

PET2000-12-074NA SINGLE CONNECTOR BOARD

P/N: YTM.00046.0

PCB version ZGN.U0P03.1

User Manual

North America +1.866.513.2839

Asia-Pacific +86.755.29885888

Europe, Middle East +353.61 225 977

tech.support@psbel.com belpowersolutions.com BCG.00809_AB

PET2000-12-074NA EVALUATION BOARD

Contents

1.	INTRODUCTION	3
2.	SAFETY WARNING	3
3.	REFERENCE DOCUMENTS	3
4.	YTM.00046.0 CONTENT	3
5.	SPECIFICATION	3
6.	DESCRIPTION	4
	Evaluation Board Schematic	4
	Evaluation Board Assembly Drawing	4
	Test Points and Connectors	5
	Jumper Configuration	6
7.	TEST SETUP	7
	Single Power Supply	7
	Two Power Supplies in Parallel	8
8.	SOFTWARE SETUP	g
9.	OPERATION	10
10.	HISTORY	12
Арр	pendix A: Schematic YTM.00046.0 Evaluation Board	13

1. INTRODUCTION

This user manual is for the PET2000-12-074NA Single Connector Board (YTM.00046.0).

PET2000-12-074NA Single Connector Board is intended for evaluation and testing of a single Platinum Front-End power system for Datacom servers, routers, and switches.

2. SAFETY WARNING

This evaluation board is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by Bel Power Solutions to be a finished end-product fit for general consumer or professional use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies Bel Power Solutions from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is user's responsibility to take any and all appropriate precautions with regard to safety.

Bel Power Solutions assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

THE ON-BOARD USB TO I2C INTERFACE IS NOT GALVANIC ISOLATED (see page 7, TEST SETUP for further information).

3. REFERENCE DOCUMENTS

BCD.00478 PET2000-12-074NA Datasheet

URP.00234 PETxx00-12-074NA Communication Manual

4. YTM.00046.0 CONTENT

PET2000-12-074NA Connector Board USB Cable A-B

5. SPECIFICATION

General Condition: TA = 0 ... +55 °C unless otherwise noted.

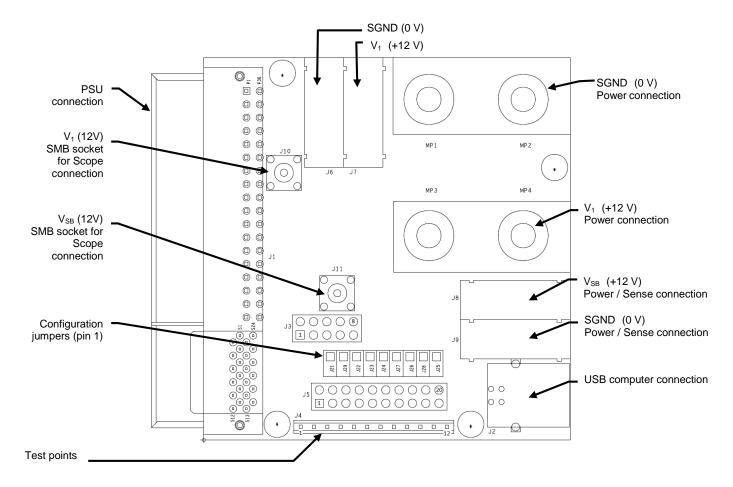
PARAMETER	1	CONDITIONS / DESCRIPTION	MIN	NOM	MAX	UNIT
V_1	Main output voltage			12		VDC
I _{1 nom}	Nominal output current				167	Α
V_{SB}	Standby output voltage			12		VDC
I _{SB nom}	Standby output current				5	Α
	Communication	PMBUS Protocol		² C via on-board	USB conv	erter

6. DESCRIPTION

The single connector board provides all necessary electrical connections on the output power and signals of the PET2000-12-074NA front-end power supplies with communication capabilities.

It also provides test points so that specific voltages and signals can be monitored.

Adding or removing jumpers allow configuration of certain functions of the power supply.


Operating the connector board at high load for long duration (more than 5 minutes) requires some kind of cooling of the board to ensure its temperature remains in a range not dangerous when touching.

Evaluation Board Schematic

The schematic of the single connector board can be found in Appendix A.

Evaluation Board Assembly Drawing

Use metric M5 screws to attach power cables to MP1 ... MP4. Use at least 35mm2 cable to connect to load.

