FEATURES

> Low phase noise phase-locked loop core
> Reference input frequencies to 250 MHz
> Programmable dual modulus prescaler
> Programmable charge pump (CP) current
> Separate CP supply (VCPs) extends tuning range
> Two 1.6 GHz , differential clock inputs
> 8 programmable dividers, 1 to 32 , all integers
> Phase select for output-to-output coarse delay adjust
> 4 independent 1.2 GHz LVPECL outputs
> Additive output jitter of 225 fs rms
> 4 independent 800 MHz low voltage differential signaling (LVDS) or 250 MHz complementary metal oxide conductor (CMOS) clock outputs

Additive output jitter of $\mathbf{2 7 5} \mathbf{f s} \mathbf{~ r m s}$
Fine delay adjust on 2 LVDS/CMOS outputs

Serial control port

Space-saving 64-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution

Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, and mixed-signal front ends (MxFEs)
High performance wireless transceivers
High performance instrumentation
Broadband infrastructure

GENERAL DESCRIPTION

The AD9510 provides a multi-output clock distribution function along with an on-chip phase-locked loop (PLL) core. The design emphasizes low jitter and phase noise to maximize data converter performance. Other applications with demanding phase noise and jitter requirements also benefit from this device.
The PLL section consists of a programmable reference divider (R); a low noise, phase frequency detector (PFD); a precision charge pump (CP); and a programmable feedback divider (N). By connecting an external voltage-controlled crystal oscillator (VCXO) or voltage-controlled oscillator (VCO) to the CLK2 and CLK2B pins, frequencies of up to 1.6 GHz can be synchronized to the input reference.
There are eight independent clock outputs. Four outputs are low voltage positive emitter-coupled logic (LVPECL) at 1.2 GHz , and four are selectable as either LVDS (800 MHz) or CMOS (250 MHz) levels.

Figure 1.

Each output has a programmable divider that can be bypassed or set to divide by any integer up to 32 . The phase of one clock output relative to another clock output can be varied by means of a divider phase select function that serves as a coarse timing adjustment. Two of the LVDS/CMOS outputs feature programmable delay elements with full-scale ranges up to 8 ns of delay. This fine tuning delay block has 5-bit resolution, giving 25 possible delays from which to choose for each full-scale setting (Register 0x36 and Register 0x3A $=00000$ b to 11000b).

The AD9510 is ideally suited for data converter clocking applications where maximum converter performance is achieved by encode signals with subpicosecond jitter.
The AD9510 is available in a 64-lead LFCSP and can be operated from a single 3.3 V supply. An external VCO, which requires an extended voltage range, can be accommodated by connecting the charge pump supply (VCP) to 5.5 V . The temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 4
PLL Characteristics 4
Clock Inputs 5
Clock Outputs 6
Timing Characteristics 6
Clock Output Phase Noise 8
Clock Output Additive Time Jitter 11
PLL and Distribution Phase Noise and Spurious 13
Serial Control Port 13
FUNCTION Pin 14
STATUS Pin 14
Power 15
Timing Diagrams. 16
Absolute Maximum Ratings 17
Thermal Characteristics 17
ESD Caution 17
Pin Configuration and Function Descriptions. 18
Typical Performance Characteristics 20
Terminology 24
Typical Modes of Operation 25
PLL with External VCXO/VCO Followed by Clock Distribution 25
Clock Distribution Only 25
PLL with External VCO and Band-Pass Filter Followed by Clock Distribution. 26
Functional Description 28
REVISION HISTORY
9/2016—Rev. B to Rev. C
Changes to STATUS Pin Section. 30
Changes to Ordering Guide 56
9/2013—Rev. A to Rev. B
Changes to General Description Section 1
Changes to Table 4 6
Changes to Table 6 11
Added Table 13; Renumbered Sequentially 17
Changes to Figure 6 18
Overall 28
PLL Section 28
FUNCTION Pin 32
Distribution Section 32
CLK1 and CLK2 Clock Inputs 32
Dividers 32
Delay Block 37
Outputs 37
Power-Down Modes 38
Reset Modes 38
Single-Chip Synchronization. 39
Multichip Synchronization 39
Serial Control Port 40
Serial Control Port Pin Descriptions 40
General Operation of Serial Control Port 40
The Instruction Word (16 Bits) 41
MSB/LSB First Transfers 41
Register Map and Description 44
Summary Table 44
Register Map Description 46
Power Supply 53
Power Management 53
Applications Information 54
Using the AD9510 Outputs for ADC Clock Applications 54
CMOS Clock Distribution 54
LVPECL Clock Distribution 55
LVDS Clock Distribution 55
Power and Grounding Considerations and Power Supply Rejection 55
Outline Dimensions 56
Ordering Guide 56
Added EPAD Row, Table 14 19
Changes to Figure 21. 22
Changes to Delay Block Section, Figure 40, and Calculating the Delay Section 37
Changes to Address $0 \times 36[5: 1]$ and Address $0 \times 3 \mathrm{~A}[5: 1]$,
Table 24 44
Changes to Address 0x36 and Address 0x3A, Table 25 49
Updated Outline Dimensions 56
Changes to Ordering Guide 56
5/2005-Rev. 0 to Rev. A
Changes to Features 1
Changes to Table 1 and Table 2 5
Changes to Table 4 8
Changes to Table 5 9
Changes to Table 6 14
Changes to Table 8 and Table 9 15
Changes to Table 11 16
Changes to Table 13 20
Changes to Figure 7 and Figure 10 22
Changes to Figure 19 to Figure 23 24
Changes to Figure 30 and Figure 31 26
Changes to Figure 32 27
Changes to Figure 33 28
Changes to VCO/VCXO Clock Input-CLK2 Section 29
Changes to A and B Counters Section 30
Changes to PLL Digital Lock Detect Section 31
Changes to PLL Analog Lock Detect Section 32
Changes to Loss of Reference Section 32
Changes to FUNCTION Pin Section 33
Changes to RESETB: 58h<6:5> = 00b (Default) Section 33
Changes to SYNCB: 58h<6:5> $=01 \mathrm{~b}$ Section 33
Changes to CLK1 and CLK2 Clock Inputs Section 33
Changes to Calculating the Delay Section 38
Changes to Soft Reset via the Serial Port Section 41
Changes to Multichip Synchronization Section. 41
Changes to Serial Control Port Section 42
Changes to Serial Control Port Pin Descriptions Section 42
Changes to General Operation of Serial Control Port Section 42
Added Framing a Communication Cycle with CSB Section 42
Added Communication Cycle-Instruction PlusData Section42
Changes to Write Section 42
Changes to Read Section. 42
Changes to The Instruction Word (16 Bits) Section 43
Changes to Table 20 43
Changes to MSB/LSB First Transfers Section 43
Changes to Table 21 44
Added Figure 52; Renumbered Sequentially 45
Changes to Table 23 46
Changes to Table 24 49
Changes to Using the AD9510 Outputs for ADC Clock
Applications 57

SPECIFICATIONS

Typical (typ) is given for $\mathrm{V}_{\mathrm{s}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{s}} \leq \mathrm{VCP}_{\mathrm{s}} \leq 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=4.12 \mathrm{k} \Omega, \mathrm{CPR}_{\mathrm{SET}}=5.1 \mathrm{k} \Omega$, unless otherwise noted. Minimum (min) and maximum (max) values are given over full V_{S} and $\mathrm{T}_{\mathrm{A}}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ variation.

