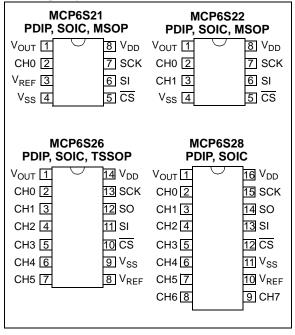


MCP6S21/2/6/8

Single-Ended, Rail-to-Rail I/O, Low Gain PGA

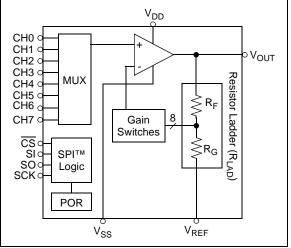

Features

- Multiplexed Inputs: 1, 2, 6 or 8 channels
- 8 Gain Selections:
- +1, +2, +4, +5, +8, +10, +16 or +32 V/V
- Serial Peripheral Interface (SPI)
- Rail-to-Rail Input and Output
- Low Gain Error: ±1% (max)
- Low Offset: ±275 μV (max)
- High Bandwidth: 2 to 12 MHz (typ)
- Low Noise: 10 nV/√Hz @ 10 kHz (typ)
- Low Supply Current: 1.0 mA (typ)
- Single Supply: 2.5V to 5.5V

Typical Applications

- A/D Converter Driver
- Multiplexed Analog Applications
- Data Acquisition
- Industrial Instrumentation
- Test Equipment
- Medical Instrumentation

Package Types



Description

The Microchip Technology Inc. MCP6S21/2/6/8 are analog Programmable Gain Amplifiers (PGA). They can be configured for gains from +1 V/V to +32 V/V and the input multiplexer can select one of up to eight channels through an SPI port. The serial interface can also put the PGA into shutdown to conserve power. These PGAs are optimized for high speed, low offset voltage and single-supply operation with rail-to-rail input and output capability. These specifications support single supply applications needing flexible performance or multiple inputs.

The one channel MCP6S21 and the two channel MCP6S22 are available in 8-pin PDIP, SOIC and MSOP packages. The six channel MCP6S26 is available in 14-pin PDIP, SOIC and TSSOP packages. The eight channel MCP6S28 is available in 16-pin PDIP and SOIC packages. All parts are fully specified from -40°C to +85°C.

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} - V _{SS}	7.0V
All inputs and outputs	$V_{\rm SS}$ - 0.3V to V _{DD} +0.3V
Difference Input voltage	V _{DD} - V _{SS}
Output Short Circuit Current	continuous
Current at Input Pin	±2 mA
Current at Output and Supply Pins	±30 mA
Storage temperature	65°C to +150°C
Junction temperature	+150°C
ESD protection on all pins (HBM;MM))≥ 2 kV; 200V

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

Name	Function						
V _{OUT}	Analog Output						
CH0-CH7	Analog Inputs						
V _{SS}	Negative Power Supply						
V _{DD}	Positive Power Supply						
SCK	SPI Clock Input						
SI	SPI Serial Data Input						
SO	SPI Serial Data Output						
CS	SPI Chip Select						
V _{REF}	External Reference Pin						

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.5V$ to +5.5V, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, SI and SCK are tied low and \overline{CS} is tied high.

Parameter	Parameters		Min	Тур	Max	Units	Conditions
Amplifier Input							
Input Offset Voltage		V _{OS}	-275	_	+275	μV	G = +1, V _{DD} = 4.0V
Input Offset Voltage	Drift	$\Delta V_{OS} / \Delta T_A$	—	±4	_	µV/°C	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$
Power Supply Reject	ion Ratio	PSRR	70	85	_	dB	G = +1 (Note 1)
Input Bias Current		ا _B	—	±1	_	pА	$CHx = V_{DD}/2$
Input Bias Current ov Temperature	rer	Ι _Β	—	—	250	pА	$T_A = -40 \text{ to } +85^{\circ}\text{C},$ CHx = V _{DD} /2
Input Impedance		Z _{IN}	—	10 ¹³ 15	_	Ω pF	
Input Voltage Range		V _{IVR}	V _{SS} -0.3	_	V _{DD} +0.3	V	
Amplifier Gain							
Nominal Gains		_	—	1 to 32	_	V/V	+1, +2, +4, +5, +8, +10, +16 or +32
DC Gain Error	G = +1	9 _E	-0.1	_	+0.1	%	$V_{OUT} \approx 0.3V$ to $V_{DD} - 0.3V$
	$G \ge +2$	9 _E	-1.0	_	+1.0	%	$V_{OUT} \approx 0.3V$ to $V_{DD} - 0.3V$
DC Gain Drift	G = +1	$\Delta G / \Delta T_A$	—	±0.0002	_	%/°C	$T_A = -40 \text{ to } +85^{\circ}\text{C}$
	$G \geq \text{+}2$	$\Delta G / \Delta T_A$	—	±0.0004	—	%/°C	T _A = -40 to +85°C
Internal Resistance		R _{LAD}	3.4	4.9	6.4	kΩ	(Note 1)
Internal Resistance o Temperature	ver	$\Delta R_{LAD} / \Delta T_A$	—	+0.028	_	%/°C	(Note 1) T _A = -40 to +85°C
Amplifier Output			1				
DC Output Non-linea	•	V _{ONL}	—	±0.003	—	% of FSR	001 00 00
	G ≥ +2	V _{ONL} V _{OH} , V _{OL}	—	±0.001	—		$V_{OUT} = 0.3V$ to $V_{DD} - 0.3V$, $V_{DD} = 5.0V$
Maximum Output Vol	Maximum Output Voltage Swing		V _{SS} +20	_	V _{DD} -100	mV	$G \ge +2$; 0.5V output overdrive
			V _{SS} +60	—	V _{DD} -60		$G \ge +2$; 0.5V output overdrive, V _{REF} = V _{DD} /2
Short-Circuit Current		I _{O(SC)}	—	±30	_	mA	

Note 1: R_{LAD} ($R_F + R_G$ in Figure 4-1) connects V_{REF} , V_{OUT} and the inverting input of the internal amplifier. The MCP6S22 has V_{REF} tied internally to V_{SS} , so V_{SS} is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. We recommend the MCP6S22's V_{SS} pin be tied directly to ground to avoid noise problems.

2: I_Q includes current in R_{LAD} (typically 60 μ A at $V_{OUT} = 0.3V$). Both I_Q and I_{Q_SHDN} exclude digital switching currents.

3: The output goes Hi-Z and the registers reset to their defaults; see Section 5.4, "Power-On Reset".

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.5V$ to $+5.5V$, $V_{SS} = GND$, $V_{REF} = V_{SS}$, $G = +1 V/V$, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, SI and SCK are tied low and CS is tied high.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Power Supply								
Supply Voltage	V _{DD}	2.5	_	5.5	V			
Quiescent Current	Ι _Q	0.5	1.0	1.35	mA	I _O = 0 (Note 2)		
Quiescent Current, Shutdown mode	I _{Q_SHDN}	_	0.5	1.0	μA	I _O = 0 (Note 2)		
Power-On Reset								
POR Trip Voltage	V _{POR}	1.2	1.7	2.2	V	(Note 3)		
POR Trip Voltage Drift	$\Delta V_{POR} / \Delta T$	_	-3.0	_	mV/°C	$T_A = -40^{\circ}C \text{ to}+85^{\circ}C$		

Note 1: R_{LAD} ($R_F + R_G$ in Figure 4-1) connects V_{REF} , V_{OUT} and the inverting input of the internal amplifier. The MCP6S22 has V_{REF} tied internally to V_{SS} , so V_{SS} is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. We recommend the MCP6S22's V_{SS} pin be tied directly to ground to avoid noise problems.

2: I_Q includes current in R_{LAD} (typically 60 μ A at $V_{OUT} = 0.3V$). Both I_Q and I_{Q_SHDN} exclude digital switching currents.

3: The output goes Hi-Z and the registers reset to their defaults; see Section 5.4, "Power-On Reset".

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.5V$ to +5.5V, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7=0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, $C_L = 60 \text{ pF}$, SI and SCK are tied low, and CS is tied high.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Frequency Response						
-3 dB Bandwidth	BW		2 to 12		MHz	All gains; V _{OUT} < 100 mV _{P-P} (Note 1)
Gain Peaking	GPK	_	0		dB	All gains; V _{OUT} < 100 mV _{P-P}
Total Harmonic Distortion plus Nois	se					
f = 1 kHz, G = +1 V/V	THD+N	—	0.0015	—	%	$V_{OUT} = 1.5V \pm 1.0V_{PK}$, $V_{DD} = 5.0V$, BW = 22 kHz
f = 1 kHz, G = +4 V/V	THD+N	_	0.0058	—	%	$V_{OUT} = 1.5V \pm 1.0V_{PK}$, $V_{DD} = 5.0V$, BW = 22 kHz
f = 1 kHz, G = +16 V/V	THD+N		0.023	—	%	$V_{OUT} = 1.5V \pm 1.0V_{PK}, V_{DD} = 5.0V,$ BW = 22 kHz
f = 20 kHz, G = +1 V/V	THD+N		0.0035	—	%	$V_{OUT} = 1.5V \pm 1.0V_{PK}, V_{DD} = 5.0V,$ BW = 80 kHz
f = 20 kHz, G = +4 V/V	THD+N		0.0093	—	%	V _{OUT} = 1.5V ± 1.0V _{PK} , V _{DD} = 5.0V, BW = 80 kHz
f = 20 kHz, G = +16 V/V	THD+N		0.036	—	%	V _{OUT} = 1.5V ± 1.0V _{PK} , V _{DD} = 5.0V, BW = 80 kHz
Step Response			•			
Slew Rate	SR	_	4.0		V/µs	G = 1, 2
		—	11	—	V/µs	G = 4, 5, 8, 10
		—	22	—	V/µs	G = 16, 32
Noise						
Input Noise Voltage	E _{ni}	—	3.2	_	μV _{P-P}	f = 0.1 Hz to 10 kHz (Note 2)
		—	26	—		f = 0.1 Hz to 200 kHz (Note 2)
Input Noise Voltage Density	e _{ni}	_	10	—	nV/√Hz	f = 10 kHz (Note 2)
Input Noise Current Density	i _{ni}	—	4	—	fA/√Hz	f = 10 kHz

Note 1: See Table 4-1 for a list of typical numbers.

2: E_{ni} and e_{ni} include ladder resistance noise. See Figure 2-33 for e_{ni} vs. G data.