PET2000-12-074NA EVALUATION BOARD

Test Points and Connectors

Measurement Connectors and Test Points

CONNECTOR	NAME	DESCRIPTION	NOTES			
MP3, MP4	V1	12V main output	Main output load connection			
MP1, MP2	GND	Main output return	Main output load connection			
J7	V1	12V main output	Use to sense main output voltage, or low current load			
J6	GND	Main output return	max. 16A			
J8	VSB	12V standby output	Standby output load and sense connection			
J9	GND	12V standby return	Standay output load and sense connection			
J4 pin 1	PSON_L	Power supply on input, active-low				
J4 pin 2	PWOK_H	Power OK signal output, active-high				
J4 pin 3	SMB_ALERT_L	SMB Alert signal output, active-low				
J4 pin 4	SCL	I2C clock line				
J4 pin 5	SDA	I2C data line				
J4 pin 6	HOTSTAND-BYEN_H	Hotstandby enable signal, active-high				
J4 pin 7	PRESENT_L	Power supply seated, active-low				
J4 pin 8	A2	I2C address selection input				
J4 pin 9	ISHARE	Analog current share bus				
J4 pin 10	V1	Main output sense				
J4 pin 11	VSB	Standby output sense				
J4 pin 12	GND	Signal return/reference				
J5	Bridge these pins through flat cable to any paralleled PET2000-12-074NA evaluation board					
J10	V1	12V main output	Use for scope connection			
J11	VSB	12V standby output	ose for scope connection			
J2	USB	USB connection to computer				

Jumper Configuration

JUMPER	NAME	DEFAULT	JUN	MPER	DESCRIPTION				
J21	V1_SENSE	Present	Open		Positive main output sense input of PSU is open, and can be manually connected through J21 pin 1, or by connecting to a paralleled evaluation board				
321			Present		Positive main output sense input of PSU is connected to V1 power rail				
J22	V1_SENSE_R	Present	Open		Negative main output sense input of PSU is open, and can be manually connected through J22 pin 1, or by connecting to a paralleled evaluation board				
			Present Negative main output sense input of PSU is connected to GND power ra			SND power rail			
J23	A0	Present		J29 (A	(2)			Controller	EEPROM
J24	A1	Present		(-	/	J24 (A1)	J23 (A0)	address	address
324	AI	1 163611t		Droop	Present	Present (Low)	Present (Low)	0xB0	0xA0
		Present		(Low,	i it	1 1636Ht (LOW)	Open (High)	0xB2	0xA2
				Defaul	lt)	Open (High)	Present (Low)	0xB4	0xA4
				Doida	,		Open (High)	0xB6	0xA6
J29	40					Present (Low)	Present (Low)	0xB8	0xA8
J29	A2		Open (High)		circuit	circuit Present (Low)	Open (High)	0xBA	0xAA
					On any (Liimh)	Present (Low)	0xBC	0xAC	
						Open (High)	Open (High)	0xBE	0xAE
J25 PSON L Present					Open PSON_L input of PSU is only pulled low in case the microcontroller is pulling it low as commanded through USB				
			Pre	sent	PSON_L input of PSU is pulled to GND, main output is always enabled				
J26	SDA	DA Present	Open SDA line of PSU is left open, and could be manually connected through by connecting to a paralleled evaluation board				cted through J4 pin 5, or		
320			Present SDA line of PSU is connected to I2C-to-USB conversion microcontroller						
J27	SCL	Present	Open Present		SCL line of PSU is left open, and could be manually connected through J4 pin 4, or by connecting to a paralleled evaluation board				
J21					SDA line of PSU is connected to I2C-to-USB conversion microcontroller				
J28	Pull up	Present	Open Present		Pull up voltage for SMB_ALERT_L pull up resistor can be manually connected on J28 pin 2				
J20					Pull up voltage for SMB_ALERT_L pull up resistor is set to 3.3V generated from 5V which are supplied by connected USB				

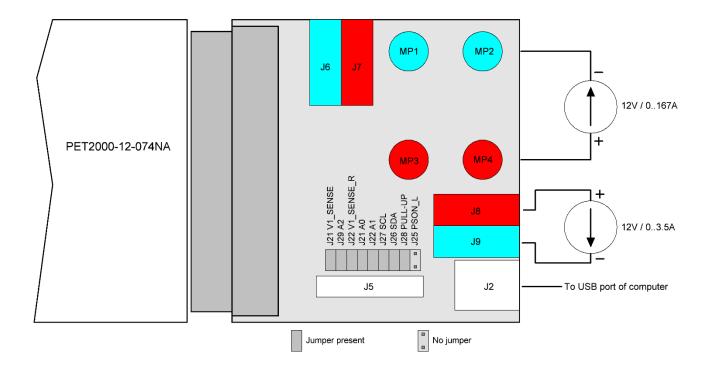
NOTE:

The PSU device address will be calculated once during the Power-Up cycle, any change to the address jumper will be ignored until a complete Power-On-Reset occurs.