PLL CHARACTERISTICS

Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Min \& Typ \& Max \& Unit \& Test Conditions/Comments \\
\hline \begin{tabular}{l}
REFERENCE INPUTS (REFIN) \\
Input Frequency Input Sensitivity Self-Bias Voltage, REFIN Self-Bias Voltage, REFINB Input Resistance, REFIN Input Resistance, REFINB Input Capacitance
\end{tabular} \& 1.45
1.40
4.0
4.5 \& \[
\begin{aligned}
\& 150 \\
\& 1.60 \\
\& 1.50 \\
\& 4.9 \\
\& 5.4 \\
\& 2
\end{aligned}
\] \& \[
\begin{aligned}
\& 250 \\
\& \\
\& 1.75 \\
\& 1.60 \\
\& 5.8 \\
\& 6.3
\end{aligned}
\] \& \begin{tabular}{l}
MHz \\
\(m V p-p\) \\
V \\
V \\
\(\mathrm{k} \Omega\) \\
\(\mathrm{k} \Omega\) \\
pF
\end{tabular} \& \begin{tabular}{l}
Self-bias voltage of REFIN \({ }^{1}\) \\
Self-bias voltage of REFINB \({ }^{1}\) \\
Self-biased \({ }^{1}\) \\
Self-biased \({ }^{1}\)
\end{tabular} \\
\hline \begin{tabular}{l}
PHASE FREQUENCY DETECTOR (PFD) \\
PFD Input Frequency \\
PFD Input Frequency \\
PFD Input Frequency \\
Antibacklash Pulse Width \\
Antibacklash Pulse Width \\
Antibacklash Pulse Width
\end{tabular} \& \& \[
\begin{aligned}
\& 1.3 \\
\& 2.9 \\
\& 6.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 100 \\
\& 100 \\
\& 45
\end{aligned}
\] \& \begin{tabular}{l}
MHz \\
MHz \\
MHz \\
ns \\
ns \\
ns
\end{tabular} \& \begin{tabular}{l}
Antibacklash pulse width, Register 0x0D[1:0] = 00b \\
Antibacklash pulse width, Register 0x0D[1:0] = 01b \\
Antibacklash pulse width, Register 0x0D[1:0] = 10b \\
Register 0x0D[1:0] \(=00 \mathrm{~b}\) (this is the default setting) \\
Register 0x0D[1:0] = 01b \\
Register 0x0D[1:0] = 10b
\end{tabular} \\
\hline \begin{tabular}{l}
CHARGE PUMP (CP) \\
ICP Sink/Source \\
High Value \\
Low Value \\
Absolute Accuracy \\
CPRset Range \\
Icp Three-State Leakage \\
Sink-and-Source Current Matching \\
\(I_{c p}\) vs. VCP \\
Icp vs. Temperature
\end{tabular} \& \& \[
\begin{aligned}
\& 4.8 \\
\& 0.60 \\
\& 2.5 \\
\& 2.7 / 10 \\
\& 1 \\
\& 2 \\
\& 1.5 \\
\& 2
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \mathrm{mA} \\
\& \mathrm{~mA} \\
\& \% \\
\& \mathrm{k} \Omega \\
\& \mathrm{nA} \\
\& \% \\
\& \% \\
\& \%
\end{aligned}
\] \& \begin{tabular}{l}
Programmable \\
With CPR \(_{\text {set }}=5.1 \mathrm{k} \Omega\)
\[
\mathrm{V}_{\mathrm{CP}}=\mathrm{VCP}_{\mathrm{S}} / 2
\]
\[
\begin{aligned}
\& 0.5<\mathrm{V}_{\mathrm{CP}}<\mathrm{VCP}_{\mathrm{s}}-0.5 \mathrm{~V} \\
\& 0.5<\mathrm{V}_{\mathrm{CP}}<\mathrm{VCP}_{\mathrm{s}}-0.5 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{CP}}=\mathrm{VCP}_{\mathrm{S}} / 2 \mathrm{~V}
\end{aligned}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
RF CHARACTERISTICS (CLK2) \({ }^{2}\) \\
Input Frequency \\
Input Sensitivity Input Common-Mode Voltage, \(\mathrm{V}_{\mathrm{CM}}\) Input Common-Mode Range, Vcmr Input Sensitivity, Single-Ended \\
Input Resistance Input Capacitance
\end{tabular} \& 1.5
1.3

4.0 \& | 150 |
| :--- |
| 1.6 |
| 150 |
| 4.8 |
| 2 | \& 1.6

1.7
1.8

5.6 \& \[
$$
\begin{aligned}
& \mathrm{GHz} \\
& \mathrm{mV} p-\mathrm{p} \\
& \mathrm{~V} \\
& \mathrm{~V} \\
& \mathrm{mV} \mathrm{p}-\mathrm{p} \\
& \mathrm{k} \Omega \\
& \mathrm{pF} \\
& \hline
\end{aligned}
$$

\] \& | Frequencies > 1200 MHz (LVPECL) or 800 MHz (LVDS) require a minimum divide-by-2 (see the Distribution Section) |
| :--- |
| Self-biased, enables ac coupling |
| With 200 mV p-p signal applied |
| CLK2 ac-coupled, CLK2B capacitively bypassed to RF ground |
| Self-biased |

\hline CLK2 VS. REFIN DELAY \& \& 500 \& \& ps \& Difference at PFD

\hline | PRESCALER (PART OF N DIVIDER) |
| :--- |
| Prescaler Input Frequency $\begin{aligned} & \mathrm{P}=2 \mathrm{DM}(2 / 3) \\ & \mathrm{P}=4 \mathrm{DM}(4 / 5) \\ & \mathrm{P}=8 \mathrm{DM}(8 / 9) \\ & \mathrm{P}=16 \mathrm{DM}(16 / 17) \\ & \mathrm{P}=32 \mathrm{DM}(32 / 33) \end{aligned}$ |
| CLK2 Input Frequency for PLL | \& \& \& \[

$$
\begin{aligned}
& 600 \\
& 1000 \\
& 1600 \\
& 1600 \\
& 1600 \\
& 300
\end{aligned}
$$

\] \& | MHz |
| :--- |
| MHz | \& | See the VCO/VCXO Feedback Divider—N (P, A, B) section |
| :--- |
| A, B counter input frequency |

\hline
\end{tabular}

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
NOISE CHARACTERISTICS					
In-Band Noise of the Charge Pump/ Phase Frequency Detector (In-Band Means Within the LBW of the PLL)					Synthesizer phase noise floor estimated by measuring the in-band phase noise at the output of the VCO and subtracting $20 \log \mathrm{~N}$ (where N is the N divider value)
At 50 kHz PFD Frequency		-172		$\mathrm{dBc} / \mathrm{Hz}$	
At 2 MHz PFD Frequency		-156		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 MHz PFD Frequency		-149		$\mathrm{dBc} / \mathrm{Hz}$	
At 50 MHz PFD Frequency		-142		$\mathrm{dBc} / \mathrm{Hz}$	
PLL Figure of Merit		$\begin{aligned} & -218+ \\ & 10 \times \log \\ & \left(\mathrm{f}_{\text {PFD }}\right) \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$	Approximation of the PFD/CP phase noise floor (in the flat region) inside the PLL loop bandwidth; when running closed loop this phase noise is gained up by $20 \times \log (\mathrm{N})^{3}$
PLL DIGITAL LOCK DETECT WINDOW ${ }^{4}$					Signal available at STATUS pin when selected by Register 0x08[5:2]
Required to Lock (Coincidence of Edges)					Selected by Register 0x0D
Low Range (ABP $1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}$)		3.5		ns	$\operatorname{Bit}[5]=1 \mathrm{~b}$.
High Range (ABP $1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}$)		7.5		ns	$\operatorname{Bit}[5]=0 \mathrm{~b}$.
High Range (ABP 6 ns)		3.5		ns	Bit[5] $=0 \mathrm{~b}$.
To Unlock After Lock (Hysteresis) ${ }^{4}$					Selected by Register 0x0D
Low Range (ABP $1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}$)		7		ns	$\operatorname{Bit}[5]=1 \mathrm{~b}$.
High Range (ABP $1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}$)		15		ns	$\operatorname{Bit}[5]=0 \mathrm{~b}$.
High Range (ABP 6 ns)		11		ns	$\operatorname{Bit}[5]=0 \mathrm{~b}$.

${ }^{1}$ REFIN and REFINB self-bias points are offset slightly to avoid chatter on an open input condition.
${ }^{2}$ CLK2 is electrically identical to CLK1; the distribution-only input can be used as differential or single-ended input (see the Clock Inputs section).
${ }^{3}$ Example: $-218+10 \times \log \left(\mathrm{f}_{\text {PFD }}\right)+20 \times \log (\mathrm{N})$ gives the values for the in-band noise at the VCO output.
${ }^{4}$ For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the unlock-after-lock time.

