

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOR

Revised July 2001

FIN1031 3.3V LVDS 4-Bit High Speed Differential Driver

General Description

This quad driver is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signal levels to LVDS levels with a typical differential output swing of 350mV which provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed transfer of clock and data.

The FIN1031 can be paired with its companion receiver, the FIN1032, or any other Fairchild LVDS receiver.

Features

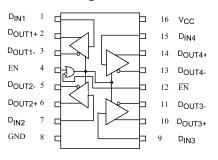
- Greater than 400Mbs data rate
- 3.3V power supply operation
- 0.4ns maximum differential pulse skew
- 2.0ns maximum propagation delay
- Low power dissipation
- Power OFF protection
- Meets or exceeds the TIA/EIA-644 LVDS standard ■ Pin compatible with equivalent RS-422 and LVPECL devices

July 2001

■ 16-Lead SOIC and TSSOP packages save space

Ordering Code:

Order Number	Package Number	Package Description
FIN1031M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
FIN1031MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


nding the suffix letter "X" to the ordering code

Function Table

	Inputs				Outputs		
EN	El	N	D _{IN}	D _{OUT+}	D _{OUT-}		
Н	Х	,	Н	Н	L		
Н	Х		L	L	Н		
Н	Х	,	OPEN	L	Н		
Х	L		Н	Н	L		
Х	L		L	L	Н		
Х	L		OPEN	L	Н		
L	н		Х	Z	Z		
	H = HIGH Logic Level L = LOW Logic Level X = Don't Care Z = High Impedance						

Pin Descriptions

Connection Diagram

Pin Name Description D_{IN1}, D_{IN2}, D_{IN3}, D_{IN4} LVTTL Data Inputs Non-Inverting Driver Outputs D_{OUT1+}, D_{OUT2+}, D_{OUT3+}, D_{OUT4+} Inverting Driver Outputs D_{OUT1-}, D_{OUT2-}, D_{OUT3-}, D_{OUT4-} FN Driver Enable Pin EN Inverting Driver Enable Pin V_{CC} Power Supply GND Ground

FIN1031

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _{IN})	
$@V_{CC} \ge 3V$	-0.5V to +6V
$@V_{CC} = 0V$	-0.5V to +4.6V
DC Output Voltage (V _{OUT})	
$@V_{CC} = 0V$	-0.5V to +4.6V
Driver Short Circuit Current (I _{OSD})	Continuous
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
ESD (Human Body Model)	≥ 8000V
ESD (Machine Model)	\geq 600V

Recommended Operating Conditions

Supply Voltage (V_{CC}) Input Voltage (V_{IN}) Operating Temperature (T_A) 3.0V to 3.6V0 to V_{CC} -40°C to +85°C

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

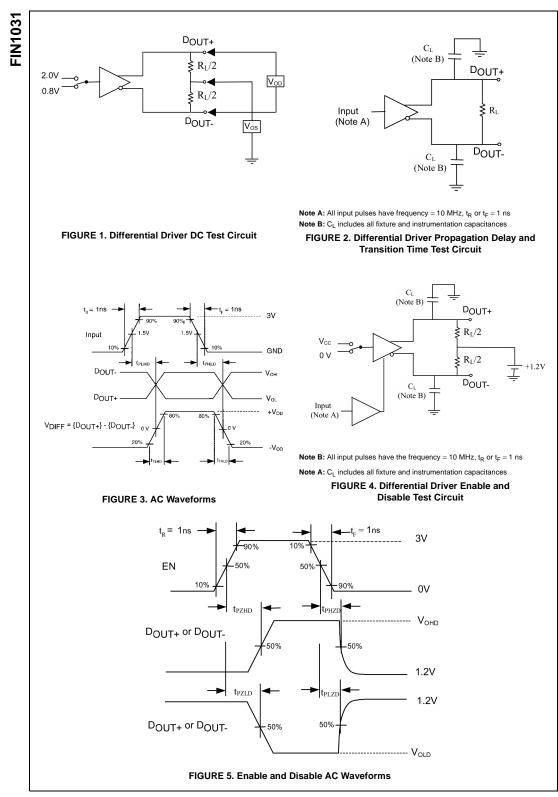
DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Units
V _{OD}	Output Differential Voltage		250	350	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	$R_L = 100\Omega$, Driver Enabled,			25	mV
V _{OS}	Offset Voltage	See Figure 1	1.125	1.25	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH				25	mV
I _{OFF}	Power Off Output Current	$V_{CC} = 0V, V_{OUT} = 0V \text{ or } 3.6V$			±20	μA
I _{OS}	Short Circuit Output Current	$V_{OUT} = 0V$, Driver Enabled $V_{OD} = 0V$, Driver Enabled			-6 ±6	mA
VIH	Input HIGH Voltage		2.0		V _{CC}	V
V _{IL}	Input LOW Voltage		GND		0.8	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$			±20	μΑ
I _{OZ}	Disabled Output Leakage Current	EN = 0.8V, EN = 2.0V V _{OUT} = 0V or 4.7V			±20	μA
I _{I(OFF)}	Power-OFF Input Current	$V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$			±20	μA
VIK	Input Clamp Voltage	I _{IK} = -18 mA	-1.5			V
Icc	Power Supply Current	No Load, $V_{IN} = 0V$ or V_{CC} , Driver Enabled		3.2	5	
		$R_L = 100 \ \Omega$, Driver Disabled		3.2	5	mA
		R_L = 100 $\Omega,~V_{IN}$ = 0V or $V_{CC},~Driver~Enabled$		17.9	25	
CIN	Input Capacitance			7		pF
COUT	Output Capacitance			4		pF

