LA74309FA

Monolithic Linear IC Microphone Amplifier for Digital Still Camera

Overview

LA74309FA is a microphone amplifier for digital still cameras that have mono audio recording. The analog signal processing for the recording of the digital still camera or other equipment can be easily composed, because the MIC power supply and the ALC circuit are built-in. Moreover, the regulator is built-in, therefore external regulator IC is unnecessary.

Features

- Microphone (MIC) amplifier (+20dB)
- MIC power supply with built-in pull-up resistor
- Automatic level control (ALC) amplifier (output level=-1dBV≈2.5Vpp)
- 3rd order LPF (fc=11kHz)
- 3V regulator (At the time of V_{CC}=3.3V, internal supply voltage: $V_{CC}A\approx3.0V$)
- Standby control (I_{CC} \leq 10µA)

Specifications

Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	V _{CC} max		4.0	V
Allowable power dissipation	Pd max	Ta≤85°C	50	mW
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended power supply voltage	V _{CC}		3.3	V
Operating voltage range of V_{CC}	V _{CC} op		3.1 to 3.6	V

Electrical Characteristics at Ta=25°C, V_{CC}=3.3V, f=1kHz

D	0	ymbol Conditions		Ratings		
Parameter	Symbol			typ	max	Unit
Circuit current						
V_{CC} no signal current dissipation	ICC	V _{CC} =3.3V, Active mode (Pin3=3V) 3.9 5.3		5.3	6.7	mA
V_{CC} standby current dissipation	ICCS	V _{CC} =3.3V, Standby mode (Pin3=0V)			10	μA
REC output system						
Standard REC output level	VOR	V _{IN} =-49dBV at ALC IN pin (=Standard level)	-10	-9	-8	dBV
Standard REC output distortion	HDR	ALC IN, VIN=-49dBV, THD from to 5th harmonic		0.1	0.2	%
ALC characteristics	ALM	ALC IN, VIN=-17dBV (=Standard level +32dB)	-3	-1		dBV
ALC THD	ALMD	ALC IN, V _{IN} =-17dBV (=Standard level +32dB), THD from to 5th harmonic	0.25		1	%
ALC IN maximum input level	VINRMX	REC output THD≤3%			-10	dBV
REC output noise level	VNOR	No signal at MIC IN pin, with JIS-A Filter	-53		-47	dBV
REC output frequency characteristics 1	FEQR1	ALC IN, V _{IN} =-17dBV, The output level ratio at f=11kHz/1kHz	-5 -3		-1	dB
REC output frequency characteristics 2	FEQR2	ALC IN, V _{IN} =-17dBV, The output level ratio at f=22kHz/1kHz	-18		-12	dB
REC output frequency characteristics 3	FEQR3	ALC IN, V _{IN} =-17dBV, The output level ratio at f=100kHz/1kHz		-55	-45	dB
MIC output system						
MIC voltage gain	VGMIC	V _{IN} =-39dBV at MIC IN pin 19 20		21	dB	
MIC output THD	HDMIC	MIC IN, VIN=-39dBV, THD from to 5th harmonic	0.03 0.1		%	
MIC IN maximum input level	VINMMX	MIC output THD=3%			-30	dBV
MIC V _{CC} output DC voltage	VMIC	With 6.2k Ω load	ith 6.2kΩ load 1.5 1.7 1.9		1.9	V

Package Dimensions

unit : mm (typ) 3428

Pin assinment

Pin Description

Pin No.	Pin Description		
1	GND		
2	ALC input		
3	STANDBY CTL		
4	MIC output		
5	MIC input		
6	Ripple removal for VREF		
7	Internal MIC power supply		
8	ALC DET		
9	REC output		
10	V _{CC}		

Equivalent Circuit Block Diagram & Application Circuit

Pin Functions

PIN No.	Pin Name	DC voltage	AC voltage	Functions	Equivalent Circuit
1	GND	0V		Ground	
2	ALC IN		Output level=-49dBV (At MIC IN=-69dBV) Maximum input level =-10dBV		V _{CC} A (=3.0V) 2 500Ω 500Ω 500Ω 500Ω VREFL
3	STANDBY L			Standby control pin Over 2V: Standby OFF	3 45kΩ 40kΩ 7/7 7/7 7/7
4	MIC OUT	1.60V	Output level=-49dBV (At MIC IN=-69dBV)	MIC output pin	V _{CC} A (=3.0V) 4 500Ω 9.7kΩ 1kΩ 777 VREFL
5	MIC IN		Standard input level =-69dBV Maximum input level =-30dBV	MIC input pin	V _{CC} A (=3.0V) 500Ω 7/7 VREFL
6	VREF	2.30V		MIC $V_{\mbox{CC}}$ and ripple rejection pin for VREFL	$\begin{array}{c} V_{CC}A (=3.0V) \\ \hline \\ 500\Omega \\ \hline \\ \\ 500\Omega \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
7	INT MIC VCC	2.30V		MIC power supply pin	V _{CC} A (=3.0V) 7 2.2kΩ 2.2kΩ 2.2kΩ 2.2kΩ 2.2kΩ

Continued on next page.

PIN No.	Pin Name	DC voltage	AC voltage	Functions	Equivalent Circuit
8	ALC DET			ALC detector pin	V _{CC} A (=3.0V) 1kΩ ≥ 500Ω 1 1 1 1 1 1 1 1 1 1 1 1 1
9	REC OUT	1.60V	Output level=-9dBV (At MIC IN=-69dBV)	REC output pin	V _{CC} (=3.3V) 9 500Ω 11kΩ 11kΩ 11kΩ VREFL
10	V _{CC}	3.3V		Power supply pin	

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9