CLOCK INPUTS

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
CLOCK INPUTS (CLK1, CLK2) ${ }^{1}$						
Input Frequency		0		1.6	GHz	
Input Sensitivity			150^{2}		$m V p-p$	Jitter performance can be improved with higher slew rates (greater swing)
Input Level				2^{3}	V p-p	Larger swings turn on the protection diodes and can degrade jitter performance
Input Common-Mode Voltage	$\mathrm{V}_{\text {CM }}$	1.5	1.6	1.7	V	Self-biased; enables ac coupling
Input Common-Mode Range	$V_{\text {CMR }}$	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled
Input Sensitivity, Single-Ended			150		$m V \mathrm{p}-\mathrm{p}$	CLK2 ac-coupled, CLK2B ac-bypassed to RF ground
Input Resistance		4.0	4.8	5.6	$k \Omega$	Self-biased
Input Capacitance			2		pF	

[^0]
CLOCK OUTPUTS

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL CLOCK OUTPUTS OUT0, OUT1, OUT2, OUT3; Differential Output Frequency Output High Voltage Output Low Voltage Output Differential Voltage	Vон VoL Vod	$\begin{aligned} & V_{s}-1.22 \\ & V_{s}-2.10 \\ & 660 \end{aligned}$	$\begin{aligned} & V_{s}-0.98 \\ & V_{s}-1.80 \\ & 810 \end{aligned}$	$\begin{aligned} & 1200 \\ & V_{s}-0.93 \\ & V_{s}-1.67 \\ & 965 \end{aligned}$	MHz V V mV	Termination $=50 \Omega$ to $\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$ Output level Register 0x3C, Register 0x3D, Register 0x3E, Register 0x3F[3:2] = 10b See Figure 21
```LVDS CLOCK OUTPUTS OUT4, OUT5, OUT6, OUT7; Differential Output Frequency Differential Output Voltage Delta Vod Output Offset Voltage Delta Vos Short-Circuit Current```	Vod   Vos   $\mathrm{I}_{\mathrm{SA}}, \mathrm{I}_{\mathrm{SB}}$	$\begin{aligned} & 250 \\ & 1.125 \end{aligned}$	$\begin{aligned} & 360 \\ & 1.23 \\ & 14 \end{aligned}$	800 450 25 1.375 25 24	MHz   mV   mV   V   mV   mA	Termination $=100 \Omega$ differential; default   Output level Register 0x40, Register 0x41, Register $0 \times 42$, Register 0x43[2:1] $=01 \mathrm{~b}$ 3.5 mA termination current   See Figure 22   Output shorted to GND
CMOS CLOCK OUTPUTS OUT4, OUT5, OUT6, OUT7   Output Frequency Output Voltage High Output Voltage Low	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{s}}-0.1$		250 0.1	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	Single-ended measurements, B outputs: inverted, termination open   With 5 pF load each output, see Figure 23   At 1 mA load   At 1 mA load

## TIMING CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL   Output Rise Time Output Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{RP}} \\ & \mathrm{t}_{\mathrm{FP}} \end{aligned}$		$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$	Termination $=50 \Omega$ to $\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$; output level Register 0x3C, Register 0x3D, Register 0x3E, Register 0x3F[3:2] = 10b   $20 \%$ to $80 \%$, measured differentially   $80 \%$ to $20 \%$, measured differentially
PROPAGATION DELAY, CLK-TO-LVPECL OUT ${ }^{1}$   Divide $=$ Bypass   Divide $=2-32$   Variation with Temperature	$\mathrm{t}_{\text {PECL }}$	$\begin{aligned} & 335 \\ & 375 \end{aligned}$	$\begin{aligned} & 490 \\ & 545 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 635 \\ & 695 \end{aligned}$	ps ps $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
OUTPUT SKEW, LVPECL OUTPUTS OUT1 to OUT0 on Same Part ${ }^{2}$ OUT2 to OUT3 on Same Part ${ }^{2}$ All LVPECL OUTs on Same Part ${ }^{2}$ All LVPECL OUTs Across Multiple Parts ${ }^{3}$ Same LVPECL OUT Across Multiple Parts ${ }^{3}$	$\mathrm{t}_{\mathrm{SKP}}$   $\mathrm{t}_{\text {SKP }}$   tskP   $\mathrm{t}_{\text {SKP_AB }}$   $\mathrm{t}_{\text {SKP_AB }}$	$\begin{aligned} & -5 \\ & 15 \\ & 90 \end{aligned}$	$\begin{aligned} & +30 \\ & 45 \\ & 130 \end{aligned}$	$\begin{aligned} & +85 \\ & 80 \\ & 180 \\ & 275 \\ & 130 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$	
LVDS   Output Rise Time Output Fall Time	$\mathrm{t}_{\text {RL }}$ $\mathrm{t}_{\mathrm{FL}}$			$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Termination $=100 \Omega$ differential; output level Register 0x40, Register 0x41, Register 0×42, Register $0 \times 43[2: 1]=01 \mathrm{~b} ; 3.5 \mathrm{~mA}$ termination current   $20 \%$ to $80 \%$, measured differentially   $80 \%$ to $20 \%$, measured differentially


Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
PROPAGATION DELAY, CLK-TO-LVDS OUT¹ OUT4, OUT5, OUT6, OUT7   Divide $=$ Bypass   Divide $=2-32$   Variation with Temperature	tıvos	$\begin{aligned} & 0.99 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.38 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.59 \\ & 1.64 \end{aligned}$	ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	Delay off on OUT5 and OUT6
OUTPUT SKEW, LVDS OUTPUTS OUT4 to OUT7 on Same Part ${ }^{2}$ OUT5 to OUT6 on Same Part ${ }^{2}$ All LVDS OUTs on Same Part ${ }^{2}$ All LVDS OUTs Across Multiple Parts ${ }^{3}$ Same LVDS OUT Across Multiple Parts ${ }^{3}$	tskv   tskv   tskv   tskv_AB   tskv_AB	$\begin{aligned} & -85 \\ & -175 \\ & -175 \end{aligned}$		$\begin{aligned} & +270 \\ & +155 \\ & +270 \\ & 450 \\ & 325 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$	Delay off on OUT5 and OUT6
CMOS   Output Rise Time Output Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{RC}} \\ & \mathrm{t}_{\mathrm{FC}} \\ & \hline \end{aligned}$		$\begin{aligned} & 681 \\ & 646 \end{aligned}$	$\begin{aligned} & 865 \\ & 992 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$	$\begin{aligned} & \text { B outputs are inverted, termination }=\text { open } \\ & 20 \% \text { to } 80 \% ; \text { CLOAD }=3 \mathrm{pF} \\ & 80 \% \text { to } 20 \% ; C_{\text {LOAD }}=3 \mathrm{pF} \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { PROPAGATION DELAY, CLK-TO-CMOS OUT }{ }^{1} \\ & \text { Divide }=\text { Bypass } \\ & \text { Divide }=2-32 \\ & \text { Variation with Temperature } \end{aligned}$	tcmos	$\begin{aligned} & 1.02 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 1.39 \\ & 1.44 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.71 \\ & 1.76 \end{aligned}$	ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	Delay off on OUT5 and OUT6
OUTPUT SKEW, CMOS OUTPUTS   All CMOS OUTs on Same Part ${ }^{2}$ All CMOS OUTs Across Multiple Parts ${ }^{3}$ Same CMOS OUT Across Multiple Parts ${ }^{3}$	$\mathrm{t}_{\text {skc }}$   tskc_AB   tskc_AB	-140	+145	$\begin{aligned} & +300 \\ & 650 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Delay off on OUT5 and OUT6
LVPECL-TO-LVDS OUT Output Skew	$\mathrm{t}_{\text {SkP_V }}$	0.74	0.92	1.14	ns	Everything the same; different logic type LVPECL to LVDS on same part
$\begin{aligned} & \text { LVPECL-TO-CMOS OUT } \\ & \text { Output Skew } \\ & \hline \end{aligned}$	$\mathrm{t}_{\text {SkP_C }}$	0.88	1.14	1.43	ns	Everything the same; different logic type LVPECL to CMOS on same part
LVDS-TO-CMOS OUT Output Skew	tskv_c	158	353	506	ps	Everything the same; different logic type LVDS to CMOS on same part
DELAY ADJUST ${ }^{4}$   Shortest Delay Range ${ }^{5}$   Zero Scale   Full Scale   Linearity, DNL   Linearity, INL   Longest Delay Range ${ }^{5}$   Zero Scale   Full Scale   Linearity, DNL   Linearity, INL   Delay Variation with Temperature Long Delay Range, $8 \mathrm{~ns}^{6}$ Zero Scale Full Scale   Short Delay Range, 1 ns ${ }^{6}$ Zero Scale Full Scale		$\begin{aligned} & 0.05 \\ & 0.57 \\ & \\ & 0.20 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.95 \\ & 0.5 \\ & 0.8 \\ & 0.57 \\ & 0.0 \\ & 0.3 \\ & 0.6 \\ & \\ & \\ & 0.35 \\ & -0.14 \\ & \\ & 0.51 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 1.32 \\ & \\ & \\ & 0.95 \\ & 9.2 \end{aligned}$	ns   ns   LSB   LSB   ns   ns   LSB   LSB   $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	OUT5 (OUT6); LVDS and CMOS   Register 0x35, Register 0x39[5:1] = 11111b   Register 0x36, Register 0x3A[5:1] $=00000 \mathrm{~b}$   Register 0x36, Register 0x3A[5:1] = 11000b   Register 0x35, Register 0x39[5:1] = 00000b   Register 0x36, Register 0x3A[5:1] $=00000 \mathrm{~b}$   Register 0x36, Register 0x3A[5:1] $=11000 b$