DIGITAL CHARACTERISTICS

SintCH to CHy select $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% pointGain Select Time t_G $ 1$ $ \mu s$ $\frac{CHx}{CS} = 0.7V_{DD}$ to V_{OUT} 90% pointShutdown Mode Timing $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% point $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% pointOut of Shutdown mode (\overline{CS} goes high) to Amplifier Output Turn-on Time t_{ON} $ 3.5$ 10 μs $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% pointInto Shutdown mode (\overline{CS} goes high) to Amplifier Output High-Z Turn-off t_{OFF} $ 1.5$ $ \mu s$ $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% pointPOR Timing V_{OFF} $ V_{OFF}$ $ V_{OT}$ V_{OUT} V_{OUT}	Parameters	Sym	Min	Тур	Max	Units	Conditions	
InstructureIntIntIntIntIntLogic Threshold, High V_{H} $0.7V_{DD}$ $ V_{DD}$ V Amplifier Output Leakage Current $ -1.0$ $ +1.0$ μA In Shutdown modeSPI Output (SO, for MCP6S26 and MCP6S28)Logic Threshold, Low V_{OL} V_{SS} $ V_{SS}+0.4$ V $I_{OL}=2.1 mA, V_{DD}=5V$ Logic Threshold, Low V_{OL} V_{SS} $ V_{SS}+0.4$ V $I_{OL}=2.1 mA, V_{DD}=5V$ Logic Threshold, Low V_{OL} V_{SS} $ V_{SS}+0.4$ V $I_{OL}=2.1 mA, V_{DD}=5V$ Logic Threshold, Low V_{OL} V_{SS} $ V_{SD}+0.4$ V $I_{OL}=-4.00 \ \mu A$ SPI Timing T $ T$ T T T T Input Rise/Fall Times (CS, SI, SCK) t_{RFI} $ 2$ μS Note 1Output Rise/Fall Times (CS) t_{RFO} $ T$ R Note 1Output Rise/Fall Times (CS) t_{RFO} $ R$ R R SCK edge to CS fail setup time t_{CSH} 40 $ R$ R SCK log to first SCK edge setup time t_{CSH} 40 $ R$ SCK last edge to \overline{CS} rise setup time t_{LO} 40 $ R$ SCK last edge to \overline{CS} rise setup time t_{CS1} 100 $ R$ SCK last edge to \overline{CS}	SPI Inputs (CS, SI, SCK)		· · · · ·					
Input Leakage CurrentIIL-1.0+1.0 μA Logic Threshold, High V_{H} 0.7V_{DD}- V_{DD} VAmplifier Output Leakage Current1.0-+1.0 μA In Shutdown modeSPI Output (SO, for MCP6S26 and MCP6S28)Logic Threshold, Low V_{OL} V_{SS} - $V_{SS}+0.4$ V $I_{OL}=2.1 \text{ mA}, V_{DD}=5V$ Logic Threshold, High V_{OH} $V_{DD}-0.5$ - V_{DD} V $I_{OH}=-400 \ \mu A$ SPI TimingPin Capacitance C_{PIN} -10-pFAll digital I/O pinsInput Rise/Fall Times (CS, SI, SCK)tRrinsOutput Rise/Fall Times (SO) t_{RFO} -5-nsSCK edge to CS fall setup timetcssc10nsSCK dege to CS fall setup timetcssc40nsSCK requencyfscx10MHzV_{DD}=5V (Note 2)SCK last edge to \overline{CS} rise setup timetscsc30nsSCK last edge to \overline{CS} rise setup timetscsc30nsSCK to SO valid propagation delayt_{DO}nsSCK edge when \overline{CS} is highSI set-up timet_{SU}40nsSCK edge when \overline{CS} is highSI set-up timet_{SU}40nsSCK edge when \overline{CS} is highSI set-up timet_{GS}10<	Logic Threshold, Low	VIL	0	_	0.3V _{DD}	V		
Logic Threshold, High V_{H} $0.7V_{DD}$ - V_{DD} V Amplifier Output Leakage Current - -1.0 - +1.0 μA In Shutdown mode SPI Output (SO, for MCP6S26 and MCP6S28) Logic Threshold, Low V _{OL} V _{SS} - V _{DD} V $I_{0L} = 2.1 mA, V_{DD} = 5V$ Logic Threshold, Low V _{OH} V _{DD} -0.5 - V _{DD} V $I_{0H} = -400 \mu A$ SPI Timing - 10 - pF All digital I/O pins Input Rise/Fall Times (CS, SI, SCK) t_{RFI} - - ns MCP6S26 and MCP6S28 CS high time t_{CSH} 40 - - ns SCK edge when \overline{CS} is high CS fail setup time t_{CSH} 40 - - ns SCK fails setup time t_{CSSC} SCK Frequency f_{SCK} - - 10 MHz $V_{DD} = 5V (Note 2)$ SCK last edge to \overline{CS} rise setup time t_{CS} 100 - ns SCK cdge when \overline{CS} is high	Input Leakage Current		-1.0	_		μA		
Amplifier Output Leakage Current1.0-+1.0 μ AIn Shutdown modeSPI Output (SO, for MCP6S26 and MCP6S28)Logic Threshold, Low V_{OL} V_{SS} - V_{SS} +0.4 V I_{OL} = 2.1 mA, V_{DD} = 5VLogic Threshold, High V_{OH} V_{DD} -0.5- V_{DD} V I_{OH} = -400 μ ASPI Timing-10pFAll digital I/O pinsInput Rise/Fall Times (CS, SI, SCK) t_{RFI} 2 μ SNote 1Output Rise/Fall Times (SO) t_{RFO} -5-nsMCP6S26 and MCP6S28CS high time t_{CSH} 40nsSCK edge when \overline{CS} is highSCK edge to \overline{CS} fall setup time t_{CS0} 10nsSCK high time t_{LO} 40nsSCK high time t_{HI} 40nsSCK high time t_{HI} 40nsSCK low time t_{LO} 40nssck edge when \overline{CS} is highSCK low time t_{LO} 40nssck edge when \overline{CS} is highSI hold time t_{HI} 40nsSCK low time t_{SCS} 30nssck edge when \overline{CS} is highStart adge to \overline{CS} rise setup time t_{SCS} 100nssck edge when \overline{CS} is highStart edge to \overline{CS} rise setup time t_{SCS} 100<	Logic Threshold, High		0.7V _{DD}	—	V _{DD}	V		
Logic Threshold, Low V_{OL} V_{SS} $V_{SS}+0.4$ V $I_{OL} = 2.1 \text{ mA}, V_{DD} = 5V$ Logic Threshold, High V_{OH} $V_{DD}-0.5$ V_{DD} V $I_{OH} = -400 \ \mu A$ SPI TimingPin Capacitance C_{PIN} 10pFAll digital I/O pinsInput Rise/Fall Times (\overline{CS}, SI, SCK) I_{RFI} 2 μs Note 1Output Rise/Fall Times (SO) I_{RFO} 5nsMCP6S26 and MCP6S28 \overline{CS} high time I_{CSH} 40nsSCK edge when \overline{CS} is high \overline{CS} fall setup time I_{CSO} 10nsSCK edge when \overline{CS} is high \overline{CS} fall to first SCK edge setup time I_{CSSC} 40nsSCK Frequency f_{SCK} 10MHz $V_{DD} = 5V$ (Note 2)SCK high time I_{LO} 40nsSCK low time I_{LO} 40nsSCK low time I_{LO} 40nsSCK loge setup time I_{SO} 40nsSCK loge setup time I_{SO} 40nsSCK to SO valid propagation delay I_{DO} nsMCP6S26 and MCP6S28CS rise to SO forced to zero I_{SOZ} 80nsMCP6S26 and MCP6S28CS rise to SO forced to zero I_{SOZ}	Amplifier Output Leakage Current	_		_		μA	In Shutdown mode	
Logic Threshold, High V_{OH} $V_{DD} - 0.5$ $ V_{DD}$ V $I_{QH} = -400 \mu A$ SPI Timing Pin Capacitance C_{PIN} - 10 - pF All digital I/O pins Input Rise/Fall Times (CS, SI, SCK) I_{RFIO} - 2 μs Note 1 Output Rise/Fall Times (SO) I_{RFO} - 5 - ns MCP6S26 and MCP6S28 CS high time I_{CSH} 40 - - ns SCK edge when \overline{CS} is high SCK toge to \overline{CS} fall setup time I_{CSS} 40 - - ns SCK toge to \overline{CS} rise setup time I_{CSG} - - ns SCK codge when \overline{CS} is high SCK last edge to \overline{CS} rise setup time I_{CO} 40 - - ns SCK last edge to \overline{CS} rise setup time I_{CO} 40 - - ns SCK last edge to \overline{CS} rise setup time I_{CO} 40 - - ns SCK toso Cox kedge setup time I_{CO}	SPI Output (SO, for MCP6S26 and M	CP6S28)	1					
Logic Threshold, High V _{OH} V _{DD} -0.5 — V _{DD} V I _{OH} = -400 μ A SPI Timing Pin Capacitance C _{PIN} — 10 — pF All digital I/O pins Input Rise/Fall Times (CS, SI, SCK) I _{RFI} — — 2 μ s Note 1 Output Rise/Fall Times (SO) I _{RFO} — 5 — ns MCP6S26 and MCP6S28 CS high time t_CSH 40 — — ns SCK edge when CS is high SCK togo to CS fall setup time t_CSsc 40 — — ns SCK fall to first SCK edge setup time t_Cssc 40 — — ns SCK fall to first SCK edge setup time t_Lo 40 — — ns SCK lost o CS rise setup time t_Scc 30 — — ns SCK edge when CS is high SI set up time t_Lo 40 — — ns SCK to SC edge setup time t_Cst 100 — ns SCK edge when CS is high SC st is to SC K edge when CS is h	Logic Threshold, Low	V _{OL}	V _{SS}		V _{SS} +0.4	V	I _{OL} = 2.1 mA, V _{DD} = 5V	
Pin Capacitance C_{PIN} 10pFAll digital I/O pinsInput Rise/Fall Times (\overline{CS} , SI, SCK) t_{RFI} 2 μ sNote 1Output Rise/Fall Times (SO) t_{RFO} 5nsMCP6S26 and MCP6S28 \overline{CS} high time t_{CSH} 40nsSCK edge when \overline{CS} is high \overline{CS} fall setup time t_{CSO} 10nsSCK edge when \overline{CS} is high \overline{CS} fall to first SCK edge setup time t_{CSO} 40nsSCK requency f_{SCK} 10MHz $V_{DD} = 5V$ (Note 2)SCK high time t_{HI} 40nsSCK low time t_{LO} 40nsSCK ladge to \overline{CS} rise setup time t_{SCS} 30ns \overline{CS} rise to SCK edge setup time t_{SCS} 30nsSCK to SO valid propagation delay t_{DO} nsSCK edge when \overline{CS} is highSI hold time t_{HD} 10nsSCK to SO valid propagation delay t_{DO} 80nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsMCP6S26 and MCP6S28Channel and Gain Select Time t_{CH} 1.5 μ sCHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy selectGSrise to SO forced to z	Logic Threshold, High		V _{DD} -0.5		V _{DD}	V	I _{OH} = -400 μA	
Input Rise/Fall Times (\overline{CS} , SI, SCK)Iter2 μ sNote 1Output Rise/Fall Times (SO) t_{RFO} 5nsMCP6S26 and MCP6S28 \overline{CS} high time t_{CSH} 40nsSCK edge when \overline{CS} is high \overline{CS} fall setup time t_{CSO} 10nsSCK edge when \overline{CS} is high \overline{CS} fall setup time t_{CSO} 40nsSCK edge when \overline{CS} is high \overline{CS} fall to first SCK edge setup time t_{CSC} 40nsSCK Frequency f_{SCK} 10MHz $V_{DD} = 5V$ (Note 2)SCK high time t_{HI} 40nsSCK lays tedge to \overline{CS} rise setup time t_{SCS} 30nsSCK lays tedge to \overline{CS} rise setup time t_{SCS} 100nsSCK to SC kedge setup time t_{SCI} 100nsSCK to SO valid propagation delay t_{DO} nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsMCP	SPI Timing		•		•			
Input Rise/Fall Times (\overline{CS} , SI, SCK) t_{RFI} 2 μ sNote 1Output Rise/Fall Times (SO) t_{RFO} 5nsMCP6S26 and MCP6S28 \overline{CS} high time t_{CSH} 40nsSCK edge when \overline{CS} is high \overline{CS} fall setup time t_{CSO} 10nsSCK edge when \overline{CS} is high \overline{CS} fall setup time t_{CSO} 40nsSCK edge when \overline{CS} is high \overline{CS} fall to first SCK edge setup time t_{CSO} 40nsSCK Frequency f_{SCK} nsSCK lose 2)SCK high time t_{HI} 40nsSCK late dge to \overline{CS} rise setup time t_{SCS} 30nsSCK late setup time t_{SU} 40nsSCK tage setup time t_{SU} 40nsSCK to SC kedge setup time t_{SU} 40nsSt hold time t_{HD} 10nsSCK to SO valid propagation delay t_{DO} nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsMCP6S26 and MCP6S28Channel and Gain Select Time t_{CH} 1.5 μ sCHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy select CS = 0.7V_{DD} to V_{OUT} 90% poirGain Select Time t_G -	Pin Capacitance	C _{PIN}	—	10	_	pF	All digital I/O pins	
Output Rise/Fall Times (SO) t_{RFO} -5-nsMCP6S26 and MCP6S28 \overline{CS} high time t_{CSH} 40nsSCK edge to \overline{CS} fall setup time t_{CS0} 10nsSCK dege to \overline{CS} fall setup time t_{CSSC} 40nsSCK requency f_{SCK} 10MHz $V_{DD} = 5V$ (Note 2)SCK high time t_{HI} 40nsSCK low time t_{LO} 40nsSCK last edge to \overline{CS} rise setup time t_{SCS} 30nsSCK last edge to \overline{CS} rise setup time t_{CS1} 100nsSCK low time t_{LO} 40nsSCK so Cox alid propagation delay t_{DO} nsSCK to SO valid propagation delay t_{DO} 80nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsChannel and Gain Select Timing t_{CH} -1.5- μ sCHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy selectGain Select Time t_G -1- μ s $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% poirShidh to Amplifier Output High-Z Turn-off t_{OFF} -1.5- μ s $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% poirInto Shutdown mode (\overline{CS} goes high) t_{OFF} -1.5- μ s $\overline{CS} = 0.$	Input Rise/Fall Times (CS, SI, SCK)		—	—	2	μs	Note 1	
$\begin{array}{ c c c c c }\hline \overline{CS} \mbox{ high time } & t_{CSH} & 40 & - & - & ns \\ SCK edge to \overline{CS} \mbox{ fall setup time } & t_{CS0} & 10 & - & - & ns \\ SCK edge to \overline{CS} \mbox{ fall setup time } & t_{CSSC} & 40 & - & - & ns \\ \hline \overline{CS} \mbox{ fall to first SCK edge setup time } & t_{CSK} & - & - & 10 & MHz & V_{DD} = 5V \mbox{ (Note 2)} \\ SCK high time & t_{HI} & 40 & - & - & ns \\ SCK low time & t_{LO} & 40 & - & - & ns \\ SCK low time & t_{LO} & 40 & - & - & ns \\ SCK last edge to \overline{CS} \mbox{ rise setup time } & t_{SCCS} & 30 & - & - & ns \\ \hline \overline{CS} \mbox{ rise to SCK edge setup time } & t_{SCC} & 30 & - & - & ns \\ \hline \overline{CS} \mbox{ rise to SCK edge setup time } & t_{SCI} & 100 & - & - & ns \\ \hline \overline{CS} \mbox{ rise to SCK edge setup time } & t_{SU} & 40 & - & - & ns \\ \hline SCK \mbox{ lot time } & t_{HD} & 10 & - & - & ns \\ \hline SCK \mbox{ lot dime } & t_{HD} & 10 & - & - & ns \\ \hline SCK \mbox{ rots of crced to zero } & t_{SOZ} & - & - & 80 \\ \hline CS \mbox{ rise to SO forced to zero } & t_{SOZ} & - & - & 80 \\ \hline CS \mbox{ rise to SO forced to zero } & t_{SOZ} & - & - & 80 \\ \hline Channel \mbox{ and Bain Select Time } \\ \hline Channel \mbox{ Select Time } & t_{CH} & - & 1.5 & - & \mu s \\ \hline Channel \mbox{ Channel Select Time } \\ \hline Gain \mbox{ rots Outdown mode } (\overline{CS} \mbox{ goes high)} \\ \hline Out of \mbox{ Shutdown mode } (\overline{CS} \mbox{ goes high)} \\ \mbox{ to Amplifier Output Turn-on time } \\ \hline Into \mbox{ shutdown mode } (\overline{CS} \mbox{ goes high)} \\ \mbox{ to Amplifier Output High-Z Turn-off time } \\ \hline POR \mbox{ Time } \\ \hline Por \mbox{ Time } \\ \hline Power-On \mbox{ Reset power-up time } \\ \hline t_{RPU} \ \ - & \ 30 \ \ - & \mu s \\ \hline V_{DD} = V_{POR} \ - 0.1 V \ V_{POR} \ + 0.1 V \ V_{POR$, , , , , , , , , , , , , , , , , , ,	t _{RFO}	_	5	_	ns	MCP6S26 and MCP6S28	
