO (OUTPUT)	LOAD CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT
PARAMETER	(INPUT)			MIN	TYP	MAX	IVIIIN	WAA	ONIT
f _{max}			$C_L = 50 pF$	95	185		80		MHz
t _{PLH}	CLK	Q_{A}	Q_A $C_L = 50 \text{ pF}$		5.3	9.3	1	10.5	20
t _{PHL}					5.3	9.3	1	10.5	ns
t _{PHL}	CLR	Any Q	C _L = 50 pF		6.8	10.6	1	12	ns
Δt_{pd}	Q _n	Q _{n+1}	C _L = 50 pF		0.8	4.0		5.5	ns

Noise Characteristics

 $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}^{-(1)}$

	PARAMETER	MIN	TYP	MAX	UNIT
$V_{OL(P)}$	Quiet output, maximum dynamic V _{OL}		0.5	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.5	-0.8	V
$V_{IH(D)}$	High-level dynamic input voltage	2.31			V
V _{IL(D)}	Low-level dynamic input voltage			0.99	V

⁽¹⁾ Characteristics are for surface-mount packages only.


Operating Characteristics

 $T_A = 25^{\circ}C$

PARAMETER		TEST C	ONDITIONS	V _{CC}	TYP	UNIT
0	Down discinction conscitones	C	f 10 MH=	3.3 V	11.9	~ ا
C_{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF},$	f = 10 MHz	5 V	13.1	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 Mhz, Z_O = 50 Ω , $t_r \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

ti.com 18-Sep-2008

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins P	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74LV4040AMPWREP	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
V62/07630-01XE	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in

a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

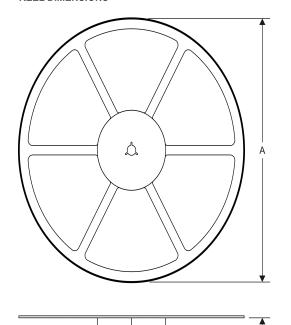
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

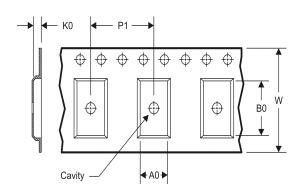
OTHER QUALIFIED VERSIONS OF SN74LV4040A-EP:

Catalog: SN74LV4040A

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

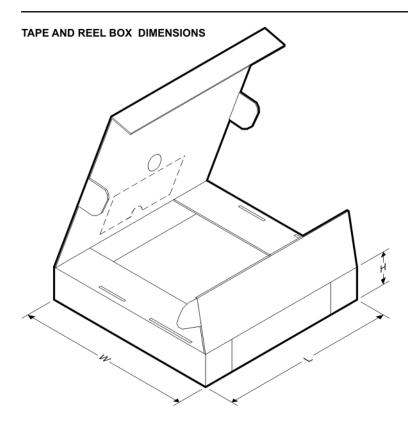

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

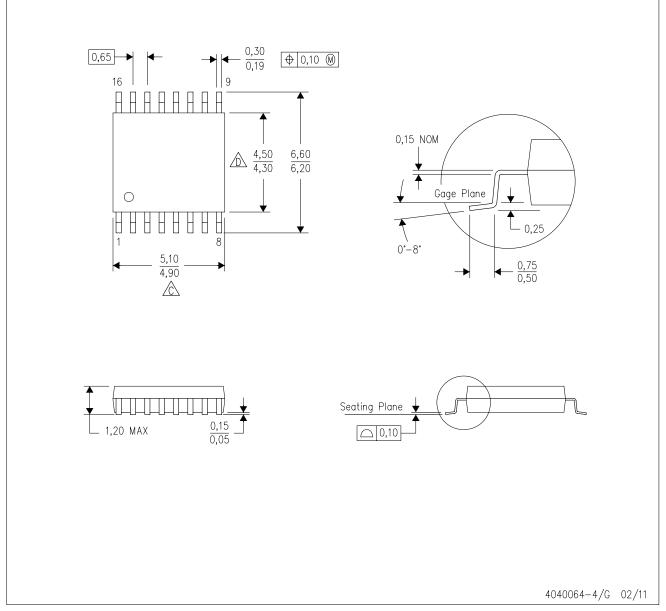

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV4040AMPWREP	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

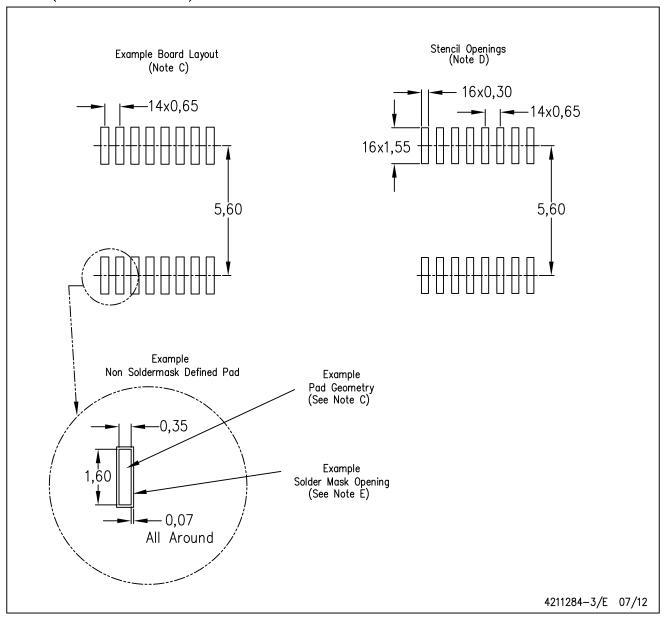


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV4040AMPWREP	TSSOP	PW	16	2000	367.0	367.0	35.0

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti com/ou dio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9