[^1]
## CLOCK OUTPUT PHASE NOISE

Table 5.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1-TO-LVPECL ADDITIVE PHASE NOISE					Distribution Section only, does not include PLL or external VCO/VCXO
CLK1 $=622.08 \mathrm{MHz}$, OUT $=622.08 \mathrm{MHz}$					Input slew rate > $1 \mathrm{~V} / \mathrm{ns}$
Divide Ratio $=1$					
At 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUT $=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
At 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUT $=38.88 \mathrm{MHz}$					
Divide Ratio $=16$					
At 10 Hz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-166		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio $=8$					
At 10 Hz Offset		-131		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
> 1 MHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=2$					
At 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-151		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-157		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
At 10 Hz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-144		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-163		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-164		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1-TO-LVDS ADDITIVE PHASE NOISE					Distribution Section only; does not include PLL or external VCO/VCXO
CLK1 $=622.08 \mathrm{MHz}$, OUT $=622.08 \mathrm{MHz}$					
Divide Ratio $=1$					
At 10 Hz Offset		-100		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-110		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-129		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUT $=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
At 10 Hz Offset		-112		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=2$					
At 10 Hz Offset		-108		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=122.88 \mathrm{MHz}$					
Divide Ratio $=4$					
At 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-129		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-147		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio = 1					
At 10 Hz Offset		-108		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1 $=245.76 \mathrm{MHz}$, OUT $=122.88 \mathrm{MHz}$					
Divide Ratio $=2$					
At 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-127		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-137		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-147		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1-TO-CMOS ADDITIVE PHASE NOISE					Distribution Section only, does not include PLL or external VCO/VCXO
CLK1 $=245.76 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=1$					
At 10 Hz Offset		-110		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-121		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-130		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-149		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
At 10 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-143		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=78.6432 \mathrm{MHz}$, OUT $=78.6432 \mathrm{MHz}$					
Divide Ratio = 1					
At 10 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-150		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=78.6432 \mathrm{MHz}$, OUT $=39.3216 \mathrm{MHz}$					
Divide Ratio $=2$					
At 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-146		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	

## CLOCK OUTPUT ADDITIVE TIME JITTER

Table 6.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER					Distribution Section only, does not include PLL or external VCO/VCXO
CLK1 $=622.08 \mathrm{MHz}$		40		fs rms	Bandwidth $=12 \mathrm{kHz}-20 \mathrm{MHz}$ (OC-12)
Any LVPECL (OUT0 to OUT3) $=622.08 \mathrm{MHz}$ Divide Ratio = 1					
CLK1 $=622.08 \mathrm{MHz}$		55		fs rms	Bandwidth $=12 \mathrm{kHz}-20 \mathrm{MHz}(\mathrm{OC}-3)$
Any LVPECL (OUT0 to OUT3) $=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
CLK1 $=400 \mathrm{MHz}$		215		fs rms	Calculated from signal-to-noise ratio (SNR) of ADC method, $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT3) $=100 \mathrm{MHz}$ Divide Ratio $=4$					
CLK1 $=400 \mathrm{MHz}$		215		fs rms	Calculated from SNR of ADC method, $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT3) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
All Other LVPECL $=100 \mathrm{MHz}$					Interferer(s)
All LVDS (OUT4 to OUT7) $=100 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		222		fs rms	Calculated from SNR of ADC method, $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT3) $=100 \mathrm{MHz}$					
Divide Ratio = 4					
All Other LVPECL $=50 \mathrm{MHz}$					Interferer(s)
All LVDS (OUT4 to OUT7) $=50 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		225		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT3) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
All Other LVPECL $=50 \mathrm{MHz}$					Interferer(s)
All CMOS (OUT4 to OUT7) $=50 \mathrm{MHz}$ (B Outputs Off)					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		225		fs rms	Calculated from SNR of ADC method, $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT3) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
All Other LVPECL $=50 \mathrm{MHz}$					Interferer(s)
All CMOS (OUT4 to OUT7) $=50 \mathrm{MHz}$ (B Outputs On)					Interferer(s)
LVDS OUTPUT ADDITIVE TIME JITTER					Distribution Section only, does not include PLL or external VCO/VCXO
CLK1 $=400 \mathrm{MHz}$		264		fs rms	Calculated from SNR of ADC method, $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
LVDS (OUT4, OUT7) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
CLK1 $=400 \mathrm{MHz}$		319		fs rms	Calculated from SNR of ADC method, $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
LVDS (OUT5, OUT6) $=100 \mathrm{MHz}$   Divide Ratio = 4					



Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { Any CMOS (OUT4 to OUT7) }=100 \mathrm{MHz} \text { (B Output On) } \\ & \text { Divide Ratio }=4 \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \text { All Other CMOS }=50 \mathrm{MHz} \text { (B Output On) } \\ & \hline \end{aligned}$		555		fs rms	Calculated from SNR of ADC method, $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$   Interferer(s)   Interferer(s)
DELAY BLOCK ADDITIVE TIME JITTER ${ }^{1}$   100 MHz Output   Delay FS = 1 ns ( $1600 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adjust 00000   Delay FS $=1$ ns ( $1600 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adjust 11000   Delay FS $=2 \mathrm{~ns}(800 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adjust 00000   Delay FS $=2 \mathrm{~ns}(800 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adjust 11000   Delay FS $=3 \mathrm{~ns}(800 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adjust 00000   Delay FS $=3 \mathrm{~ns}(800 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adjust 11000   Delay FS $=5$ ns ( $400 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adjust 00000   Delay FS $=5 \mathrm{~ns}(400 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adjust 11000   Delay FS $=6 \mathrm{~ns}(200 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adjust 00000   Delay FS $=6 \mathrm{~ns}(200 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adjust 11000   Delay FS $=9$ ns ( $200 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adjust 00000   Delay FS $=9 \mathrm{~ns}(200 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adjust 00111		$\begin{aligned} & 0.61 \\ & 0.73 \\ & 0.71 \\ & 1.2 \\ & 0.86 \\ & 1.8 \\ & 1.2 \\ & 2.1 \\ & 1.3 \\ & 2.7 \\ & 2.0 \\ & 2.8 \end{aligned}$		ps ps   ps	Incremental additive jitter ${ }^{1}$