SCK edge to \overline{CS} fall setup timet_{CS0}10nsSCK edge when \overline{CS} is high \overline{CS} fall to first SCK edge setup timet_{CSSc}40nsSCK frequencyf_{SCK}10MHz $V_{DD} = 5V$ (Note 2)SCK high timet_HI40nsSCK last edge to \overline{CS} rise setup timet_{SCS}30nsSCK last edge to \overline{CS} rise setup timet_Sccs30nsSCK last edge to \overline{CS} rise setup timet_Su40nsSCK to SCK edge setup timet_Su40nsSI hold timet_BU40nsSCK to SO valid propagation delayt_DOnsSCK to SO valid propagation delayt_DO80nsMCP6S26 and MCP6S28MCP6S26 and MCP6S28Channel and Gain Select Timing1.5Channel Select Timet_G1 μ_S CHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy selectGain Select Timet_G1 μ_S CS = 0.7V_DD to V_{OUT} 90% poirGui of Shutdown mode (\overline{CS} goes high)t_OFF1.5 μ_S $\overline{CS} = 0.7V_{DD}$ to $V_{OUT} 90%$ poirTimeto Amplifier Output High-Z Turn-offt_OFF1.5 μ_S $\overline{CS} = 0.7V_{DD}$ to $V_{OUT} 90\%$ poirPower-On Reset power-up timet_RPU <td>CS high time</td> <td></td> <td>40</td> <td>_</td> <td>—</td> <td>ns</td> <td></td>	CS high time		40	_	—	ns		
\overline{CS} fall to first SCK edge setup time t_{CSSC} 40 $ ns$ SCK Frequency f_{SCK} $ 10$ MHz $V_{DD} = 5V$ (Note 2)SCK high time t_{HI} 40 $ ns$ SCK low time t_{LO} 40 $ ns$ SCK last edge to \overline{CS} rise setup time t_{SCS} 30 $ ns$ SCK last edge to \overline{CS} rise setup time t_{SCS} 30 $ ns$ SCK last edge to \overline{CS} rise setup time t_{SCI} 100 $ ns$ SI set-up time t_{SU} 40 $ ns$ SCK edge when \overline{CS} is highSI set-up time t_{SU} 40 $ ns$ MCP6S26 and MCP6S28SCK to SO valid propagation delay t_{DO} $ 80$ ns MCP6S26 and MCP6S28Channel and Gain Select Timing t_{CH} $ 1.5$ $ \mu_S$ $CHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy selectCrise is select Timet_G 1 \mu_SCHx = 0.3V, G = 5 to G = 1 selectShutdown Mode Timingt_{ON} 3.510\mu_S\overline{CS} = 0.7V_{DD} to V_{OUT} 90% poirOut of Shutdown mode (\overline{CS} goes high)t_{OFF} 1.5 \mu_S\overline{CS} = 0.7V_{DD} to V_{OUT} 90% poirInto Shutdown mode (\overline{CS} goes high)t_{OFF} 1.5 \mu_S\overline{CS} = 0.7$	5	t _{CS0}	10	_	_	ns	SCK edge when $\overline{\text{CS}}$ is high	
Control of the cont			40	_		ns	- •	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ų .			_	10		V _{DD} = 5V (Note 2)	
SCK low time t_{LO} 40nsSCK last edge to \overline{CS} rise setup time t_{SCCS} 30 nsSCK last edge to \overline{CS} rise setup time t_{SCS} 100 nsSI set-up time t_{SU} 40 nsSI hold time t_{HD} 10 nsSCK to SO valid propagation delay t_{DO} 80nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsChannel and Gain Select Timing t_{CH} 1.5 μs CHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy selectChannel Select Time t_G 1 μs CHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy selectGain Select Time t_G 1 μs CHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy selectGain Select Time t_G 1 μs CHx = 0.3V, G = 5 to G = 1 selectOut of Shutdown mode (\overline{CS} goes high) t_{OFF} 1.5 10 μs $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% pointInto Shutdown mode (\overline{CS} goes high) t_{OFF} 1.5 μs $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% pointInto Shutdown mode (\overline{CS} goes high) t_{OFF} 1.5 μs $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% pointTime30 μs $V_{DD} = V_{POR} - 0.1V$ to $V_{POR} + 0$			40	_	_			
SCK last edge to \overline{CS} rise setup timetsccs30ns \overline{CS} rise to SCK edge setup timetcS1100nsSCK edge when \overline{CS} is highSI set-up timet_SU40nsSCK edge when \overline{CS} is highSI hold timet_HD10nsSCK to SO valid propagation delayt_DO80nsMCP6S26 and MCP6S28CK to SO valid propagation delayt_DO80nsMCP6S26 and MCP6S28Channel and Gain Select Timingt_SOZ80nsMCP6S26 and MCP6S28Channel Select Timet_CH-1.5- μ sCHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy selectGain Select Timet_CH-1.5- μ sCHx = 0.3V, G = 5 to G = 1 seleShutdown Mode Timingt_G-1- μ sCS = 0.7V_DD to V_{OUT} 90% poirOut of Shutdown mode (CS goes high) to Amplifier Output Turn-on Timet_OFF-1.5- μ sCS = 0.7V_DD to V_{OUT} 90% poirInto Shutdown mode (CS goes high) to Amplifier Output High-Z Turn-off Timet_OFF-1.5- μ sCS = 0.7V_DD to V_{OUT} 90% poirPOR Timing30- μ sV_DD = V_POR - 0.1V to V_POR + 0	-		-	_	_			
\overline{CS} rise to SCK edge setup time t_{CS1} 100 $ ns$ SCK edge when \overline{CS} is highSI set-up time t_{SU} 40 $ ns$ SI hold time t_{HD} 10 $ ns$ SCK to SO valid propagation delay t_{DO} $ 80$ ns SCK to SO valid propagation delay t_{DO} $ 80$ ns MCP6S26 and MCP6S28Channel and Gain Select TimingChannel Select Time t_{CH} $ 1.5$ $ \mu s$ CHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy selectChannel Select Time t_{CH} $ 1.5$ $-$ Gain Select Time t_{G} $ 1$ $ \mu s$ $CHx = 0.6V, CHy = 0.3V, G = 1,CHx to CHy selectShutdown Mode Timingt_{CH} 1.5 \mu sCHx = 0.6V, CHy = 0.3V, G = 1,CHx to CHy selectOut of Shutdown mode (\overline{CS} goeshigh) to Amplifier Output Turn-onTimet_{ON} 3.510\mu s\overline{CS} = 0.7V_{DD} to V_{OUT} 90% poirInto Shutdown mode (\overline{CS} goes high)to Amplifier Output High-Z Turn-offTimet_{OFF} 1.5 \mu s\overline{CS} = 0.7V_{DD} to V_{OUT} 90% poirPOR Timingt_{PPU} 30 \mu sV_{DD} = V_{POR} - 0.1V to V_{POR} + 0$	SCK last edge to \overline{CS} rise setup time		30	_	_			
Si set-up time t_{SU} 40nsSI hold time t_{HD} 10nsSCK to SO valid propagation delay t_{DO} 80nsMCP6S26 and MCP6S28CS rise to SO forced to zero t_{SOZ} 80nsMCP6S26 and MCP6S28Channel and Gain Select TimingChannel Select Time t_{CH} -1.5- μ sCHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy selectGain Select Time t_{CH} -1.5- μ sCHx = 0.3V, G = 5 to G = 1 selectGain Select Time t_G -1- μ sCHx = 0.3V, G = 5 to G = 1 selectShutdown Mode Timing0ut of Shutdown mode (\overline{CS} goes tigh) to Amplifier Output Turn-on Timeto CFF-1.5- μ s $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% poirInto Shutdown mode (\overline{CS} goes high) to Amplifier Output High-Z Turn-off Timeto CFF-1.5- μ s $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% poirPOR Timing30- μ s $V_{DD} = V_{POR} - 0.1V$ to $V_{POR} + 0$		t _{CS1}	100	_	_	ns	SCK edge when CS is high	
SI hold timet t HD10nsSCK to SO valid propagation delayt DO80nsMCP6S26 and MCP6S28SCK to SO valid propagation delayt SOZ80nsMCP6S26 and MCP6S28Channel and Gain Select TimingChannel Select Timet CH1.5 μ sCHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy select CS = 0.7V_DD to V_{OUT} 90% poirGain Select Timet t Gt G1 μ sCHx = 0.3V, G = 5 to G = 1 select CS = 0.7V_DD to V_{OUT} 90% poirShutdown Mode Timing1 μ sCHx = 0.3V, G = 5 to G = 1 select CS = 0.7V_DD to V_{OUT} 90% poirOut of Shutdown mode (CS goes high) to Amplifier Output Turn-on Timeto3.510 μ sCS = 0.7V_DD to V_{OUT} 90% poirInto Shutdown mode (CS goes high) to Amplifier Output High-Z Turn-off Timeto1.5 μ sCS = 0.7V_DD to V_{OUT} 90% poirPOR Timing3030 μ sV_DD = V_POR - 0.1V to V_POR + 0			40		_	ns		
SCK to SO valid propagation delay t_{DO} 80nsMCP6S26 and MCP6S28 \overline{CS} rise to SO forced to zero t_{SOZ} 80nsMCP6S26 and MCP6S28Channel and Gain Select Time t_{CH} -1.5- μs CHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy selectChannel Select Time t_{CH} -1.5- μs CHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy selectGain Select Time t_G -1- μs CHx = 0.3V, G = 5 to G = 1 seleGut of Shutdown Mode Timing t_G -1- μs CHx = 0.3V, G = 5 to G = 1 seleOut of Shutdown mode (\overline{CS} goes high) to Amplifier Output Turn-on Time t_{ON} - 3.5 10 μs $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% poirInto Shutdown mode (\overline{CS} goes high) to Amplifier Output High-Z Turn-off t_{OFF} - 1.5 - μs $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% poirPOR TimingPower-On Reset power-up time t_{RPU} - 30 - μs $V_{DD} = V_{POR} - 0.1V$ to $V_{POR} + 0$	•			_	_			
\overline{CS} rise to SO forced to zero t_{SOZ} 80nsMCP6S26 and MCP6S28Channel and Gain Select Time t_{CH} -1.5- μ sCHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy selectChannel Select Time t_{CH} -1.5- μ sCHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy selectGain Select Time t_G -1- μ sCHx = 0.3V, G = 5 to G = 1 selectGain Select Time t_G -1- μ sCHx = 0.3V, G = 5 to G = 1 selectOut of Shutdown Mode Timing-3.510 μ sCS = 0.7V_{DD} to V_{OUT} 90% poirOut of Shutdown mode (\overline{CS} goes high) to Amplifier Output Turn-on Time t_{ON} -3.510 μ s \overline{CS} = 0.7V_{DD} to V_{OUT} 90% poirInto Shutdown mode (\overline{CS} goes high) to Amplifier Output High-Z Turn-off Time t_{OFF} -1.5- μ s \overline{CS} = 0.7V_{DD} to V_{OUT} 90% poirPOR Timing-30- μ s V_{DD} = V_{POR} - 0.1V to V_{POR} + 0			_	_	80		MCP6S26 and MCP6S28	
Channel and Gain Select TimingChannel Select Time t_{CH} $ 1.5$ $ \mu s$ $CHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy selectGain Select Timet_G 1 \mu sCHx = 0.3V, G = 5 to G = 1 selectGain Select Timet_G 1 \mu sCHx = 0.3V, G = 5 to G = 1 selectShutdown Mode TimingU_G 1 \mu sCHx = 0.3V, G = 5 to G = 1 selectOut of Shutdown mode (\overline{CS} goeshigh) to Amplifier Output Turn-onTimet_{ON} 3.510\mu s\overline{CS} = 0.7V_{DD} to V_{OUT} 90% pointInto Shutdown mode (\overline{CS} goes high)to Amplifier Output High-Z Turn-offTimet_{OFF} 1.5 \mu s\overline{CS} = 0.7V_{DD} to V_{OUT} 90% pointPOR TimingPOR TimingV_{DD} = V_{POR} - 0.1V to V_{POR} + 0$			_	_	80	ns	MCP6S26 and MCP6S28	
Channel Select Time t_{CH} $ 1.5$ $ \mu s$ $CHx = 0.6V, CHy = 0.3V, G = 1, CHx to CHy select CS = 0.7V_{DD} to V_{OUT} 90% poirGain Select Timet_G 1 \mu sCHx = 0.3V, G = 5 to G = 1 selet CS = 0.7V_{DD} to V_{OUT} 90% poirShutdown Mode TimingCHx = 0.3V, G = 5 to G = 1 selet CS = 0.7V_{DD} to V_{OUT} 90% poirCHx = 0.3V, G = 5 to G = 1 selet CS = 0.7V_{DD} to V_{OUT} 90\% poirOut of Shutdown mode (CS goes high) to Amplifier Output Turn-on Timet_{ON} 3.510\mu s\overline{CS} = 0.7V_{DD} to V_{OUT} 90\% poirInto Shutdown mode (CS goes high) to Amplifier Output High-Z Turn-off Timet_{OFF} 1.5 \mu s\overline{CS} = 0.7V_{DD} to V_{OUT} 90\% poirPOR TimingT_{CPH} 30 \mu sV_{DD} = V_{POR} - 0.1V to V_{POR} + 0$		002					I	
Gain Select Time t_G $-$ 1 $ \mu s$ $\frac{CHx}{CS} = 0.3V$, $G = 5$ to $G = 1$ selectShutdown Mode TimingOut of Shutdown mode (\overline{CS} goes high) to Amplifier Output Turn-on Time t_{ON} $ 3.5$ 10 μs $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% poirInto Shutdown mode (\overline{CS} goes high) to Amplifier Output High-Z Turn-off Time t_{OFF} $ 1.5$ $ \mu s$ $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% poirPOR TimingPower-On Reset power-up time t_{RPU} $ 30$ $ \mu s$ $V_{DD} = V_{POR} - 0.1V$ to $V_{POR} + 0$		t _{CH}	-	1.5	_	μs	CHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy select $\overline{CS} = 0.7V_{DD}$ to V _{OUT} 90% point	
Out of Shutdown mode (\overline{CS} goes high) to Amplifier Output Turn-on TimetoN—3.510 μ s $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% point $\overline{CS} = 0.7V_{DD}$ to V_{OUT} 90% point for a specific or the speci	Gain Select Time	t _G	_	1	_	μs	$\frac{CHx}{CS} = 0.3V, G = 5 \text{ to } G = 1 \text{ select},$ $\frac{CHx}{CS} = 0.7V_{DD} \text{ to } V_{OUT} 90\% \text{ point}$	
high) to Amplifier Output Turn-on Image: Construction of the second	Shutdown Mode Timing							
to Amplifier Output High-Z Turn-off Time POR Timing Power-On Reset power-up time t_{RPU} — 30 — μ s $V_{DD} = V_{POR} - 0.1V$ to $V_{POR} + 0$	high) to Amplifier Output Turn-on	t _{ON}	_	3.5	10	μs	$\overline{\text{CS}}$ = 0.7V _{DD} to V _{OUT} 90% point	
Power-On Reset power-up time t_{RPU} — 30 — μs $V_{DD} = V_{POR} - 0.1V$ to $V_{POR} + 0$	to Amplifier Output High-Z Turn-off	t _{OFF}	_	1.5	_	μs	$\overline{\text{CS}} = 0.7 \text{V}_{\text{DD}}$ to V_{OUT} 90% point	
	POR Timing	-	· ·		•			
	Power-On Reset power-up time	t _{RPU}	—	30	—	μs	$V_{DD} = V_{POR} - 0.1V$ to $V_{POR} + 0.1V$, 50% V_{DD} to 90% V_{OUT} point	
Power-On Reset power-down time t_{RPD} — 10 — μs $V_{DD} = V_{POR} + 0.1V$ to $V_{POR} - 0$ 50% V_{DD} to 90% V_{OUT} point	Power-On Reset power-down time	t _{RPD}	-	10	-	μs	$V_{DD} = V_{POR} + 0.1V$ to $V_{POR} - 0.1V$, 50% V_{DD} to 90% V_{OUT} point	