7. TEST SETUP

WARNING: The USB interface is NOT galvanic isolated, its GND is referenced to the PSU output GND pins. Within the power supply the GND pins are connected to PSU chassis and PE pin of the AC inlet. If a Desktop Computer is being used, there is a risk of generating an earth loop!

A scope used to measure signals / output must always reference the scope probes to GND pins!

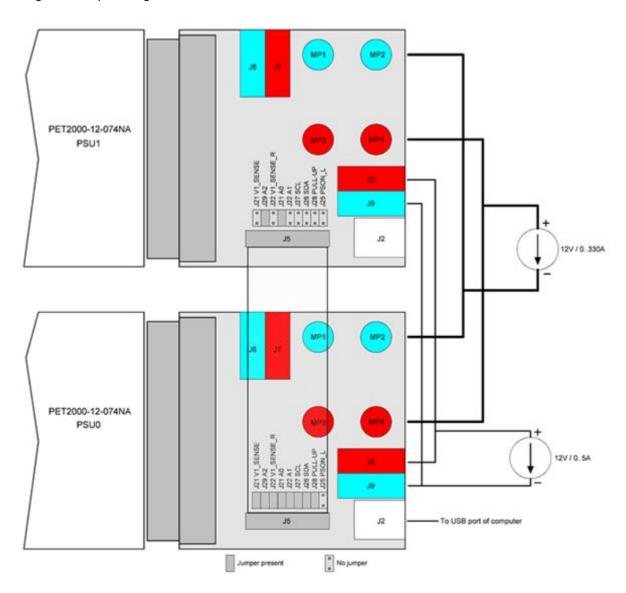

TEST EQUIPMENT	SPECIFICATION
AC Source	AC mains 100 240 VAC or AC electronic source capable of at least 2.5 kW / 5 kW in parallel configuration
DC Load V1	12 VDC / 167 A or 334 A in parallel configuration
DC Load VSB	12 VDC / 5 A
USB Communication	USB A-B cable connected to Laptop computer

Single Power Supply

In this configuration all jumpers J21..J29 should be present except J25; this allows correct remote sense in an internal point in the adapter board, I2C communication through USB interface, I2C address set 0xB0 (Controller) and 0xA0 (EEPROM), and SMB_ALERT_L having 3.3 V pull up voltage.

Regulated output voltage (i.e. 12.00 V ± 0.5 % at 50 % of the total load) is set in an internal point of the evaluation board.

NOTE: The main output V1 of the PET2000-12-074NA will only turn on if the USB cable is plugged into a powered USB port (else PSON_L is not pulled low) or if jumper J25 is set (PSON_L always pulled low).

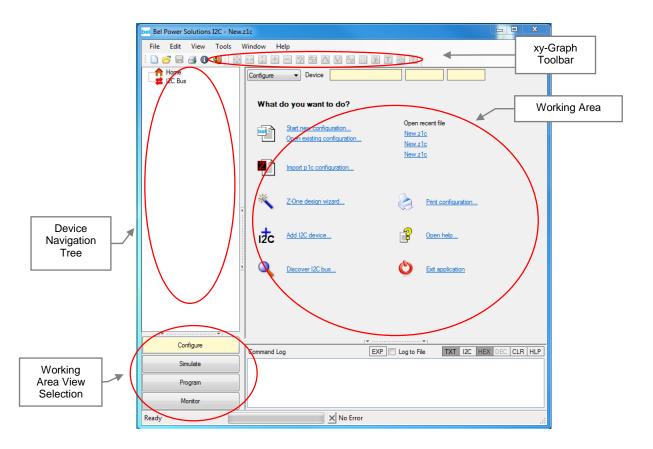


Two Power Supplies in Parallel

In order to have correct parallel operation the connectors J5 of both Evaluation Boards need to be interconnected. This can be easily done by a 20 pin 1.27mm pitch flat cable with 2.54mm pitch female headers attached to both ends. This way the I2C lines, the ISHARE bus, both sense lines, PSON_L, HOTSTANDBYEN_H plus pull-up voltage SMB_ALERT_L are shared between the two Evaluation Boards.