${ }^{1}$ This value is incremental. That is, it is in addition to the jitter of the LVDS or CMOS output without the delay. To estimate the total jitter, add the LVDS or CMOS output jitter to this value using the root sum of the squares (RSS) method.

PLL AND DISTRIBUTION PHASE NOISE AND SPURIOUS
Table 7.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
PHASE NOISE AND SPURIOUS					Depends on VCO/VCXO selection; measured at LVPECL clock outputs, $\mathrm{ABP}=6 \mathrm{~ns} ; \mathrm{I}_{\mathrm{cp}}=5 \mathrm{~mA} ; \operatorname{Ref}=30.72 \mathrm{MHz}$
$\begin{aligned} & \mathrm{VCXO}=245.76 \mathrm{MHz}, \mathrm{f}_{\mathrm{PFD}}=1.2288 \mathrm{MHz} \\ & \mathrm{R}=25, \mathrm{~N}=200 \end{aligned}$					VCXO = Toyocom TCO-2112 245.76
245.76 MHz Output					Divide by 1
Phase Noise at 100 kHz Offset		<-145		$\mathrm{dBc} / \mathrm{Hz}$	Dominated by VCXO phase noise
Spurious		<-97		dBc	First and second harmonics of $\mathrm{f}_{\text {PrD }}$; below measurement floor
61.44 MHz Output					Divide by 4
Phase Noise at 100 kHz Offset		<-155		$\mathrm{dBc} / \mathrm{Hz}$	Dominated by VCXO phase noise
Spurious		<-97		dBC	First and second harmonics of fppo; below measurement floor

## SERIAL CONTROL PORT

Table 8.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CSB, SCLK (INPUTS)					Inputs have $30 \mathrm{k} \Omega$ internal pull-down      resistors
Input Logic 1 Voltage   Input Logic 0 Voltage   Input Logic 1 Current   Input Logic 0 Current   Input Capacitance	2.0			V	

## AD9510

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SDIO (WHEN INPUT) Input Logic 1 Voltage Input Logic 0 Voltage Input Logic 1 Current Input Logic 0 Current Input Capacitance	2.0	$\begin{aligned} & 10 \\ & 10 \\ & 2 \end{aligned}$	0.8	V   V   nA   nA   pF	
SDIO, SDO (OUTPUTS) Output Logic 1 Voltage Output Logic 0 Voltage	2.7		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
TIMING   Clock Rate (SCLK, 1/tscık)   Pulse Width High, tpwh   Pulse Width Low, tpw SDIO to SCLK Setup, tos SCLK to SDIO Hold, to SCLK to Valid SDIO and SDO, tov CSB to SCLK Setup and Hold, $\mathrm{t}_{\mathrm{s},} \mathrm{t}_{\mathrm{H}}$ CSB Minimum Pulse Width High, tpwH	$\begin{aligned} & 16 \\ & 16 \\ & 2 \\ & 1 \\ & 6 \\ & 2 \\ & 3 \end{aligned}$		25	MHz   ns	

## FUNCTION PIN

Table 9.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
INPUT CHARACTERISTICS					FUNCTION pin has $30 \mathrm{k} \Omega$ internal pull-down resistor; normally, hold this pin high; do not leave unconnected
Logic 1 Voltage	2.0			V	
Logic 0 Voltage			0.8	V	
Logic 1 Current		110		$\mu \mathrm{A}$	
Logic 0 Current			1	$\mu \mathrm{A}$	
Capacitance		2		pF	
RESET TIMING					
Pulse Width Low	50			ns	
SYNC TIMING					
Pulse Width Low	1.5			High speed clock cycles	High speed clock is CLK1 or CLK2, whichever is being used for distribution

## STATUS PIN

Table 10.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
OUTPUT CHARACTERISTICS					When selected as a digital output (CMOS), there are other modes in   which the STATUS pin is not CMOS digital output; see Figure 37
Output Voltage High (VOH)   Output Voltage Low (VoL)	2.7		0.4	V	
MAXIMUM TOGGLE RATE	100	MHz	Applies when PLL mux is set to any divider or counter output, or PFD up/   down pulse; also applies in analog lock detect mode; usually debug mode   only; beware that spurs can couple to output when this pin is toggling		
ANALOG LOCK DETECT   Capacitance	3	pF	On-chip capacitance, used to calculate RC time constant for analog lock   detect readback; use a pull-up resistor		

## POWER

Table 11.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER-UP DEFAULT MODE POWER DISSIPATION		550	600	mW	Power-up default state, does not include power dissipated in output load resistors; no clock
Power Dissipation			1.1	W	All outputs on; four LVPECL outputs at $800 \mathrm{MHz}, 4$ LVDS out at 800 MHz ; does not include power dissipated in external resistors
Power Dissipation			1.3	W	All outputs on; four LVPECL outputs at $800 \mathrm{MHz}, 4$ CMOS out at 62 MHz ( 5 pF load); does not include power dissipated in external resistors
Power Dissipation			1.5	W	All outputs on; four LVPECL outputs at $800 \mathrm{MHz}, 4$ CMOS out at 125 MHz ( 5 pF load); does not include power dissipated in external resistors
Full Sleep Power-Down		35	60	mW	Maximum sleep is entered by setting Register 0x0A[1:0] = 01b and Register 0x58[4] = 1b; this powers off the PLL BG and the distribution BG references; does not include power dissipated in terminations
Power-Down (PDB)		60	80	mW	Set the FUNCTION pin for PDB operation by setting Register 0x58[6:5] = 11b; pull PDB low; does not include power dissipated in terminations
POWER DELTA					
CLK1, CLK2 Power-Down	10	15	25	mW	
Divider, DIV 2 - 32 to Bypass	23	27	33	mW	For each divider
LVPECL Output Power-Down (PD2, PD3)	50	65	75	mW	For each output; does not include dissipation in termination (PD2 only)
LVDS Output Power-Down	80	92	110	mW	For each output
CMOS Output Power-Down (Static)	56	70	85	mW	For each output; static (no clock)
CMOS Output Power-Down (Dynamic)	115	150	190	mW	For each CMOS output, single-ended; clocking at 62 MHz with 5 pF load
CMOS Output Power-Down (Dynamic)	125	165	210	mW	For each CMOS output, single-ended; clocking at 125 MHz with 5 pF load
Delay Block Bypass	20	24	60	mW	Versus delay block operation at 1 ns fs with maximum delay, output clocking at 25 MHz
PLL Section Power-Down	5	15	40	mW	

## AD9510

## TIMING DIAGRAMS



Figure 2. CLK1/CLK1B to Clock Output Timing, $D I V=1$ Mode


Figure 3. LVPECL Timing, Differential


Figure 4. LVDS Timing, Differential


Figure 5. CMOS Timing, Single-Ended, 3 pFLoad

## ABSOLUTE MAXIMUM RATINGS

Table 12.

Parameter	Value
VS to GND	-0.3 V to +3.6 V
VCP to GND	-0.3 V to +5.8 V
VCP to $\mathrm{V}_{s}$	-0.3 V to +5.8 V
REFIN, REFINB to GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
RSET to GND	-0.3 V to $\mathrm{V}_{s}+0.3 \mathrm{~V}$
CPRSET to GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
CLK1, CLK1B, CLK2, CLK2B to GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
CLK1 to CLK1B	-1.2 V to +1.2 V
CLK2 to CLK2B	-1.2 V to +1.2 V
SCLK, SDIO, SDO, CSB to GND	-0.3 V to $\mathrm{V}_{s}+0.3 \mathrm{~V}$
OUT0, OUT1, OUT2, OUT3 to GND	-0.3 V to $\mathrm{V}_{s}+0.3 \mathrm{~V}$
OUT4, OUT5, OUT6, OUT7 to GND	-0.3 V to $\mathrm{V}_{s}+0.3 \mathrm{~V}$
FUNCTION to GND	-0.3 V to $\mathrm{V}_{s}+0.3 \mathrm{~V}$
STATUS to GND	-0.3 V to $\mathrm{V}_{s}+0.3 \mathrm{~V}$
Junction Temperature ${ }^{1}$	$150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec)	$300^{\circ} \mathrm{C}$

${ }^{1}$ See Thermal Characteristics for $\theta_{\mathrm{JA}}$
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## THERMAL CHARACTERISTICS

Thermal impedance measurements were taken on a 4-layer board in still air in accordance with EIA/JESD51-7.

Table 13. Thermal Resistance

Package	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
64-Lead LFCSP	24	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



NOTES

1. THE EXPOSED PADDLE ON THIS PACKAGE IS AN ELECTRICAL CONNECTION AS WELL AS A THERMAL ENHANCEMENT. FOR THE DEVICE TO FUNCTION PROPERLY, i: THE PADDLE MUST BE ATTACHED TO GROUND, GND.

Figure 6.

Table 14. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	REFIN	PLL Reference Input.
2	REFINB	Complementary PLL Reference Input.
$\begin{aligned} & 3,7,8,12,22, \\ & 27,32,49,50, \\ & 55,62 \end{aligned}$	GND	Ground.
$\begin{aligned} & 4,9,13,23,26, \\ & 30,31,33,36 \\ & 37,40,41,44, \\ & 45,48,51,52, \\ & 56,59,60,64 \end{aligned}$	VS	Power Supply (3.3 V) Vs.
5	VCP	Charge Pump Power Supply VCPs. It must be greater than or equal to $\mathrm{V}_{\mathrm{s}} . \mathrm{VCP}_{\mathrm{s}}$ can be set as high as 5.5 V for VCOs requiring extended tuning range.
6	CP	Charge Pump Output.
10	CLK2	Clock Input Used to Connect External VCO/VCXO to Feedback Divider, N. CLK2 also drives the distribution section of the chip and can be used as a generic clock input when PLL is not used.