Note 1: Not tested in production. Set by design and characterization.

2: When using the device in the daisy chain configuration, maximum clock frequency is determined by a combination of propagation delay time ($t_{DO} \le 80$ ns), data input setup time ($t_{SU} \ge 40$ ns), SCK high time ($t_{HI} \ge 40$ ns), and SCK rise and fall times of 5 ns. Maximum f_{SCK} is, therefore, ≈ 5.8 MHz.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +2.5V to +5.5V, V_{SS} = GND.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Temperature Ranges								
Specified Temperature Range	T _A	-40		+85	°C			
Operating Temperature Range	T _A	-40		+125	°C	(Note 1)		
Storage Temperature Range	T _A	-65	_	+150	°C			
Thermal Package Resistances								
Thermal Resistance, 8L-PDIP	θ_{JA}		85		°C/W			
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W			
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	_	°C/W			
Thermal Resistance, 14L-PDIP	θ_{JA}	_	70	_	°C/W			
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W			
Thermal Resistance, 14L-TSSOP	θ_{JA}	_	100	_	°C/W			
Thermal Resistance, 16L-PDIP	θ_{JA}	_	70	_	°C/W			
Thermal Resistance, 16L-SOIC	θ_{JA}	_	90	_	°C/W			

Note 1: The MCP6S21/2/6/8 family of PGAs operates over this extended temperature range, but with reduced performance. Operation in this range must not cause T_J to exceed the Maximum Junction Temperature (150°C).

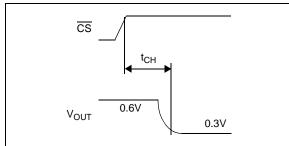
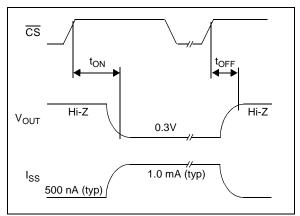



FIGURE 1-1: Channel Select Timing Diagram.

FIGURE 1-2: PGA Shutdown timing diagram (must enter correct commands before CS goes high).

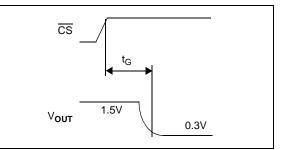


FIGURE 1-3: Diagram.

Gain Select Timing

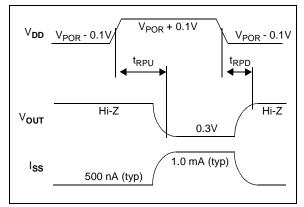


FIGURE 1-4: POR power-up and powerdown timing diagram.

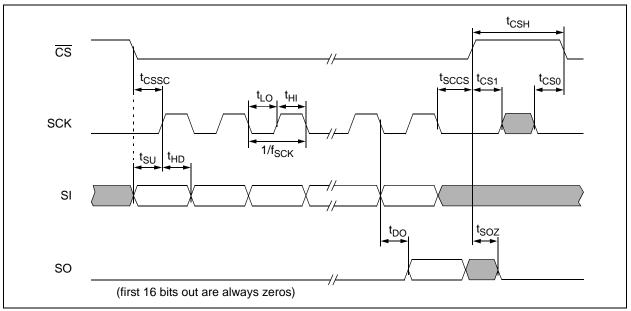
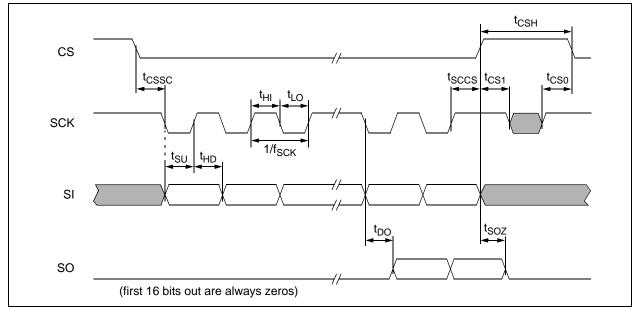



FIGURE 1-5: Detailed SPI Serial Interface Timing, SPI 0,0 mode.

1.1 DC Output Voltage Specs / Model

1.1.1 IDEAL MODEL

The ideal PGA output voltage (V_{OUT}) is:

EQUATION

$$V_{O \ ideal} = GV_{IN}$$

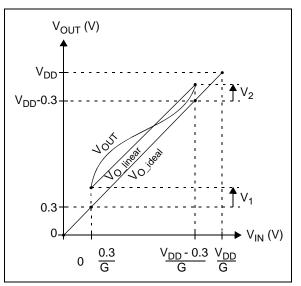
where: G is the nominal gain

 $V_{REF} = V_{SS} = 0V$

(see Figure 1-7). This equation holds when there are no gain or offset errors and when the V_{REF} pin is tied to a low impedance source (<< 0.1 Ω) at ground potential

1.1.2 LINEAR MODEL

The PGA's linear region of operation, including offset and gain errors, is modeled by the line $\rm V_{O_linear}$ shown in Figure 1-7.


EQUATION

 $(V_{SS} = 0V).$

The endpoints of this line are at $V_{O_ideal} = 0.3V$ and V_{DD} -0.3V. The gain and offset specifications referred to in the electrical specifications are related to Figure 1-7, as follows:

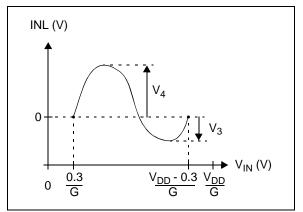
EQUATION

$$g_E = 100\% \frac{V_2 - V_I}{G(V_{DD} - 0.6V)}$$
$$V_{OS} = \frac{V_I}{G(1 + g_E)} \qquad G = +1$$
$$\Delta G / \Delta T_A = \frac{\Delta g_E}{\Delta T_A}$$

FIGURE 1-7: Output Voltage Model with the standard condition $V_{REF} = V_{SS} = 0V$.

1.1.3 OUTPUT NON-LINEARITY

Figure 1-8 shows the Integral Non-Linearity (INL) of the output voltage.


EQUATION

$$INL = V_{OUT} - V_{O_linear}$$

The output non-linearity specification in the electrical specifications is related to Figure 1-8 by:

EQUATION

$$V_{ONL} = \frac{max\{V_4, V_3\}}{V_{DD} - 0.6V}$$

FIGURE 1-8: Output Voltage INL with the standard condition $V_{REF} = V_{SS} = 0V$.

1.1.4 DIFFERENT V_{REF} CONDITIONS

Some of the plots in Section 2.0, "Typical Performance Curves", have the conditions $V_{REF} = V_{DD}/2$ or $V_{REF} = V_{DD}$. The equations and figures above are easily modified for these conditions. The ideal V_{OUT} becomes:

EQUATION

$$\begin{split} V_{O_ideal} \ &= \ V_{REF} + G(V_{IN} - V_{REF}) \\ V_{DD} &\geq V_{REF} > V_{SS} = 0 V \end{split}$$

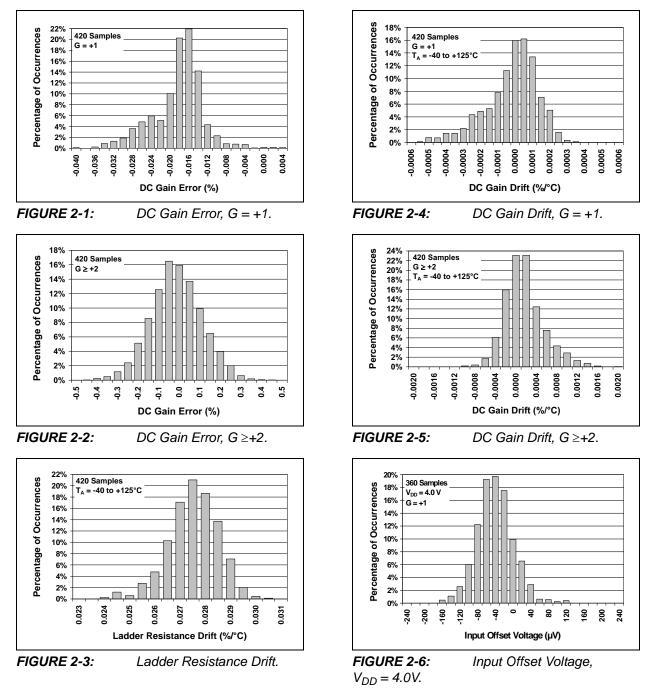
The complete linear model is:

EQUATION

$$V_{O_linear} = G(1 + g_E)(V_{IN} - V_{IN_L} + V_{OS}) + 0.3V$$

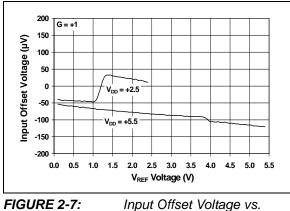
where the new $\ensuremath{\mathsf{V}_{\mathsf{IN}}}$ endpoints are:

EQUATION


$$V_{IN_L} = \frac{0.3V - V_{REF}}{G + V_{REF}}$$
$$V_{IN_R} = \frac{V_{DD} - 0.3V - V_{REF}}{G + V_{REF}}$$

The equations for extracting the specifications do not change.