The jumper position has to be set as shown in following pictures. The Evaluation Board with USB attached (connected to PSU0) has still the same jumper setting as in single power supply configuration. The paralleled one (connected to PSU1) needs to have jumpers removed as shown. This way PSU1 gets the I2C lines, the PSON_L and the pull-up voltage for SMB_ALERT_L from Evaluation Board attached to PSU0. The jumper for I2C address configuration must be different on the two Evaluation Boards, in below example PSU0 has A[2..0] set to 000, while PSU1 has A[2..0] set to 001.

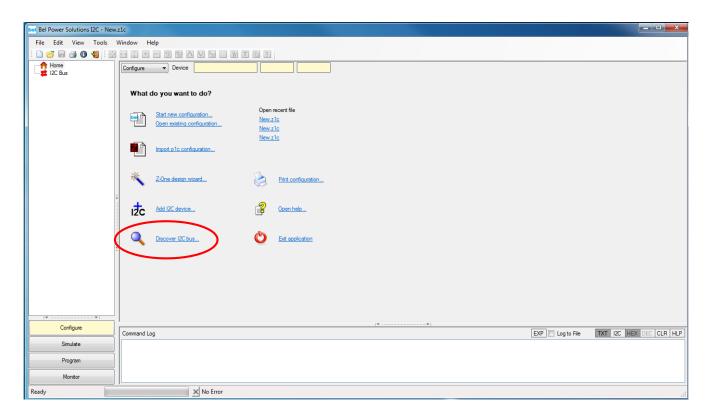
Regulated output voltage (i.e. $12.00 \text{ V} \pm 0.5 \text{ \%}$ at 50 % of the total load) is set in an internal point in the PSU0 adapter board, while PSU1 gets the output voltage sense information.



8. SOFTWARE SETUP

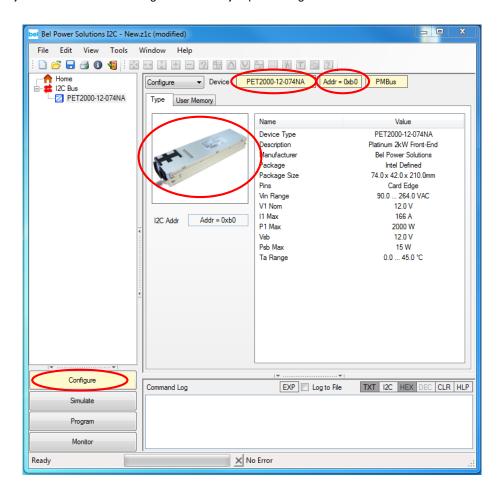
The latest "Bel Power Solutions I2C GUI" software can be downloaded from www.belpowersolutions.com. The downloaded archive contains a user guide (including installation steps) and an installer (BPS_I2C_GUI_x_x_x.exe) that will guide you through the installation process of the GUI.

NOTES:


- The GUI uses Microsoft .Net 2.0 framework to display dialogs and other built in utilities. If the .Net framework is not installed
 on your computer, the installer will guide you through the download and installation of the framework before the GUI is
 installed
- Make sure that you have Internet connection when installing the GUI, else the framework cannot be downloaded (if necessary) and the installation will fail.
- During the installation the driver to communicate over the I2C bus gets pre-installed. Click "Continue anyway" to pre-install the driver.
- The installer may request to re-start the computer.
- Once the GUI is installed, plug in the USB-I2C Converter. Windows will recognize the new hardware and ask to finish the installation. Once the Computer has reported "Found New Hardware" the software installation wizard will automatically pop up. Allow Windows to search for the software and select "Install software automatically (Recommended)". Again click "Continue anyway" to finish the driver installation. Note: this step may not pop up.
- Launch the GUI by double clicking the "Bel Power Solutions I2C GUI" icon on the desktop (the Windows Start Menu.