11	CLK2B	Complementary Clock Input Used in Conjunction with CLK2.
14	CLK1	Clock Input that Drives Distribution Section of the Chip.
15	CLK1B	Complementary Clock Input Used in Conjunction with CLK1.
16	FUNCTION	Multipurpose Input Can Be Programmed as a Reset (RESETB), Sync (SYNCB), or Power-Down (PDB) Pin. This pin is internally pulled down by a $30 \mathrm{k} \Omega$ resistor. If this pin is left NC , the part is in reset by default. To avoid this, connect this pin to $\mathrm{V}_{\mathrm{s}}$ with a $1 \mathrm{k} \Omega$ resistor.
17	STATUS	Output Used to Monitor PLL Status and Sync Status.
18	SCLK	Serial Data Clock.
19	SDIO	Serial Data I/O.
20	SDO	Serial Data Output.
21	CSB	Serial Port Chip Select.
24	OUT7B	Complementary LVDS/Inverted CMOS Output.
25	OUT7	LVDS/CMOS Output.


Pin No.	Mnemonic	Description
28	OUT3B	Complementary LVPECL Output.
29	OUT3	LVPECL Output.
34	OUT2B	Complementary LVPECL Output.
35	OUT2	LVPECL Output.
38	OUT6B	Complementary LVDS/Inverted CMOS Output. OUT6 includes a delay block.
39	OUT6	LVDS/CMOS Output. OUT6 includes a delay block.
42	OUT5B	Complementary LVDS/Inverted CMOS Output. OUT5 includes a delay block.
43	OUT5	LVDS/CMOS Output. OUT5 includes a delay block.
46	OUT4B	Complementary LVDS/Inverted CMOS Output.
47	OUT4	LVDS/CMOS Output.
53	OUT1B	Complementary LVPECL Output.
54	OUT1	LVPECL Output.
57	OUTOB	Complementary LVPECL Output.
58	OUT0	LVPECL Output.
61	RSET	Current Set Resistor to Ground. Nominal value $=4.12 \mathrm{k} \Omega$.
63	CPRSET	Charge Pump Current Set Resistor to Ground. Nominal value $=5.1 \mathrm{k} \Omega$.
	EPAD	Exposed Paddle. The exposed paddle on this package is an electrical connection as well as a thermal
		enhancement. For the device to function properly, the paddle must be attached to ground, GND.

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 7. Power vs. Frequency—LVPECL, LVDS (PLL Off)


Figure 8. CLK1 Smith Chart (Evaluation Board)


Figure 9. CLK2 Smith Chart (Evaluation Board)


Figure 10. Power vs. Frequency-LVPECL, CMOS (PLL Off)


Figure 11. REFIN Smith Chart (Evaluation Board)


Figure 12. Phase Noise, LVPECL, DIV 1, FVCXO $=245.76 \mathrm{MHz}$, $f_{\text {OUT }}=245.76 \mathrm{MHz}, f_{P F D}=1.2288 \mathrm{MHz}, R=25, N=200$


Figure 13. PLL Reference Spurs: VCO 1.5 GHz, $f_{P F D}=1 \mathrm{MHz}$


Figure 14. Charge Pump Output Characteristics at VCPs $=3.3 \mathrm{~V}$


Figure 15. Phase Noise, LVPECL, DIV 4, $f_{V C x 0}=245.76 \mathrm{MHz}$, $f_{\text {OUT }}=61.44 \mathrm{MHz}, f_{\text {PFD }}=1.2288 \mathrm{MHz}, R=25, N=200$


Figure 16. Phase Noise (Referred to CP Output) vs. PFD Frequency (f $f_{P F D}$ )


Figure 17. Charge Pump Output Characteristics at VCPs $=5.0 \mathrm{~V}$


Figure 18. LVPECL Differential Output at 800 MHz


Figure 19. LVDS Differential Output at 800 MHz


Figure 20. CMOS Single-Ended Output at 250 MHz with 10 pF Load


Figure 21. LVPECL Differential Output Swing vs. Frequency


Figure 22. LVDS Differential Output Swing vs. Frequency


Figure 23. CMOS Single-Ended Output Swing vs. Frequency and Load


Figure 24. Additive Phase Noise—LVPECL DIV 1, 245.76 MHz, Distribution Section Only


Figure 25. Additive Phase Noise—LVDS DIV 1, 245.76 MHz


Figure 26. Additive Phase Noise-CMOS DIV 1, 245.76 MHz


Figure 27. Additive Phase Noise—LVPECL DIV1, 622.08 MHz


Figure 28. Additive Phase Noise—LVDS DIV2, 122.88 MHz


Figure 29. Additive Phase Noise-CMOS DIV4, 61.44 MHz

## TERMINOLOGY

## Phase Jitter and Phase Noise

An ideal sine wave has a continuous and even progression of phase with time from 0 to 360 degrees for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as being Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are $\mathrm{dBc} / \mathrm{Hz}$ at a given offset in frequency from the sine wave (carrier). The value is a ratio, expressed in dB , of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.
It is meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz ). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.
Phase noise has a detrimental effect on the performance of analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and signal input (RF) mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in different ways.

## Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings is seen to vary. In a square wave, the time jitter is seen as a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Since these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.

Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the SNR and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

## Additive Phase Noise

Additive phase noise is the amount of phase noise attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contribute their own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise.

## Additive Time Jitter

Additive time jitter is the amount of time jitter attributable to the device or subsystem being measured. The time jitter of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contribute their own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

## TYPICAL MODES OF OPERATION

## PLL WITH EXTERNAL VCXO/VCO FOLLOWED BY CLOCK DISTRIBUTION

This is the most common operational mode for the AD9510. An external oscillator (shown as VCO/VCXO) is phase locked to a reference input frequency applied to REFIN. The loop filter is usually a passive design. A VCO or a VCXO can be used. The CLK2 input is connected internally to the feedback divider, N . The CLK2 input provides the feedback path for the PLL. If the VCO/VCXO frequency exceeds maximum frequency of the output or outputs being used, an appropriate divide ratio must be set in the corresponding divider or dividers in the Distribution Section. Save some power by shutting off unused functions and by powering down any unused clock channels (see the Register Map and Description section).


Figure 30. PLL and Clock Distribution Mode

## CLOCK DISTRIBUTION ONLY

It is possible to use only the distribution section whenever the PLL section is not needed. Save power by shutting off the PLL block, and by powering down any unused clock channels (see the Register Map and Description section).
In distribution mode, both the CLK1 and CLK2 inputs are available for distribution to outputs via a low jitter multiplexer (mux).


Figure 31. Clock Distribution Mode

## PLL WITH EXTERNAL VCO AND BAND-PASS

## FILTER FOLLOWED BY CLOCK DISTRIBUTION

An external band-pass filter (BPF) can be used to improve the phase noise and spurious characteristics of the PLL output. This option is most appropriate to optimize cost by choosing a less expensive VCO combined with a moderately priced filter. Note that the BPF is shown outside of the VCO-to-N divider path, with the BP filter outputs routed to CLK1. Save some power by shutting off unused functions, and by powering down any unused clock channels (see the Register Map and Description section).


Figure 32. AD9510 with VCO and BPF Filter


Figure 33. Functional Block Diagram Showing Maximum Frequencies

## FUNCTIONAL DESCRIPTION

## OVERALL

Figure 33 shows a block diagram of the AD9510. The chip combines a programmable PLL core with a configurable clock distribution system. A complete PLL requires the addition of a suitable external VCO (or VCXO) and loop filter. This PLL can lock to a reference input signal and produce an output that is related to the input frequency by the ratio defined by the programmable R and N dividers. The PLL cleans up some jitter from the external reference signal, depending on the loop bandwidth and the phase noise performance of the VCO (VCXO).