2.0 TYPICAL PERFORMANCE CURVES


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +5.0V$, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, and $C_L = 60 \text{ pF}$.

MCP6S21/2/6/8

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = +5.0V$, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, and $C_L = 60 \text{ pF}$.

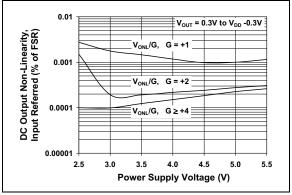


FIGURE 2-8: DC Output Non-Linearity vs. Supply Voltage.

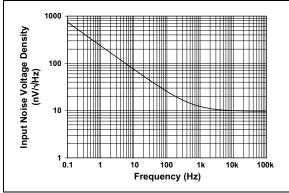


FIGURE 2-9: vs. Frequency.

Input Noise Voltage Density

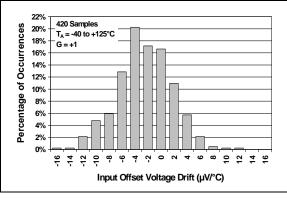


FIGURE 2-10: Inp

Input Offset Voltage Drift.

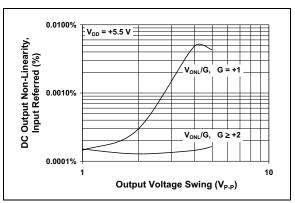


FIGURE 2-11: DC Output Non-Linearity vs. Output Swing.

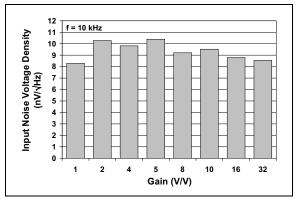
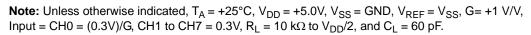
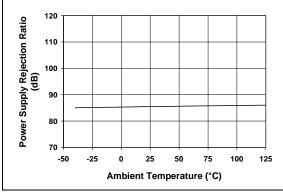
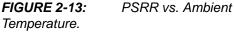





FIGURE 2-12: Input Noise Voltage Density vs. Gain.

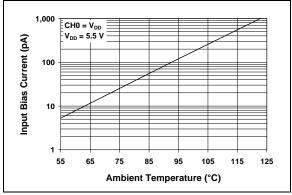
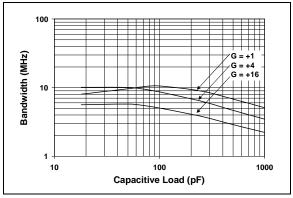



FIGURE 2-14: Input Bias Current vs. Ambient Temperature.

FIGURE 2-15: Bandwidth vs. Capacitive Load.

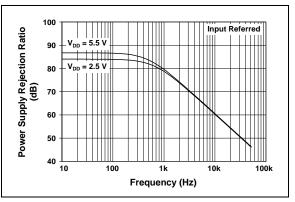
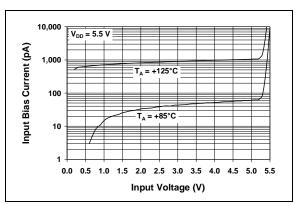
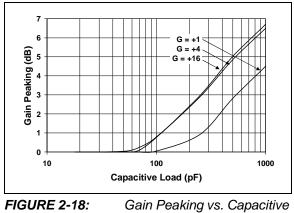




FIGURE 2-16: PSRR vs. Frequency.

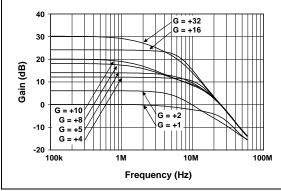


FIGURE 2-17: Input Bias Current vs. Input Voltage.

Load.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +5.0V$, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, and $C_L = 60 \text{ pF}$.

Gain vs. Frequency.

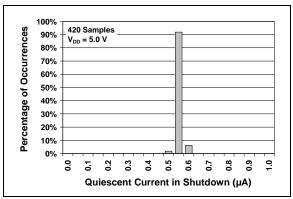


FIGURE 2-20: Histogram of Quiescent Current in Shutdown Mode.

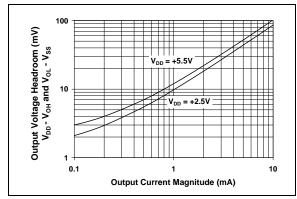


FIGURE 2-21: Output Voltage Headroom vs. Output Current.

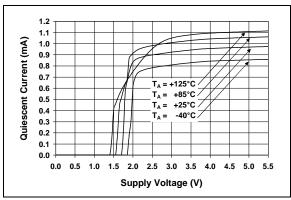


FIGURE 2-22: Supply Voltage.

Quiescent Current vs.

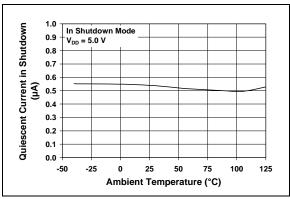


FIGURE 2-23: Quiescent Current in Shutdown Mode vs. Ambient Temperature.

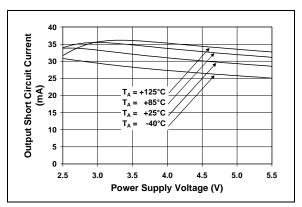
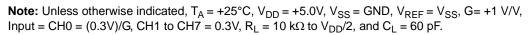
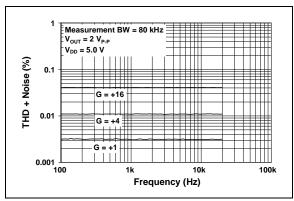
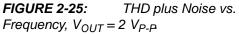





FIGURE 2-24: Output Short Circuit Current vs. Supply Voltage.

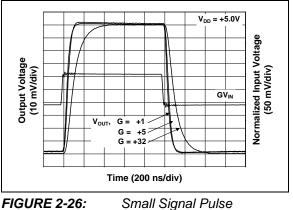


FIGURE 2-26: Response.

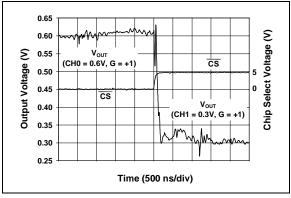
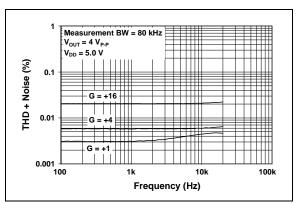



FIGURE 2-27:

Channel Select Timing.

FIGURE 2-28: THD plus Noise vs. Frequency, $V_{OUT} = 4 V_{P-P}$

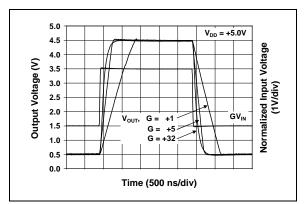


FIGURE 2-29: Large Signal Pulse Response.

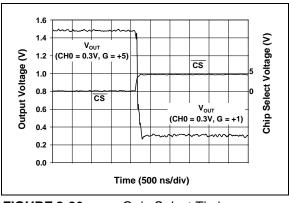
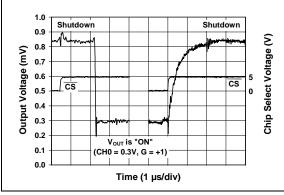
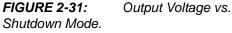




FIGURE 2-30: Gain Select Timing.

MCP6S21/2/6/8

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +5.0V$, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, and $C_L = 60 \text{ pF}$.

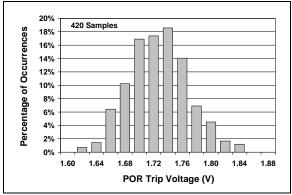


FIGURE 2-32: POR Trip Voltage.

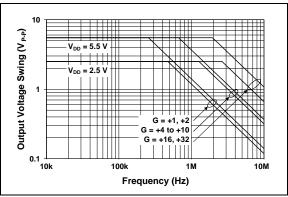
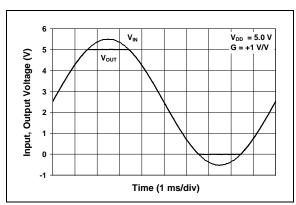



FIGURE 2-33: Frequency.

Output Voltage Swing vs.

FIGURE 2-34: The MCP6S21/2/6/8 family shows no phase reversal under overdrive.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

MCP6S21	MCP6S22	MCP6S26	MCP6S28	Symbol	Description
1	1	1	1	V _{OUT}	Analog Output
2	2	2	2	CH0	Analog Input
_	3	3	3	CH1	Analog Input
_	—	4	4	CH2	Analog Input
_	—	5	5	CH3	Analog Input
_	—	6	6	CH4	Analog Input
_	—	7	7	CH5	Analog Input
—	—	—	8	CH6	Analog Input
—	—	—	9	CH7	Analog Input
3	—	8	10	V _{REF}	External Reference Pin
4	4	9	11	V _{SS}	Negative Power Supply
5	5	10	12	CS	SPI Chip Select
6	6	11	13	SI	SPI Serial Data Input
_	_	12	14	SO	SPI Serial Data Output
7	7	13	15	SCK	SPI Clock Input
8	8	14	16	V _{DD}	Positive Power Supply

TABLE 3-1: PIN FUNCTION TABLE

3.1 Analog Output

The output pin (V_{OUT}) is a low-impedance voltage source. The selected gain (G), selected input (CH0-CH7) and voltage at V_{REF} determine its value.

3.2 Analog Inputs (CH0 thru CH7)

The inputs CH0 through CH7 connect to the signal sources. They are high-impedance CMOS inputs with low bias currents. The internal MUX selects which one is amplified to the output.

3.3 External Reference Voltage (V_{REF})

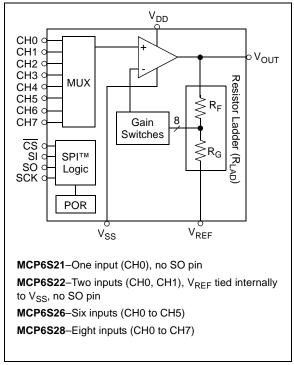
The V_{REF} pin should be at a voltage between V_{SS} and V_{DD} (the MCP6S22 has V_{REF} tied internally to V_{SS}). The voltage at this pin shifts the output voltage.

3.4 Power Supply (V_{SS} and V_{DD})

The positive power supply pin (V_{DD}) is 2.5V to 5.5V higher than the negative power supply pin (V_{SS}). For normal operation, the other pins are between V_{SS} and V_{DD}.

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need a local bypass capacitor (0.1 µF) at the V_{DD} pin. It can share a bulk capacitor with nearby analog parts (typically 2.2 µF to 10 µF within 4 inches (100 mm) of the V_{DD} pin.

3.5 Digital Inputs


The SPI interface inputs are: Chip Select (\overline{CS}), Serial Input (SI) and Serial Clock (SCK). These are Schmitttriggered, CMOS logic inputs.

3.6 Digital Output

The MCP6S26 and MCP6S28 devices have a SPI interface serial output (SO) pin. This is a CMOS pushpull output and does not ever go High-Z. Once the device is deselected (\overline{CS} goes high), SO is forced low. This feature supports daisy chaining, as explained in Section 5.3, "Daisy Chain Configuration".

4.0 ANALOG FUNCTIONS

The MCP6S21/2/6/8 family of Programmable Gain Amplifiers (PGA) are based on simple analog building blocks (see Figure 4-1). Each of these blocks will be explained in more detail in the following sub-sections.

4.1 Input MUX

The MCP6S21 has one input, the MCP6S22 and MCP6S25 have two inputs, the MCP6S26 has six inputs and the MCP6S28 has eight inputs (see Figure 4-1).

For the lowest input current, float unused inputs. Tying these pins to a voltage near the used channels also works well. For simplicity, they can be tied to V_{SS} or V_{DD} , but the input current may increase.

