

DEMO MANUAL DC1901A

LTC3639EMSE High Efficiency 150V, 100mA Synchronous Buck Converter

DESCRIPTION

Demonstration circuit 1901A is a 150V input, 100mA output DC/DC power supply featuring the LTC3639. The IC operates in a high efficiency Burst Mode® operation and includes internal high and low side power MOSFETs. The board will accept an input voltage between 4V and 150V, and provide jumper selected output voltages of 1.8V, 3.3V, 5V and an option for additional voltages. The IC includes internal soft-start and a provision for increasing soft-start time.

Included on the board is an ON/OFF jumper that can also be configured as a precision undervoltage lockout. Additional PC pads are included for programming current limit to optimize efficiency and for reducing output voltage ripple and reducing component size. A terminal (FBO)

is included to allow multiple boards to be paralleled for higher output current.

Output voltage between 800 mV and V_{IN} can be programmed using optional resistors. (Higher voltage rating output capacitors may be required.)

The LTC3639 data sheet gives a complete description of the IC operation and application information. The data sheet must be read in conjunction with this quick start guide.

Design files for this circuit board are available at http://www.linear.com/demo

LT, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

PARAMETER	CONDITION	VALUE
Input Voltage Range		4V to 150V
1.8V Output Voltage	V _{IN} = 12V, I _{OUT} = 0A to 100mA	1.8V ±2%
3.3V Output Voltage	V _{IN} = 12V, I _{OUT} = 0A to 100mA	3.3V ±2%
5V Output Voltage	V _{IN} = 12V, I _{OUT} = 0A to 100mA	5V ±2%
Maximum Output Current, I _{OUT}	V _{IN} = 4V to 150V, V _{OUT} = 1.8V, 3.3V or 5V	100mA
Typical Efficiency	V _{IN} = 12V, V _{OUT} = 5V, I _{OUT} = 100mA	87.3%
Typical Output Ripple	V _{IN} = 150V, V _{OUT} = 5V, I _{OUT} = 100mA (20MHz BW)	66mV _{P-P}

QUICK START PROCEDURE

Demonstration circuit 1901A is easy to set up to evaluate the performance of the LTC3639. Refer to Figure 1 for the proper measurement equipment setup and follow the procedure below:

- 1. With power off, connect the input power supply (set for OV) to V_{IN} and GND (input return).
- 2. Select 5V output using jumper JP1 (B position) and JP2 (A position). Select ON position for JP3.
- Connect the 5V output load between V_{OUT} and GND (Initial load: no load).
- 4. Connect the DVMs to the input and outputs.
- Turn on the input power supply and slowly increase to 12V. Check for the proper output voltages. (5V output should be within 5V ±2%.)
- Once the proper output voltages are established, adjust the loads within the operating range and observe the output voltage regulation, ripple voltage and other parameters.

7. With power off, move jumpers JP1 and JP2 to the other fixed voltage settings (1.8V or 3.3V). Repeat steps 5 and 6. Check for the proper output voltage and other parameters.

NOTE: When measuring the output or input voltage ripple, do not use the long ground lead on the oscilloscope probe. See Figure 2 for the proper scope probe technique. Short, stiff leads need to be soldered to the (+) and (-) terminals of an output capacitor. The probe's ground ring needs to touch the (-) lead and the probe tip needs to touch the (+) lead.

ADDITIONAL NOTES:

CAUTION:

Be careful when testing with high voltage. High voltage can result in an electric shock if care is not taken.

For 5V output, V_{IN} input voltage should be at least 5V or higher.