The output from the VCO (VCXO) can be applied to the clock distribution section of the chip, where it can be divided by any integer value from 1 to 32 . The duty cycle and relative phase of the outputs can be selected. There are four LVPECL outputs, (OUT0, OUT1, OUT2, and OUT3) and four outputs that can be either LVDS or CMOS level outputs (OUT4, OUT5, OUT6, and OUT7). Two of these outputs (OUT5 and OUT6) can also make use of a variable delay block.

Alternatively, the clock distribution section can be driven directly by an external clock signal, and the PLL can be powered off. Whenever the clock distribution section is used alone, there is no clock cleanup. The jitter of the input clock signal is passed along directly to the distribution section and may dominate at the clock outputs.

## PLL SECTION

The AD9510 consists of a PLL section and a distribution section. If desired, the PLL section can be used separately from the distribution section.

The AD9510 has a complete PLL core on-chip, requiring only an external loop filter and VCO/VCXO. This PLL is based on the ADF4106, a PLL noted for its superb low phase noise performance. The operation of the AD9510 PLL is nearly identical to that of the ADF4106, offering an advantage to those with experience with the ADF series of PLLs. Differences include the addition of differential inputs at REFIN and CLK2, a different control register architecture. Also, the prescaler is changed to allow N as low as 1 . The AD9510 PLL implements the digital lock detect feature somewhat differently than the ADF4106 does, offering improved functionality at higher PFD rates. See the Register Map Description section.

## PLL Reference Input—REFIN

The REFIN/REFINB pins can be driven by either a differential or a single-ended signal. These pins are internally self-biased so that they can be ac-coupled via capacitors. It is possible to dccouple to these inputs. If REFIN is driven single-ended, decouple the unused side (REFINB) via a suitable capacitor to a quiet ground. Figure 34 shows the equivalent circuit of REFIN.


Figure 34. REFIN Equivalent Circuit

## VCO/VCXO Clock Input-CLK2

The CLK2 differential input is used to connect an external VCO or VCXO to the PLL. Only the CLK2 input port has a connection to the PLL N divider. This input can receive up to 1.6 GHz . These inputs are internally self-biased and must be ac-coupled via capacitors.

Alternatively, CLK2 can be used as an input to the distribution section. This is accomplished by setting Register $0 \times 45[0]=0 b$. The default condition is for CLK1 to feed the distribution section.


Figure 35. CLK1, CLK2 Equivalent Input Circuit

## PLL Reference Divider—R

The REFIN/REFINB inputs are routed to reference divider, $R$, which is a 14 -bit counter. R can be programmed to any value from 1 to 16383 (a value of 0 results in a divide by 1 ) via its control register (Register 0x0B[5:0], Register 0x0C[7:0]). The output of the R divider goes to one of the phase frequency detector inputs. Do not exceed the maximum allowable frequency into the phase frequency detector (PFD). This means that the REFIN frequency divided by R must be less than the maximum allowable PFD frequency. See Figure 34.

## VCO/VCXO Feedback Divider-N (P, A, B)

The N divider is a combination of a prescaler, P ( 3 bits), and two counters, A (6 bits) and B (13 bits). Although the PLL of the AD9510 is similar to the ADF4106, the AD9510 has a redesigned prescaler that allows lower values of N . The prescaler has both a dual modulus (DM) and a fixed divide (FD) mode. The AD9510 prescaler modes are shown in Table 15.

Table 15. PLL Prescaler Modes

Mode   (FD = Fixed Divide,   DM = Dual Modulus)	Value in   Register 0x0A[4:2]	Divide By
FD	000	1
FD	001	2
$P=2$ DM	010	$P / P+1=2 / 3$
$P=4$ DM	011	$P / P+1=4 / 5$
$P=8$ DM	100	$P / P+1=8 / 9$
$P=16$ DM	101	$P / P+1=16 / 17$
$P=32$ DM	110	$P / P+1=32 / 33$
FD	111	3

When using the prescaler in FD mode, the A counter is not used, and the B counter may need to be bypassed. The DM prescaler modes set some upper limits on the frequency, which can be applied to CLK2. See Table 16.

Table 16. Frequency Limits of Each Prescaler Mode

Mode (DM = Dual Modulus)	CLK2
$\mathrm{P}=2 \mathrm{DM}(2 / 3)$	$<600 \mathrm{MHz}$
$\mathrm{P}=4 \mathrm{DM}(4 / 5)$	$<1000 \mathrm{MHz}$
$\mathrm{P}=8 \mathrm{DM}(8 / 9)$	$<1600 \mathrm{MHz}$
$\mathrm{P}=16 \mathrm{DM}$	$<1600 \mathrm{MHz}$
$\mathrm{P}=32 \mathrm{DM}$	$<1600 \mathrm{MHz}$

## $A$ and $B$ Counters

The AD9510 B counter has a bypass mode ( $B=1$ ), which is not available on the ADF4106. The B counter bypass mode is valid only when using the prescaler in FD mode. The B counter is bypassed by writing 1 to the B counter bypass bit (Register 0x0A[6] $=1 \mathrm{~b})$. The valid range of the $B$ counter is 3 to 8191 . The default after a reset is 0 , which is invalid.
Note that the A counter is not used when the prescaler is in FD mode.

Note also that the $A / B$ counters have their own reset bit, which is primarily intended for testing. The A and B counters can also be reset using the shared reset bit of the $\mathrm{R}, \mathrm{A}$, and B counters (Register 0x09[0]).

## Determining Values for $P, A, B$, and $R$

When operating the AD9510 in a dual-modulus mode, the input reference frequency, $\mathrm{f}_{\mathrm{REF}}$, is related to the VCO output frequency, $f_{v c o}$.

$$
f_{V C O}=\left(f_{R E F} / R\right) \times(P B+A)=f_{R E F} \times N / R
$$

When operating the prescaler in fixed divide mode, the A counter is not used and the equation simplifies to

$$
f_{V C O}=\left(f_{R E F} / R\right) \times(P B)=f_{R E F} \times N / R
$$

By using combinations of dual modulus and fixed divide modes, the AD9510 can achieve values of N all the way down to $\mathrm{N}=1$. Table 17 shows how a 10 MHz reference input can be locked to any integer multiple of N . Note that the same value of N can be derived in different ways, as illustrated by $\mathrm{N}=12$.

Table 17. P, A, B, R-Smallest Values for N

$\mathbf{f}_{\text {REF }}$	R	P	A	B	N	fvco	Mode	Notes
10	1	1	X	1	1	10	FD	$\mathrm{P}=1, \mathrm{~B}=1$ (Bypassed)
10	1	2	X	1	2	20	FD	$\mathrm{P}=2, \mathrm{~B}=1$ (Bypassed)
10	1	1	X	3	3	30	FD	$\mathrm{P}=1, \mathrm{~B}=3$
10	1	1	X	4	4	40	FD	$\mathrm{P}=1, \mathrm{~B}=4$
10	1	1	X	5	5	50	FD	$\mathrm{P}=1, \mathrm{~B}=5$
10	1	2	X	3	6	60	FD	$\mathrm{P}=2, \mathrm{~B}=3$
10	1	2	0	3	6	60	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=0, \mathrm{~B}=3$
10	1	2	1	3	7	70	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=1, \mathrm{~B}=3$
10	1	2	2	3	8	80	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=2, \mathrm{~B}=3$
10	1	2	1	4	9	90	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=1, \mathrm{~B}=4$
10	1	2	X	5	10	100	FD	$\mathrm{P}=2, \mathrm{~B}=5$
10	1	2	0	5	10	100	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=0, \mathrm{~B}=5$
10	1	2	1	5	11	110	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=1, \mathrm{~B}=5$
10	1	2	X	6	12	120	FD	$\mathrm{P}=2, \mathrm{~B}=6$
10	1	2	0	6	12	120	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=0, \mathrm{~B}=6$
10	1	4	0	3	12	120	DM	$\mathrm{P} / \mathrm{P}+1=4 / 5, \mathrm{~A}=0, \mathrm{~B}=3$
10	1	4	1	3	13	130	DM	$\mathrm{P} / \mathrm{P}+1=4 / 5, \mathrm{~A}=1, \mathrm{~B}=3$

## Phase Frequency Detector (PFD) and Charge Pump

The PFD takes inputs from the R counter and the N counter $(\mathrm{N}=\mathrm{BP}+\mathrm{A})$ and produces an output proportional to the phase and frequency difference between them. Figure 36 is a simplified schematic. The PFD includes a programmable delay element that controls the width of the antibacklash pulse. This pulse ensures that there is no dead zone in the PFD transfer function and minimizes phase noise and reference spurs. Two bits in Register 0x0D[1:0] control the width of the pulse.


Figure 36. PFD Simplified Schematic and Timing (In Lock)