The one channel MCP6S21 has the lowest input bias current, while the eight channel MCP6S28 has the highest. There is about a 2:1 ratio in I_B between these parts.

4.2 Internal Op Amp

The internal op amp provides the right combination of bandwidth, accuracy and flexibility.

4.2.1 COMPENSATION CAPACITORS

The internal op amp has three compensation capacitors connected to a switching network. They are selected to give good small signal bandwidth at high gains, and good slew rate (full power bandwidth) at low gains. The change in bandwidth as gain changes is between 2 MHz and 12 MHz. Refer to Table 4-1 for more information.

TABLE 4-1:	GAIN VS. INTERNAL COMPENSATION CAPACITOR
------------	--

Gain (V/V)	Internal Compensation Capacitor	Typical GBWP (MHz)	Typical SR (V/μs)	Typical FPBW (MHz)	Typical BW (MHz)
1	Large	12	4.0	0.30	12
2	Large	12	4.0	0.30	6
4	Medium	20	11	0.70	10
5	Medium	20	11	0.70	7
8	Medium	20	11	0.70	2.4
10	Medium	20	11	0.70	2.0
16	Small	64	22	1.6	5
32	Small	64	22	1.6	2.0

Note 1: FPBW is the Full Power Bandwidth. These numbers are based on $V_{DD} = 5.0V$.

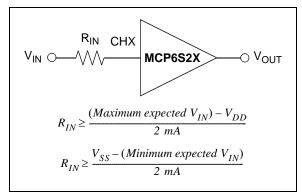
2: No changes in DC performance (e.g., V_{OS}) accompany a change in compensation capacitor.

3: BW is the closed-loop, small signal -3 dB bandwidth.

4.2.2 RAIL-TO-RAIL INPUT

The input stage of the internal op amp uses two differential input stages in parallel; one operates at low V_{IN} (input voltage), while the other operates at high V_{IN}. With this topology, the internal inputs can operate to 0.3V past either supply rail. The input offset voltage is measured at both V_{IN} = V_{SS} - 0.3V and V_{DD} + 0.3V to ensure proper operation.

The transition between the two input stages occurs when $V_{IN} \approx V_{DD}$ - 1.5V. For the best distortion and gain linearity, avoid this region of operation.


4.2.3 RAIL-TO-RAIL OUTPUT

The Maximum Output Voltage Swing is the maximum swing possible under a particular output load. According to the specification table, the output can reach within 60 mV of either supply rail when $R_L = 10 \text{ k}\Omega$ and $V_{REF} = V_{DD}/2$. See Figure 2-21 for typical performance under other conditions.

4.2.4 INPUT VOLTAGE AND PHASE REVERSAL

The amplifier family is designed with CMOS input devices. It is designed to not exhibit phase inversion when the input pins exceed the supply voltages. Figure 2-34 shows an input voltage exceeding both supplies with no resulting phase inversion.

The maximum voltage that can be applied to the input pins (CHX) is V_{SS} - 0.3V to V_{DD} + 0.3V. Voltages on the inputs that exceed this absolute maximum rating can cause excessive current to flow in or out of the input pins. Current beyond ±2 mA can cause possible reliability problems. Applications that exceed this rating must be externally limited with an input resistor, as shown in Figure 4-2.

FIGURE 4-2: R_{IN} limits the current flow into an input pin.

4.3 Resistor Ladder

The resistor ladder shown in Figure 4-1 ($R_{LAD} = R_F + R_G$) sets the gain. Placing the gain switches in series with the inverting input reduces the parasitic capacitance, distortion and gain mismatch.

R_{LAD} is an additional load on the output of the PGA and causes additional current draw from the supplies.

In Shutdown mode, R_{LAD} is still attached to the OUT and V_{REF} pins. Thus, these pins and the internal amplifier's inverting input are all connected through R_{LAD} and the output is not high-Z (unlike the external op amp).

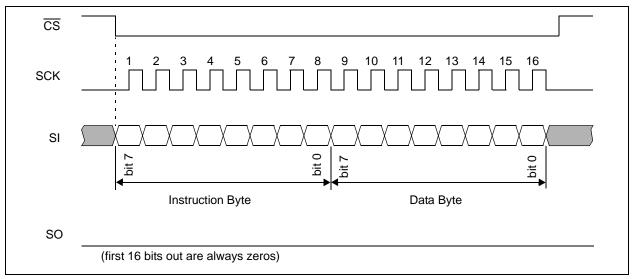
While R_{LAD} contributes to the output noise, its effect is small. Refer to Figure 2-12.

4.4 Shutdown Mode

These PGAs use a software shutdown command. When the SPI interface sends a shutdown command, the internal op amp is shut down and its output placed in a high-Z state.

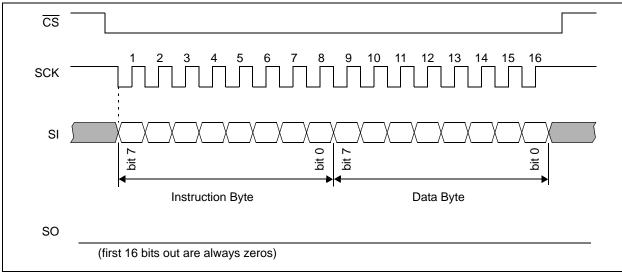
The resistive ladder is always connected between V_{REF} and V_{OUT} ; even in shutdown. This means that the output resistance will be on the order of 5 k Ω and there will be a path for output signals to appear at the input.

The Power-on Reset (POR) circuitry will temporarily place the part in shutdown when activated. See Section 5.4, "Power-On Reset", for details.


5.0 DIGITAL FUNCTIONS

The MCP6S21/2/6/8 PGAs use a standard SPI compatible serial interface to receive instructions from a controller. This interface is configured to allow daisy chaining with other SPI devices. There is an internal POR (Power On Reset) that resets the registers under low power conditions.

5.1 SPI Timing


Chip Select (\overline{CS}) toggles low to initiate communication with these devices. The first byte of each SI word (two bytes long) is the instruction byte, which goes into the Instruction Register. The Instruction Register points the second byte to its destination. In a typical application, $\overline{\text{CS}}$ is raised after one word (16 bits) to implement the desired changes. Section 5.3, "Registers", covers applications using multiple 16-bit words. SO goes low after $\overline{\text{CS}}$ goes high; it has a push-pull output that does not go into a high-Z state.

The MCP6S21/2/6/8 devices operate in SPI Modes 0,0 and 1,1. In 0,0 mode, the clock idles in the low state (Figure 5-1) and, in 1,1 mode, the clock idles in the high state (Figure 5-2). In both modes, SI data is loaded into the PGA on the rising edge of SCK and SO data is clocked out on the falling edge of SCK. In 0,0 mode, the falling edge of CS also acts as the first falling edge of SCK (see Figure 5-1). There must be multiples of 16 clocks (SCK) while CS is low or commands will abort (see Section 5.3, "Registers").

Serial bus sequence for the PGA; SPI 0,0 mode (see Figure 1-5).

Serial bus sequence for the PGA; SPI 1,1 mode (see Figure 1-6).

5.2 Registers

The analog functions are programmed through the SPI interface using 16-bit words (see Figure 5-1 and Figure 5-2). This data is sent to two of three 8-bit registers: Instruction Register (Register 5-1), Gain Register (Register 5-2) and Channel Register (Register 5-3). The power-up defaults for these three registers are:

- Instruction Register: 000x xxx0
- Gain Register: xxxx x000

REGISTER 5-1:

Channel Register: xxxx x000

Thus, these devices are initially programmed with the Instruction Register set for NOP (no operation), a gain of +1 V/V and CH0 as the input channel.

5.2.1 INSTRUCTION REGISTER

The Instruction Register has 3 command bits and 1 indirect address bit; see Register 5-1. The command bits include a NOP (000) to support daisy chaining (see Section 5.3, "Registers"); the other NOP commands shown should not be used (they are reserved for future use). The device is brought out of Shutdown mode when a valid command, other than NOP or Shutdown, is sent and \overline{CS} is raised.

U-x

U-x

W-0

	M2	M1	MO	—	—	—	—	A0
	bit 7							bit 0
bit 7-5	000 = NO 001 = PC (N	otes 1 and	(Note 1) nutdown Mc 2)	ode as soon a	as a full 16-k	oit word is se	ent and \overline{CS} is	s raised.
	011 = NO	`	for future u	se) (Note 1) se) (Note 1)				
bit 4-1	Unimplem	ented: Rea	d as '0' (res	erved for fut	ure use)			
bit 0	A0: Indire	ct Address	Bit					
		sses the Ch sses the Ga	0					
	Note 1:	All other bi	ts in the 16-	bit word (inc	luding A0) a	ire "don't car	es".	
	2:		ent and CS	down mode v is raised; th		,		

U-x

U-x

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

....

W-0

INSTRUCTION REGISTER

W-0

W-0

5.2.2 SETTING THE GAIN

The amplifier can be programmed to produce binary and decimal gain settings between +1 V/V and +32 V/V. Register 5-2 shows the details. At the same time, different compensation capacitors are selected to optimize the bandwidth vs. slew rate trade-off (see Table 4-1).

REGISTER 5-2: GAIN REGISTER

U-x	U-x	U-x	U-x	U-x	W-0	W-0	W-0
—	—	—	—	—	G2	G1	G0
bit 7							bit 0

bit 7-3 Unimplemented: Read as '0' (reserved for future use)

bit 2-0 G2-G0: Gain Select Bits

000 = Gain of +1 (Default) 001 = Gain of +2 010 = Gain of +2 011 = Gain of +4 011 = Gain of +5 100 = Gain of +8 101 = Gain of +10 110 = Gain of +16 111 = Gain of +32

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.2.3 CHANGING THE CHANNEL

If the instruction register is programmed to address the channel register, the multiplexed inputs of the MCP6S22, MCP6S26 and MCP6S28 can be changed per Register 5-3.

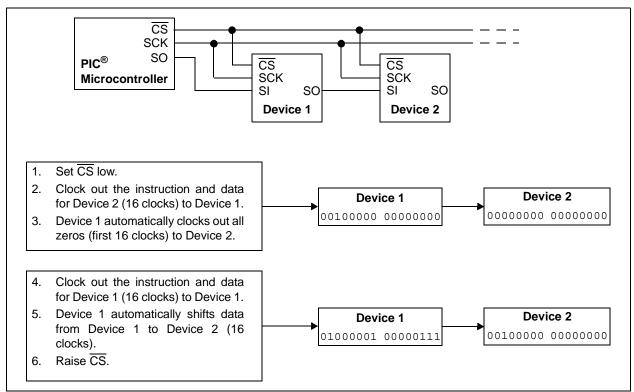
CHANNEL R	EGISTE	R									
U-x	U-x	U-x	U-x	U-x	W-0	W-0	W-0				
—				—	C2	C1	C0				
bit 7							bit 0				
Unimplemented: Read as '0' (reserved for future use)											
C2-C0: Channel Select Bits											
MCP6S21		MCP6S22	22 MCP6S26			MCP6S28					
000 = CH0 (D	efault)	CH0 (Default) CH1 CH0		CH0 (Default) CH1 CH2		CH0 (Default)					
001 = CH0						CH1 CH2					
001 = CHO											
011 = CHO		CH1		CH3		CH3					
100 = CH0		CH0		CH4		CH4					
101 = CHO		CH1		CH5		CH5					
110 = CH0		CH0		CH0		CH6					
111 = CH0		CH1		CH0		CH7					
Legend:											
R = Readable	adable bit W = Writable bit U = Unimplemented bit, read a		bit, read as '	ʻ0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
	U-x bit 7 Unimplement C2-C0: Chan MCP6 000 = CH0 (D 001 = CH0 001 = CH0 001 = CH0 100 = CH0 100 = CH0 110 = CH0 111 = CH0 111 = CH0 Legend: R = Readable	U-x U-x — — bit 7 Unimplemented: Read C2-C0: Channel Select MCP6S21 000 = CH0 (Default) 001 = CH0 001 = CH0 100 = CH0 101 = CH0 101 = CH0 111 = CH0 Legend: R = Readable bit	bit 7Unimplemented: Read as '0' (reseC2-C0: Channel Select BitsMCP6S21MCP6S22000 = CH0 (Default)CH0 (Defa001 = CH0CH1001 = CH0CH1001 = CH0CH1100 = CH0CH1100 = CH0CH1110 = CH0CH1111 = CH0CH1Legend:R = Readable bitW = W	U-xU-xU-xU-xbit 7Unimplemented: Read as '0' (reserved for future C2-C0: Channel Select BitsMCP6S21MCP6S22000 = CH0 (Default)CH0 (Default)001 = CH0CH1001 = CH0CH1001 = CH0CH1100 = CH0CH1110 = CH0CH1110 = CH0CH1111 = CH0CH1Legend:R = Readable bitW = Writable bit	U-xU-xU-xU-xbit 7Unimplemented: Read as '0' (reserved for future use)C2-C0: Channel Select BitsMCP6S21MCP6S22MCP6S26000 = CH0 (Default)CH0 (Default)CH0 (Default)001 = CH0CH1CH1001 = CH0CH1CH2011 = CH0CH1CH3100 = CH0CH1CH3100 = CH0CH1CH5110 = CH0CH1CH5110 = CH0CH1CH0111 = CH0CH1CH0Legend: R = Readable bitW = Writable bitU = Unim	U-xU-xU-xU-xW-0C2bit 7Unimplemented: Read as '0' (reserved for future use)C2-C0: Channel Select BitsMCP6S21MCP6S22MCP6S26000 = CH0 (Default)CH0 (Default)CH0 (Default)001 = CH0CH1CH1001 = CH0CH1CH2011 = CH0CH1CH3100 = CH0CH1CH3101 = CH0CH1CH5110 = CH0CH1CH5110 = CH0CH1CH0111 = CH0CH1CH0Legend:R = Readable bitW = Writable bitU = Unimplemented	U-xU-xU-xU-xW-0W-0C2C1bit 7Unimplemented: Read as '0' (reserved for future use)C2-C0: Channel Select BitsMCP6S21MCP6S22MCP6S26MCP6S28000 = CH0 (Default)CH0 (Default)CH0 (Default)CH0 (Default)001 = CH0CH1CH1CH1CH1001 = CH0CH0CH2CH2011 = CH0CH1CH3CH3100 = CH0CH1CH5CH5110 = CH0CH1CH5CH5110 = CH0CH1CH0CH6111 = CH0CH1CH0CH6Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as ''				

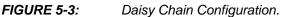
5.2.4 SHUTDOWN COMMAND

The software Shutdown command allows the user to put the amplifier into a low power mode (see Register 5-1). In this shutdown mode, most pins are high impedance (Section 4.4, "Shutdown Mode", and Section 5.1, "SPI Timing", cover the exceptions at pins V_{REF} , V_{OUT} and SO).

