AUTOMOTIVE

HALOGEN FREE

Vishay General Semiconductor

Surface Mount ESD Capability Rectifiers

DO-220AA (SMP)

PRIMARY CHARACTERISTICS					
I _{F(AV)} 1.5 A					
V _{RRM}	100 V to 600 V				
I _R	5 μΑ				
V _F at I _F = 1.0 A	0.868 V				
T _J max.	175 °C				

TYPICAL APPLICATIONS

General purpose, polarity protection, and rail-to-rail protection in both consumer and automotive applications.

FEATURES

- Very low profile typical height of 1.0 mm
- · Ideal for automated placement
- Oxide planar chip junction
- Low forward voltage drop
- Typical I_R less than 0.1 μA
- ESD capability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

Case: DO-220AA (SMP)

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant, and commercial grade

Base P/NHM3 - halogen-free, RoHS-compliant, and automotive grade

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 1A whisker test, HM3 suffix meets JESD 201 class 2 whisker test

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	SE15PB	SE15PD	SE15PG	SE15PJ	UNIT
Device marking code		15B	15D	15G	15J	
Maximum repetitive peak reverse voltage	V_{RRM}	100	200	400	600	V
Average forward current (fig. 1)	I _{F(AV)}	1.5			Α	
Peak forward surge current 10 ms single half sine-wave superimposed on rated load	I _{FSM}	30				А
Operating junction and storage temperature range	T _J , T _{STG}	- 55 to + 175				°C

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)							
PARAMETER	TEST CONDITIONS		SYMBOL	TYP.	MAX.	UNIT	
Maximum instantaneous	I _F = 1.5 A	T _A = 25 °C T _A = 125 °C	V _F ⁽¹⁾	0.968	1.05	- V	
forward voltage		T _A = 125 °C		0.868	0.95		
Maximum reverse current	Rated V _R	T _A = 25 °C	I _R ⁽²⁾	-	5.0	μΑ	
Maximum reverse current		T _A = 125 °C		5.4	50		
Maximum reverse recovery time	$I_F = 0.5 \text{ A}, I_R = 1.0 \text{ A}, I_{rr} = 0.25 \text{ A}$		t _{rr}	900	-	ns	
Typical junction capacitance	4.0 V, 1 MHz		CJ	9.5	-	pF	

Notes

 $^{(1)}\,$ Pulse test: 300 μs pulse width, 1 % duty cycle

(2) Pulse test: Pulse width ≤ 40 ms

THERMAL CHARACTERISTICS (T _A = 25 °c unless otherwise noted)						
PARAMETER	SYMBOL	OL SE15PB SE15PD SE15PG SE15PJ UNIT			UNIT	
	R _{0JA} (1)	105				
Typical thermal resistance	R ₀ JL (1)	25				°C/W
	R ₀ JC (1)	30				

Note

⁽¹⁾ Thermal resistance from junction to ambient and junction to lead mounted on PCB with 5.0 mm x 5.0 mm copper pad areas. $R_{\theta JL}$ - is measured at the terminal of cathode band. $R_{\theta JC}$ is measured at the top center of the body.

IMMUNITY TO ELECTRICAL STATIC DISCHARGE TO THE FOLLOWING STANDARDS ($T_A = 25~^{\circ}\text{C}$ unless otherwise noted)						
STANDARD	TEST TYPE	TEST CONDITIONS	SYMBOL	CLASS	VALUE	
AEC-Q101-001	Human body model (contact mode)	C = 100 pF, R = 1.5 kΩ		НЗВ	> 8 kV	
AEC-Q101-002	Machine model (contact mode)	C = 200 pF, R = 0 Ω		M4	> 400 V	
JESD22-A114	Human body model (contact mode)	C = 150 pF, R = 1.5 kΩ	V_{C}	3B	> 8 kV	
JESD22-A115	Machine model (contact mode)	C = 200 pF, R = 0 Ω	V.C	С	> 400 V	
IEC 61000-4-2 ⁽²⁾	Human body model (contact mode)	C = 150 pF, R = 150 Ω		4	> 8 kV	
	Human body model (air-discharge mode) (1)	C = 150 pF, R = 150 Ω		4	> 15 kV	

Notes

 $^{(1)}$ Immunity to IEC 61000-4-2 air discharge mode has a typical performance > 30 kV

⁽²⁾ System ESD standard

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
SE15PJ-M3/84A	0.024	84A	3000	7" diameter plastic tape and reel		
SE15PJ-M3/85A	0.024	85A	10 000	13" diameter plastic tape and reel		
SE15PJHM3/84A ⁽¹⁾	0.024	84A	3000	7" diameter plastic tape and reel		
SE15PJHM3/85A ⁽¹⁾	0.024	85A	10 000	13" diameter plastic tape and reel		

Note

(1) Automotive grade

Vishay General Semiconductor

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

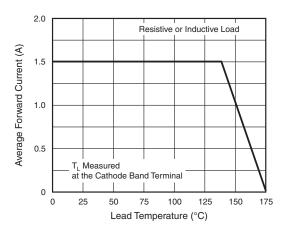


Fig. 1 - Maximum Forward Current Derating Curve

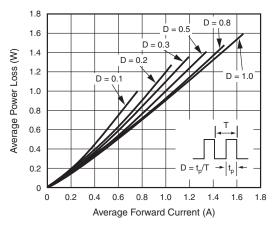


Fig. 2 - Forward Power Loss Characteristics

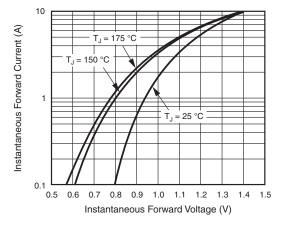


Fig. 3 - Forward Power Loss Characteristics

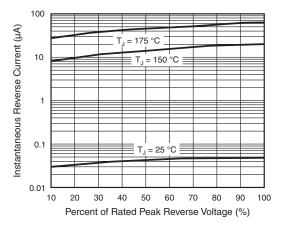


Fig. 4 - Typical Instantaneous Forward Characteristics

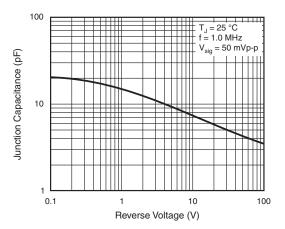
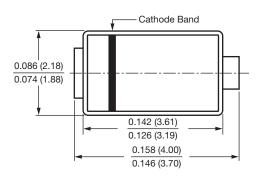
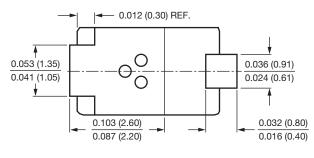
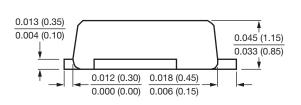
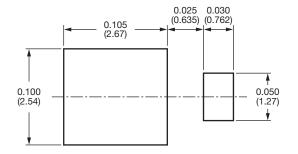


Fig. 5 - Typical Instantaneous Forward Characteristics






Vishay General Semiconductor


PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

DO-220AA (SMP)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9