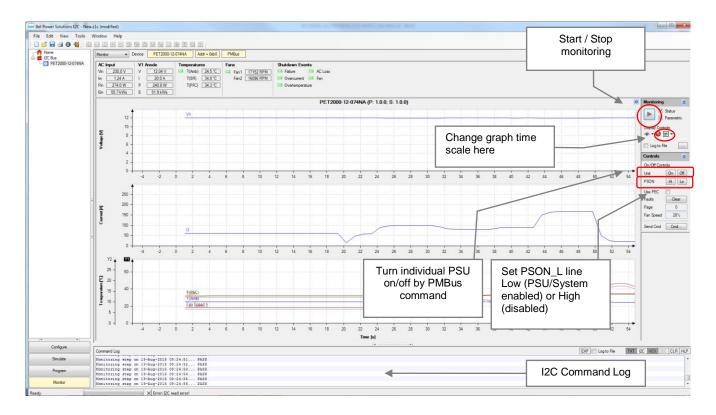
9. OPERATION

- 1. Test setup according to chapter 1.
 - a) AC not yet applied to PSU(s).
 - b) DC Loads connected.
 - c) USB port connected to laptop.
- 2. Verify that the LED1 on the connector board is blinking (supplied by USB interface).
- 3. Turn-on AC source or connect AC mains.
- 4. Verify that PSU LED is green.
- 5. Set load to desired values.
- 6. Start the GUI on the Laptop
 - a) In the Home screen click "Add I2C device..."



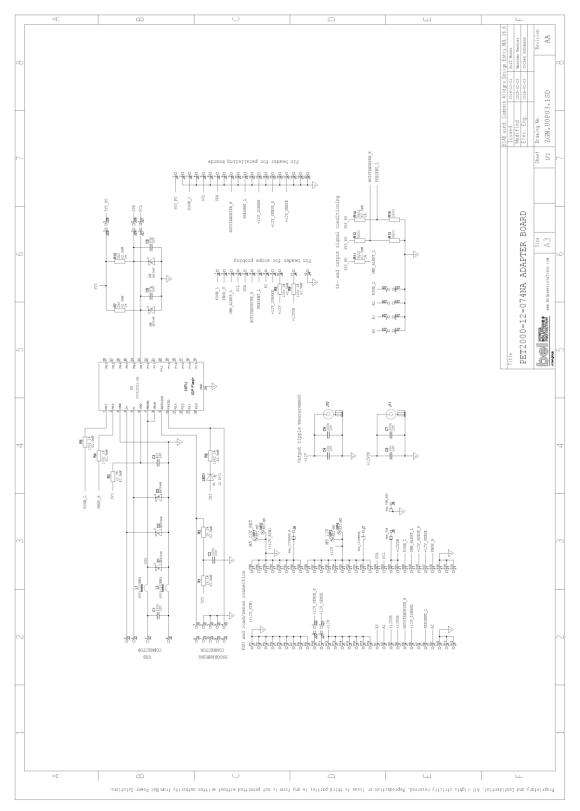
b) On the Add I2C Device dialog, click "Category" and select PET. Then click on "Device" and select PET2000-12-074NA. Press "Add", once the process is completed, the GUI should show the identified power supply on the bus (see c)).

c) Verify that the power supply has been identified correctly. PMBus communication is initially fixed to address 0xb6. Adjust I2C address according to the A1/A0 jumper settings on the Evaluation Board.



Alternatively select "Discover I2C bus.." and let the GUI search for units connected to the I2C bus. Every powered unit on the bus will be prompted on the Device Navigation Tree.

- d) Switch to the Monitor View by clicking the Monitor button on the left bottom, or by pressing 'Alt-m', or by choosing View/Monitor in the main, or by selecting monitoring in the dropdown list-box. This opens the monitoring view of the PET2000-12-074NA power supply.
- e) In the monitor view click the ▶ button to start the monitoring process. Click the button to stop the monitoring process.
- f) In the monitor view click the Unit On/Off button to turn-on/off the monitored unit (chosen in the device navigation tree). Click the PSON On/Off button to turn-on/off all PSU connected to the PSON_L signal.


If using two PET2000-12-074NA in parallel simply repeat step 6, and set I2C address according to jumper setting on the paralleled board. Note the parallel setup as shown in chapter 1 must be followed.

10. HISTORY

REVISION	DESCRIPTION	DATE	AUTHOR
001	Initial Draft	May 22, 2014	U. Wild
AA	Added pins PRESENT_L and A2	Aug 18, 2014	U. Wild
AB	Updated for PCB ZGN.U0P03.1, Parallel operation test setup and new GUI print screen pictures	Aug 19, 2015	J.Schaerer, G.Parrino

Appendix A: Schematic YTM.00046.0 Evaluation Board

For more information on these products consult: tech.support@psbel.com

Copyright © 2010 BEL Power Solution Inc. All rights reserved. Z-One® and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of BEL Power Solutions Inc. in the U.S. and other countries. All other product or service names are the property of their respective holders. BEL Power Solutions products are protected under numerous U.S. and foreign patients and pending applications, maskwork rights, and copyrights. BEL Power Solutions reserves the right to make changes to any products and services at any time without notice. BEL Power Solutions assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by BEL Power Solutions Inc.

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9