Once the PGA has entered shutdown mode, it will remain in this mode until either a valid command is sent to the device (other than NOP or Shutdown), or the device is powered down and back up again. The internal registers maintain their values while in shutdown.

Once brought out of shutdown mode, the part comes back to its previous state (see Section 5.4 for exceptions to this rule). This makes it possible to bring the device out of shutdown mode using one command; send a command to select the current channel (or gain) and the device will exit shutdown with the same state that existed before shutdown.


5.3 Daisy Chain Configuration


Multiple devices can be connected in a daisy chain configuration by connecting the SO pin from one device to the SI pin on the next device and using common SCK and CS lines (Figure 5-3). This approach reduces PCB layout complexity.

The example in Figure 5-3 shows a daisy chain configuration with two devices, although any number of devices can be configured this way. The MCP6S21 and MCP6S22 can only be used at the far end of the daisy chain because they do not have a serial data out (SO) pin. As shown in Figure 5-4 and Figure 5-5, both SI and SO data are sent in 16-bit (2 byte) words. These devices abort any command that is not a multiple of 16 bits.

When using the daisy chain configuration, the maximum clock speed possible is reduced to \approx 5.8 MHz because of the SO pin's propagation delay (see Electrical Specifications).

The internal SPI shift register is automatically loaded with zeros whenever \overline{CS} goes high (a command is executed). Thus, the first 16-bits out of the SO pin once \overline{CS} line goes low are always zeros. This means that the first command loaded into the next device in the daisy chain is a NOP. This feature makes it possible to send shorter command and data byte strings when the farthest devices do not need to change. For example, if there were three devices on the chain and only the middle device needed changing, only 32 bytes of data need to be transmitted (for the first and middle devices), and the last device on the chain would receive a NOP when the \overline{CS} pin is raised to execute the command.

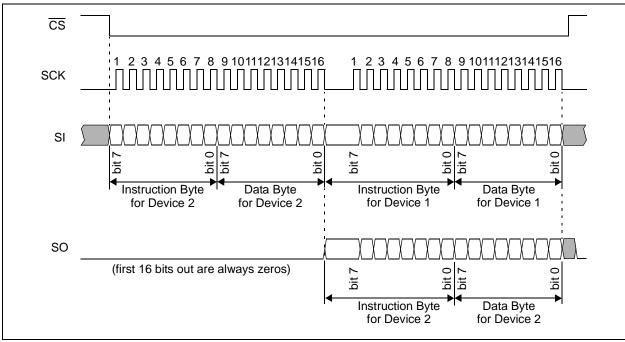


FIGURE 5-4: Serial bus sequence for daisy-chain configuration; SPI 0,0 mode.

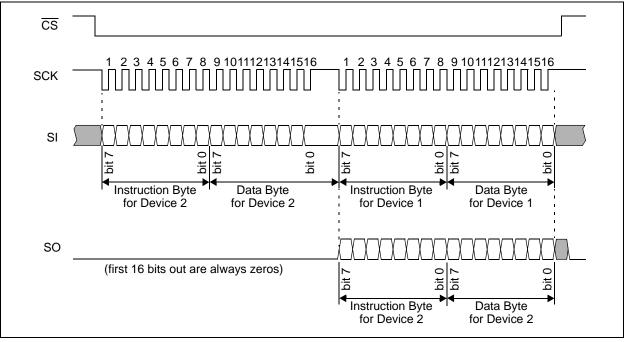


FIGURE 5-5:

Serial bus sequence for daisy-chain configuration; SPI 1,1 mode.

5.4 Power-On Reset

If the power supply voltage goes below the POR trip voltage ($V_{DD} < V_{POR} \approx 1.7V$), the internal POR circuit will reset all of the internal registers to their power-up defaults (this is a protection against low power supply voltages). The POR circuit also holds the part in shutdown mode while it is activated. It temporarily overrides the software shutdown status. The POR releases the shutdown circuitry once it is released ($V_{DD} > V_{POR}$).

A 0.1 μF bypass capacitor mounted as close as possible to the V_{DD} pin provides additional transient immunity.

6.0 APPLICATIONS INFORMATION

6.1 Changing External Reference Voltage

Figure 6-1 shows a MCP6S21 with the V_{REF} pin at 2.5V and V_{DD} = 5.0V. This allows the PGA to amplify signals centered on 2.5V, instead of ground-referenced signals. The voltage reference MCP1525 is buffered by a MCP6021, which gives a low output impedance reference voltage from DC to high frequencies. The source driving the V_{REF} pin should have an output impedance of $\leq 0.1\Omega$ to maintain reasonable gain accuracy.

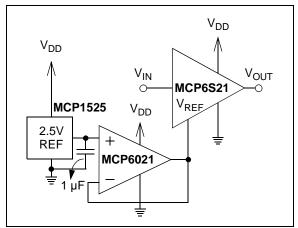


FIGURE 6-1: PGA with Different External Reference Voltage.

6.2 Capacitive Load and Stability

Large capacitive loads can cause both stability problems and reduced bandwidth for the MCP6S21/2/6/8 family of PGAs (Figure 2-17 and Figure 2-18). This happens because a large load capacitance decreases the internal amplifier's phase margin and bandwidth.

If the PGA drives a large capacitive load, the circuit in Figure 6-2 can be used. A small series resistor (R_{ISO}) at the V_{OUT} improves the phase margin by making the load resistive at high frequencies. It will not, however, improve the bandwidth.

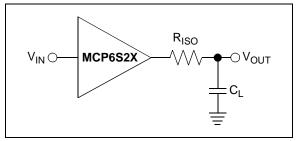


FIGURE 6-2: PGA Circuit for Large Capacitive Loads.

For $C_L \geq 100$ pF, a good estimate for R_{ISO} is 50Ω . This value can be fine-tuned on the bench. Adjust R_{ISO} so that the step response overshoot and frequency response peaking are acceptable at all gains.

6.3 Layout Considerations

Good PC board layout techniques will help achieve the performance shown in the Electrical Characteristics and Typical Performance Curves. It will also help minimize EMC (Electro-Magnetic Compatibility) issues.

6.3.1 COMPONENT PLACEMENT

Separate circuit functions; digital from analog, low speed from high speed, and low power from high power, as this will reduce crosstalk.

Keep sensitive traces short and straight, separating them from interfering components and traces. This is especially important for high frequency (low rise time) signals.

Use a 0.1 μ F supply bypass capacitor within 0.1 inch (2.5 mm) of the V_{DD} pin. It must connect directly to the ground plane. A multi-layer ceramic chip capacitor, or high-frequency equivalent, works best.

6.3.2 SIGNAL COUPLING

The input pins of the MCP6S21/2/6/8 family of operational amplifiers (op amps) are high-impedance. This makes them especially susceptible to capacitively-coupled noise. Using a ground plane helps reduce this problem.

When noise is capacitively-coupled, the ground plane provides additional shunt capacitance to ground. When noise is magnetically coupled, the ground plane reduces the mutual inductance between traces. Increasing the separation between traces makes a significant difference.

Changing the direction of one of the traces can also reduce magnetic coupling. It may help to locate guard traces next to the victim trace. They should be on both sides of the victim trace and be as close as possible. Connect the guard traces to the ground plane at both ends, and in the middle, of long traces.

6.3.3 HIGH FREQUENCY ISSUES

Because the MCP6S21/2/6/8 PGAs reach unity gain near 64 MHz when G = 16 and 32, it is important to use good PCB layout techniques. Any parasitic coupling at high frequency might cause undesired peaking. Filtering high frequency signals (i.e., fast edge rates) can help. To minimize high frequency problems:

- Use complete ground and power planes
- Use HF, surface mount components
- Provide clean supply voltages and bypassing
- Keep traces short and straight
- Try a linear power supply (e.g., an LDO)

6.4 Typical Applications

6.4.1 GAIN RANGING

Figure 6-3 shows a circuit that measures the current I_X . It benefits from changing the gain on the PGA. Just as a hand-held multimeter uses different measurement ranges to obtain the best results, this circuit makes it easy to set a high gain for small signals and a low gain for large signals. As a result, the required dynamic range at the PGA's output is less than at its input (by up to 30 dB).

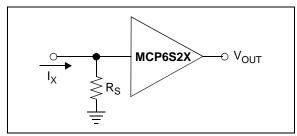


FIGURE 6-3: Wide Dynamic Range Current Measurement Circuit.

6.4.2 SHIFTED GAIN RANGE PGA

Figure 6-4 shows a circuit using an MCP6021 at a gain of +10 in front of an MCP6S21. This changes the overall gain range to +10 V/V to +320 V/V (from +1 V/V to +32 V/V).

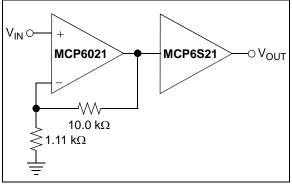


FIGURE 6-4: Range.

PGA with Modified Gain

It is also easy to shift the gain range to lower gains (see Figure 6-6). The MCP6021 acts as a unity gain buffer, and the resistive voltage divider shifts the gain range down to +0.1 V/V to +3.2 V/V (from +1 V/V to +3.2 V/V).

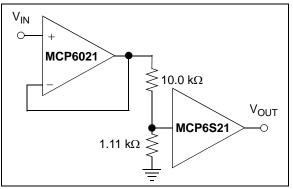


FIGURE 6-5: PGA with lower gain range.

6.4.3 EXTENDED GAIN RANGE PGA

Figure 6-6 gives a +1 V/V to +1024 V/V gain range, which is much greater than the range for a single PGA (+1 V/V to +32 V/V). The first PGA provides input multiplexing capability, while the second PGA only needs one input. These devices can be daisy chained (Section 5.3, "Daisy Chain Configuration").

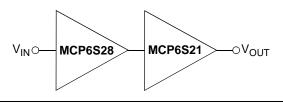
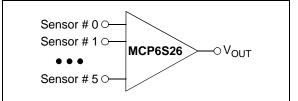
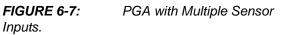
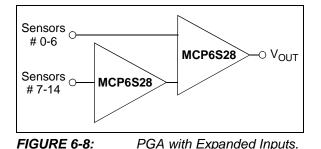




FIGURE 6-6: PGA with Extended Gain Range.

6.4.4 MULTIPLE SENSOR AMPLIFIER


The multiple channel PGAs (except the MCP6S21) allow the user to select which sensor appears on the output (see Figure 6-7). These devices can also change the gain to optimize performance for each sensor.

6.4.5 **EXPANDED INPUT PGA**

Figure 6-8 shows cascaded MCP6S28s that provide up to 15 input channels. Obviously, Sensors #7-14 have a high total gain range available, as explained in Section 6.4.3, "Extended Gain Range". These devices can be daisy chained (Section 5.3, "Daisy Chain Configuration").

6.4.6 PIC MCU WITH EXPANDED INPUT CAPABILITY

Figure 6-9 shows an MCP6S28 driving an analog input to a PIC microcontroller. This greatly expands the input capacity of the microcontroller, while adding the ability to select the appropriate gain for each source.