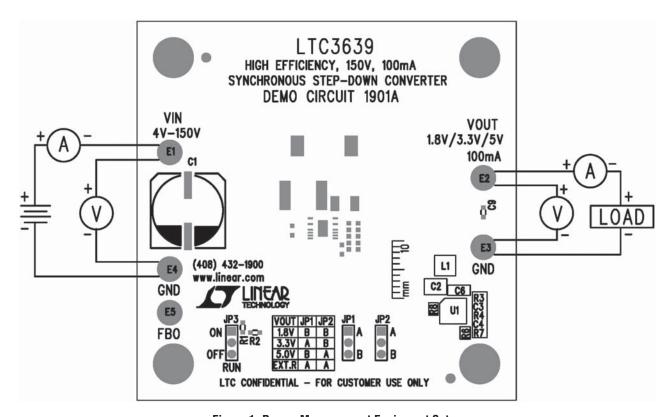


Figure 1. Proper Measurement Equipment Setup

LINEAR TECHNOLOGY

QUICK START PROCEDURE

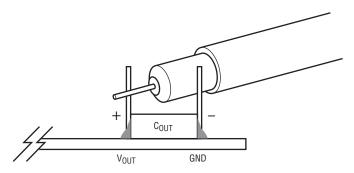
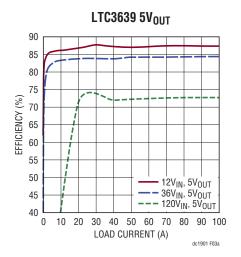
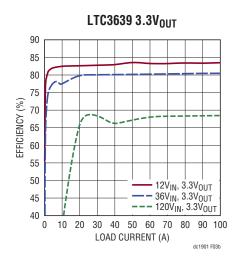
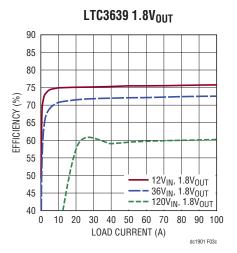
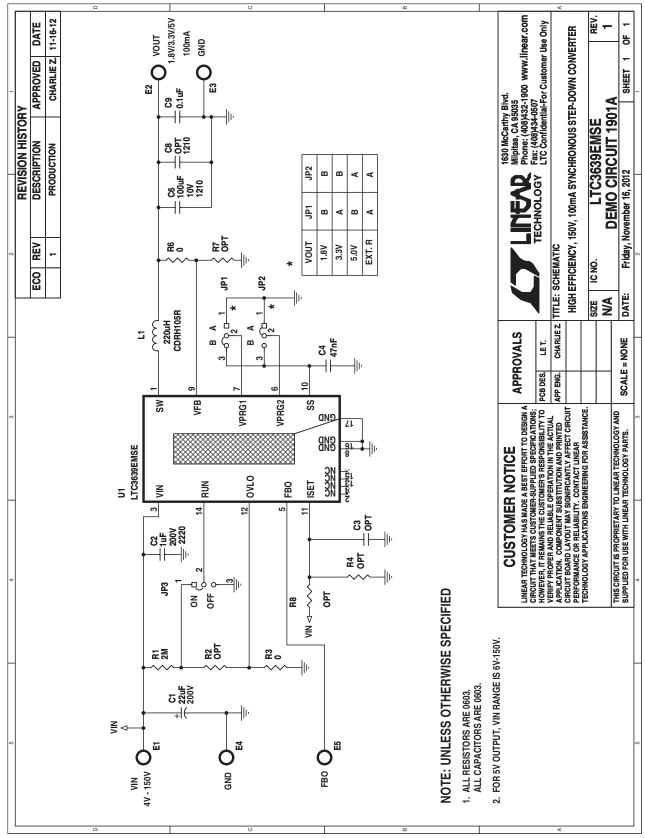




Figure 2. Measuring Output Voltage Ripple




Figure 3. Efficiency vs Load Current

DEMO MANUAL DC1901A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Require	d Circuit	Components		
1	1	C1	ALUM. ELECT 22µF 200V MVE Series 12.5x16mm	NIPPON CHEMI-CON, EMVE201ARA220MKG5S
2	1	C2	CAP., X7R, 1µF, 200V, 10% 2220	KEMET, C2220X105K2RAC7533
3	1	C4	CAP., X7R, 47nF, 25V, 10% 0603 0.047µF	AVX, 06033C473KAT2A
4	1	C6	CAP., X7R, 100µF, 10V, 20% 1210	TAIYO YUDEN, LMK325ABJ107MM-T
5	1	C9	CAP., X7R, 0.1µF, 25V, 10% 0603	AVX, 06033C104KAT2A
6	1	L1	INDUCTOR, 220µH	SUMIDA, CDRH105RNP-221NC
7	1	R1	RES., CHIP, 2M, 1/10W, 5% 0603	VISHAY, CRCW06032M00JNEA
8	2	R3, R6	RES., CHIP, 0Ω, 1/10W, 0603	VISHAY, CRCW06030000Z0EA
9	1	U1	IC., LTC3639EMSE MSE16(12), 4X3MM	LINEAR TECH., LTC3639EMSE#PBF
Addition	al Demo	Board Circuit Components		
10	0	C3	CAP., 0603	OPT
11	0	C8	CAP., 1210	OPT
12	0	R2, R4, R7, R8	RES., 0603	OPT
Hardwar	e: For D	emo Board Only		
13	5	E1, E2, E3, E4, E5	TESTPOINT, TURRET, 0.094"	MILL-MAX, 2501-2-00-80-00-00-07-0
14	3	JP1, JP2, JP3	HEADER, 3 PIN 0.079" SINGLE ROW	SULLINS, NRPN031PAEN-RC
15	3	XJP1, XJP2, XJP3	SHUNT, 0.079" CENTER	SAMTEC, 2SN-BK-G

SCHEMATIC DIAGRAM

DEMO MANUAL DC1901A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following **AS IS** conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address: Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9