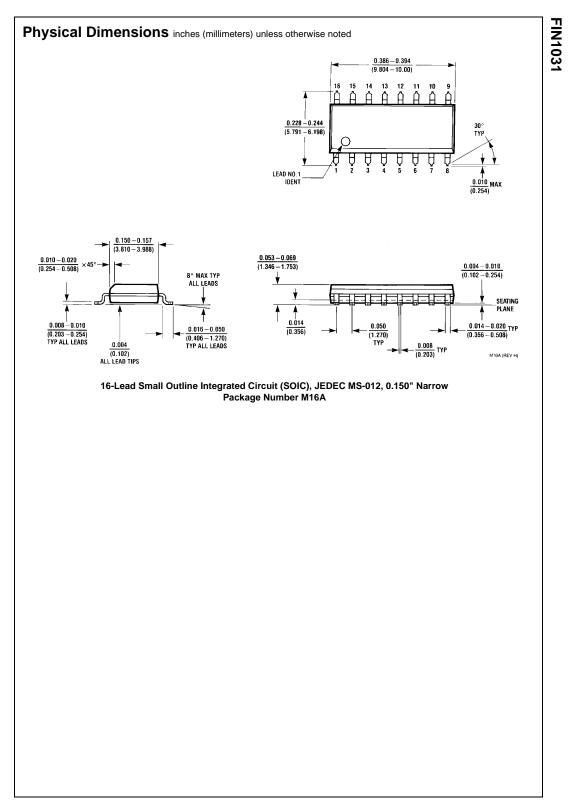
www.fairchildsemi.com

Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units
t _{PLHD}	Differential Propagation Delay LOW-to-HIGH		0.8	1.4	2.0	ns
t _{PHLD}	Differential Propagation Delay HIGH-to-LOW	-	0.8	1.4	2.0	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)	$R_L = 100 \ \Omega, \ C_L = 10 \ pF,$	0.6	0.85	1.2	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)	See Figure 2 and Figure 3 (Note 7)	0.6	0.85	1.2	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}	Ī			0.4	ns
t _{SK(LH)} t _{SK(HL)}	Channel-to-Channel Skew (Note 4)	-			0.3	ns
t _{SK(PP)}	Part-to-Part Skew (Note 5)				1.0	ns
f _{MAX}	Maximum Frequency (Note 6)		200	275		MHz
t _{ZHD}	Differential Output Enable Time from Z to HIGH			2.5	5.0	ns
t _{ZLD}	Differential Output Enable Time from Z to LOW	$R_{L} = 100\Omega, C_{L} = 10 \text{ pF},$		2.7	5.0	ns
t _{HZD}	Differential Output Disable Time from HIGH to Z	See Figure 4 and Figure 5 (Note 7)		3.2	5.0	ns
t _{LZD}	Differential Output Disable Time from LOW to Z	F		3.4	5.0	ns

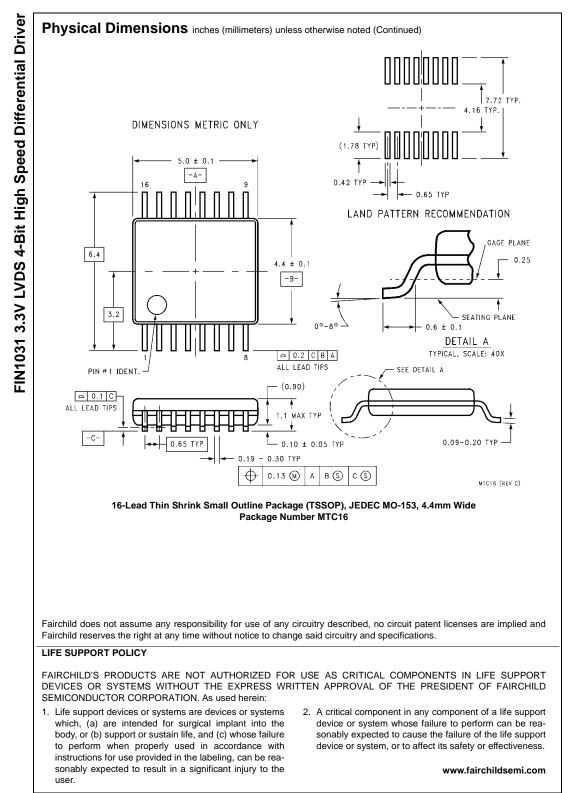

Note 3: All typical values are at T_A = 25°C and with V_{CC} = 3.3V.

Note 4: $t_{SK(LH)}$, $t_{SK(HL)}$ is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.

Note 5: $t_{SK(PP)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits. Note 6: f_{MAX} Criteria: Input $t_R = t_F < 1$ ns, 0V to 3V, 50% Duty Cycle; Output V_{OD} > 250 mV, 45% to 55% Duty Cycle; all output channels switching in phase.


Note 7: Test Circuits in Figure 2 and Figure 4 are simplified representations of test fixture and DUT loading.

FIN1031



www.fairchildsemi.com

4

www.fairchildsemi.com

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FIN1031MTC</u> <u>FIN1031MTCX</u> <u>FIN1031MX</u> <u>FIN1031M</u>

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9