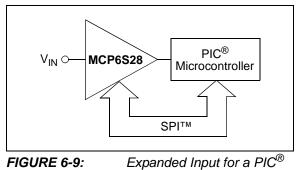
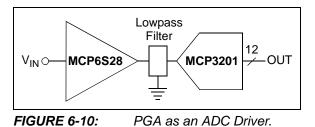



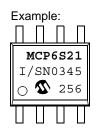
FIGURE 6-9: Microcontroller.

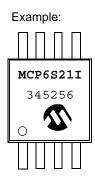
6.4.7 ADC DRIVER

The family of PGA's is well suited for driving Analog-to-Digital Converters (ADC). The binary gains (1, 2, 4, 8, 16 and 32) effectively add five more bits to the input range (see Figure 6-10). This works well for applications needing relative accuracy more than absolute accuracy (e.g., power monitoring).

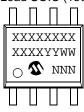
At low gains, the ADC's Signal-to-Noise Ratio (SNR) will dominate since the PGAs input noise voltage density is so low (10 nV/ \sqrt{Hz} @ 10 kHz, typ.). At high gains, the PGA's noise will dominate the SNR, but its low noise supports most applications. Again, these PGAs add the flexibility of selecting the best gain for an application.

The low pass filter in the block diagram reduces the integrated noise at the MCP6S28's output and serves as an anti-aliasing filter. This filter may be designed using Microchip's FilterLab[®] software, available at www.microchip.com.


7.0 PACKAGING INFORMATION


7.1 Package Marking Information

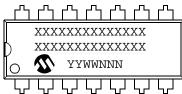
8-Lead PDIP (300 mil) (MCP6S21, MCP6S22)



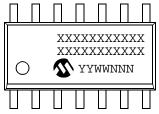
Example: MCP6S21 I/P256 0345 L L L L

8-Lead SOIC (150 mil) (MCP6S21, MCP6S22)

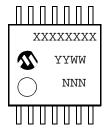
8-Lead MSOP (MCP6S21, MCP6S22)

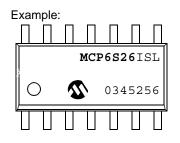


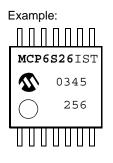
Legend	: XXX YY WW NNN	Customer specific information* Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.


* Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.

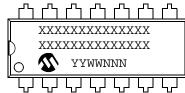
Package Marking Information (Con't)

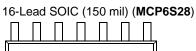

14-Lead PDIP (300 mil) (MCP6S26)


14-Lead SOIC (150 mil) (MCP6S26)

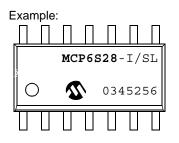


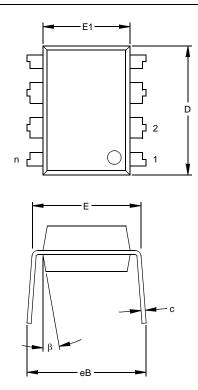
14-Lead TSSOP (4.4mm) (MCP6S26)

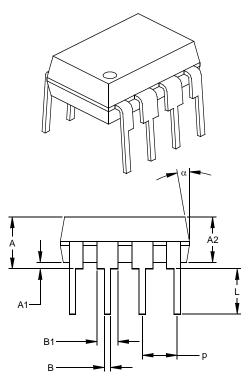

Example:



Package Marking Information (Con't)

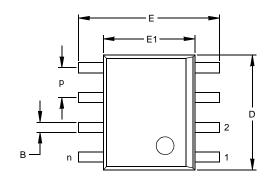

16-Lead PDIP (300 mil) (MCP6S28)

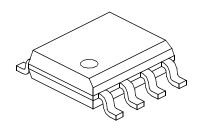


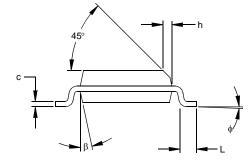

Example: <u>MCP6S28-I/P</u> 0345256 UUUUUUUUUUUUU

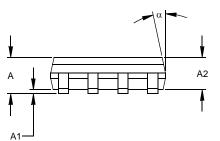
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging


	Units		INCHES*		MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	§ eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


* Controlling Parameter § Significant Characteristic

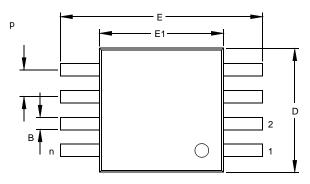

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001

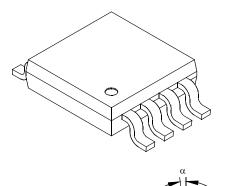

8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

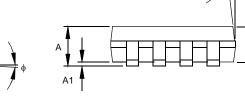
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

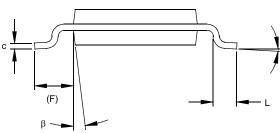
	Units	Units INCHES*			MILLIMETERS			
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8		
Pitch	р		.050			1.27		
Overall Height	А	.053	.061	.069	1.35	1.55	1.75	
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55	
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25	
Overall Width	E	.228	.237	.244	5.79	6.02	6.20	
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99	
Overall Length	D	.189	.193	.197	4.80	4.90	5.00	
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51	
Foot Length	L	.019	.025	.030	0.48	0.62	0.76	
Foot Angle	φ	0	4	8	0	4	8	
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25	
Lead Width	В	.013	.017	.020	0.33	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.


JEDEC Equivalent: MS-012 Drawing No. C04-057

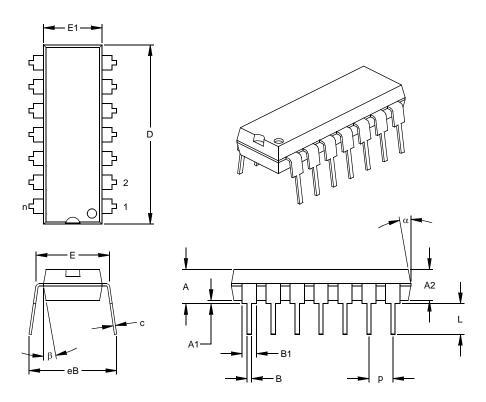

8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units INCHES			MILLIMETERS*			
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8				8	
Pitch	р		.026			0.65		
Overall Height	А			.044			1.18	
Molded Package Thickness	A2	.030	.034	.038	0.76	0.86	0.97	
Standoff §	A1	.002		.006	0.05		0.15	
Overall Width	Е	.184	.193	.200	4.67	4.90	.5.08	
Molded Package Width	E1	.114	.118	.122	2.90	3.00	3.10	
Overall Length	D	.114	.118	.122	2.90	3.00	3.10	
Foot Length	L	.016	.022	.028	0.40	0.55	0.70	
Footprint (Reference)	F	.035	.037	.039	0.90	0.95	1.00	
Foot Angle	ф	0		6	0		6	
Lead Thickness	с	.004	.006	.008	0.10	0.15	0.20	
Lead Width	В	.010	.012	.016	0.25	0.30	0.40	
Mold Draft Angle Top	α		7			7		
Mold Draft Angle Bottom	β		7			7		

*Controlling Parameter § Significant Characteristic

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

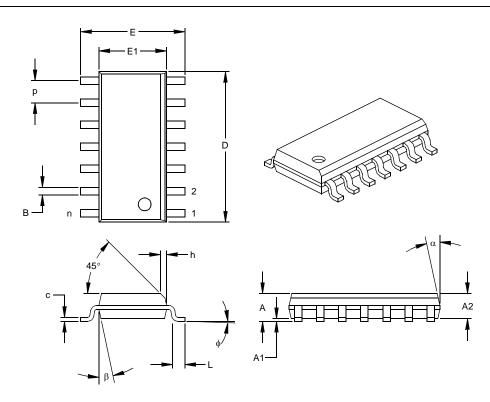
Drawing No. C04-111

A2

14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.740	.750	.760	18.80	19.05	19.30
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	§ eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


* Controlling Parameter § Significant Characteristic

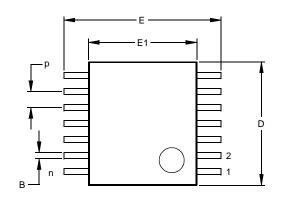
Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

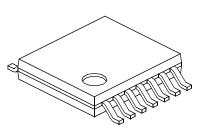
JEDEC Equivalent: MS-001

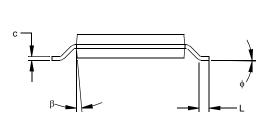
14-Lead Plastic Small Outline (SL) - Narrow, 150 mil (SOIC)

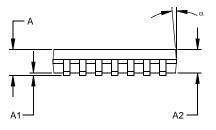
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N		
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	р		.050			1.27	
Overall Height	А	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	Е	.228	.236	.244	5.79	5.99	6.20
Molded Package Width	E1	.150	.154	.157	3.81	3.90	3.99
Overall Length	D	.337	.342	.347	8.56	8.69	8.81
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15
* Controlling Doromotor							


* Controlling Parameter § Significant Characteristic

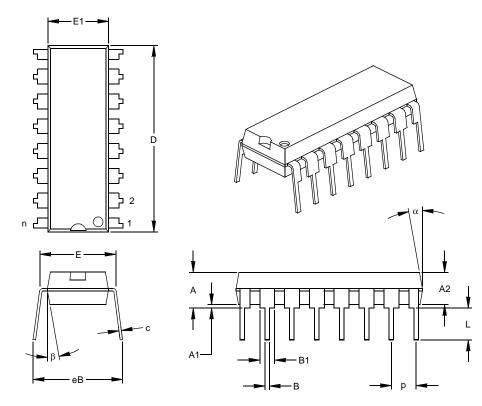

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012


14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*		
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	р		.026			0.65	
Overall Height	А			.043			1.10
Molded Package Thickness	A2	.033	.035	.037	0.85	0.90	0.95
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Overall Width	Е	.246	.251	.256	6.25	6.38	6.50
Molded Package Width	E1	.169	.173	.177	4.30	4.40	4.50
Molded Package Length	D	.193	.197	.201	4.90	5.00	5.10
Foot Length	L	.020	.024	.028	0.50	0.60	0.70
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	B1	.007	.010	.012	0.19	0.25	0.30
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10
* Controlling Decomptor							


* Controlling Parameter § Significant Characteristic

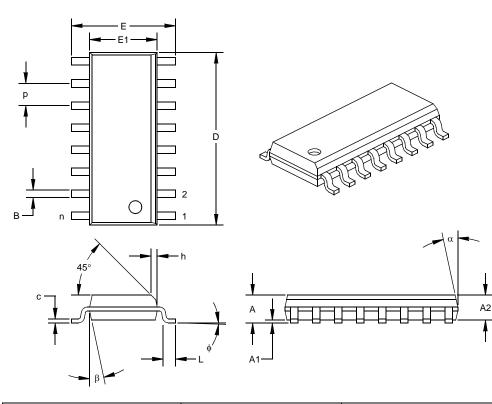
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. JEDEC Equivalent: MO-153

16-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	
Dimensi	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		16			16	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.740	.750	.760	18.80	19.05	19.30
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	.036	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-017

16-Lead Plastic Small Outline (SL) - Narrow 150 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES*		N	1ILLIMETERS	
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		16			16	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.057	.061	1.32	1.44	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	Е	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.150	.154	.157	3.81	3.90	3.99
Overall Length	D	.386	.390	.394	9.80	9.91	10.01
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-012 Drawing No. C04-108

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	-X /XX Temperature Package Range	 Examples: a) MCP6S21-I/P: One Channel PGA, PDIP package. b) MCP6S21-I/SN: One Channel PGA,
Device:	MCP6S21: One Channel PGA MCP6S21T: One Channel PGA (Tape and Reel for SOIC and MSOP) MCP6S22: Two Channel PGA (Tape and Reel for SOIC and MSOP) MCP6S26: Six Channel PGA MCP6S26T: Six Channel PGA (Tape and Reel for SOIC and TSSOP) MCP6S28: Eight Channel PGA MCP6S28T: Eight Channel PGA (Tape and Reel for SOIC)	 SOIC package. MCP6S21-I/MS: One Channel PGA, MSOP package. MCP6S22-I/MS: Two Channel PGA, MSOP package. MCP6S22T-I/MS: Tape and Reel, Two Channel PGA, MSOP package. MCP6S26-I/P: Six Channel PGA, PDIP package. MCP6S26-I/SN: Six Channel PGA, SOIC package.
Temperature Range: Package:	I = -40°C to +85°C MS = Plastic Micro Small Outline (MSOP), 8-lead P = Plastic DIP (300 mil Body), 8, 14, and 16-lead SN = Plastic SOIC, (150 mil Body), 8-lead SL = Plastic SOIC (150 mil Body), 14, 16-lead ST = Plastic TSSOP (4.4mm Body), 14-lead	 h) MCP6S26T-I/ST: Tape and Reel, Six Channel PGA, TSSOP package. i) MCP6S28T-I/SL: Tape and Reel, Eight Channel PGA, SOIC package.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

MCP6S21/2/6/8

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2003-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Rinted on recycled paper.

ISBN: 9781620767504

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9