## Antibacklash Pulse

The PLL features a programmable antibacklash pulse width that is set by the value in Register 0x0D[1:0]. The default antibacklash pulse width is 1.3 ns (Register 0x0D[1:0] = 00b) and normally does not need to be changed. The antibacklash pulse
eliminates the dead zone around the phase-locked condition and thereby reduces the potential for certain spurs that can be impressed on the VCO signal.

## STATUS Pin

The output multiplexer on the AD9510 allows access to various signals and internal points on the chip at the STATUS pin. Figure 37 shows a block diagram of the STATUS pin section. The function of the STATUS pin is controlled by Register 0x8[5:2].

## PLL Digital Lock Detect

The STATUS pin can display two types of PLL lock detect: digital (DLD) and analog (ALD). Whenever digital lock detect is desired, the STATUS pin provides a CMOS level signal, which can be active high or active low.

The digital lock detect has one of two time windows, as selected by Register 0x0D[5]. The default (Register 0x0D[5] $=0 \mathrm{~b}$ ) requires the signal edges on the inputs to the PFD to be coincident within 9.5 ns to set the DLD true, which then must separate by at least 15 ns to give DLD = false.
The other setting (Register $0 \times 0 \mathrm{D}[5]=1$ ) makes these coincidence times 3.5 ns for $\operatorname{DLD}=$ true and 7 ns for $\operatorname{DLD}=$ false.

The DLD can be disabled by writing 1 to Register 0x0D[6].
If the signal at REFIN goes away while DLD is true, the DLD does not necessarily indicate loss of lock. See the Loss of Reference section for more information.


Figure 37. STATUS Pin Circuit CLK1 Clock Input

## PLL Analog Lock Detect

An analog lock detect (ALD) signal can be selected. When ALD is selected, the signal at the STATUS pin is either an open-drain P-channel (Register 0x08[5:2] = 1100) or an open-drain N -channel (Register 0x08[5:2] = 0101b).
The analog lock detect signal is true (relative to the selected mode) with brief false pulses. These false pulses shorten as the inputs to the PFD are nearer to coincidence and longer as they are further from coincidence.

To extract a usable analog lock detect signal, an external resistorcapacitor ( RC ) network is required to provide an analog filter with the appropriate RC constant to allow for the discrimination of a lock condition by an external voltage comparator. A $1 \mathrm{k} \Omega$ resistor in parallel with a small capacitance usually fulfills this requirement. However, some experimentation may be required to obtain the desired operation.
The analog lock detect function may introduce some spurious energy into the clock outputs. It is prudent to limit the use of the ALD when the best possible jitter/phase noise performance is required on the clock outputs.

## Loss of Reference

The AD9510 PLL can warn of a loss of reference signal at REFIN. The loss of reference monitor internally sets a flag called LREF. Externally, this signal can be observed in several ways on the STATUS pin, depending on the PLL MUX control settings in Register 0x08[5:2]. The LREF alone can be observed as an active high signal by setting Register 0x08[5:2] $=$ [1010] or as an active low signal by setting Register 0x08[5:2] = [1111].
The loss of reference circuit is clocked by the signal from the VCO, which means that there must be a VCO signal present to detect a loss of reference.

The digital lock detect (DLD) block of the AD9510 requires a PLL reference signal to be present in order for the digital lock detect output to be valid. It is possible to have a digital lock detect indication ( $\mathrm{DLD}=$ true) that remains true even after a loss of reference signal. For this reason, the digital lock detect signal alone cannot be relied upon if the reference has been lost. To combine the DLD and the LREF into a single signal at the STATUS pin, set Register 0x08[5:2] = [1101] to obtain a signal that is the logical OR of the loss of lock (inverse of DLD) and the loss of reference (LREF) active high. If an active low version of this same signal is desired, set Register 0x08[5:2] $=$ [1110].

The reference monitor is enabled only after the DLD signal is high for the number of PFD cycles set by the value in Register 0x07[6:5]. This delay is measured in PFD cycles. The delay ranges from 3 PFD cycles (default) to 24 PFD cycles. When the reference goes away, LREF goes true and the charge pump goes into tristate.
User intervention is required to take the part out of this state. First, Register 0x07[2] = 0b must be written to disable the loss of reference circuit, taking the charge pump out of tristate and causing LREF to go false. A second write of Register 0x07[2] = 1 is required to reenable the loss of reference circuit.


Figure 38. Loss of Reference Sequence of Events

## FUNCTION PIN

The FUNCTION pin (16) has three functions that are selected by the value in Register 0x58[6:5]. This pin is internally pulled down by a $30 \mathrm{k} \Omega$ resistor. If this pin is left unconnected, the part is in reset by default. To avoid this, connect this pin to $\mathrm{V}_{\mathrm{S}}$ with a $1 \mathrm{k} \Omega$ resistor.

## RESETB: Register 0x58[6:5] = 00b (Default)

In its default mode, the FUNCTION pin acts as RESETB, which generates an asynchronous reset or hard reset when pulled low. The resulting reset writes the default values into the serial control port buffer registers as well as loading them into the chip control registers. When the RESETB signal goes high again, a synchronous sync is issued (see the SYNCB: Register 0x58[6:5] $=01 \mathrm{~b}$ section) and the AD9510 resumes operation according to the default values of the registers.

## SYNCB: Register 0x58[6:5] = 016

Using the FUNCTION pin causes a synchronization or alignment of phase among the various clock outputs. The synchronization applies only to clock outputs that

- Are not powered down
- The divider is not masked (no sync $=0 \mathrm{~b}$ )
- Are not bypassed (bypass $=0 \mathrm{~b}$ )

SYNCB is level and rising edge sensitive. When SYNCB is low, the set of affected outputs are held in a predetermined state, defined by the start high bit of each divider. On a rising edge, the dividers begin after a predefined number of fast clock cycles (fast clock is the selected clock input, CLK1 or CLK2) as determined by the values in the phase offset bits of the divider.
The SYNCB application of the FUNCTION pin is always active, regardless of whether the pin is also assigned to perform reset or power-down. When the SYNCB function is selected, the FUNCTION pin does not act as either RESETB or PDB.

## PDB: Register 0x58[6:5] = 11 b

The FUNCTION pin can also be programmed to work as an asynchronous full power-down, PDB. Even in this full powerdown mode, there is still some residual $\mathrm{V}_{\mathrm{S}}$ current because some on-chip references continue to operate. In PDB mode, the FUNCTION pin is active low. The chip remains in a powerdown state until PDB is returned to logic high. The chip returns to the settings programmed prior to the power-down.
See the Chip Power-Down or Sleep Mode-PDB section for more details on what occurs during a PDB initiated power-down.

## DISTRIBUTION SECTION

As previously mentioned, the AD9510 is partitioned into two operational sections: PLL and distribution. The PLL Section is discussed previously in this data sheet. If desired, the distribution section can be used separately from the PLL section.

## CLK1 AND CLK2 CLOCK INPUTS

Either CLK1 or CLK2 can be selected as the input to the distribution section. The CLK1 input can be connected to drive the distribution section only. CLK1 is selected as the source for the distribution section by setting Register $0 \times 45[0]=1$. This is the power-up default state.

CLK1 and CLK2 work for inputs up to 1600 MHz . A higher input slew rate improves the jitter performance. The input level must be between approximately 150 mV p-p to no more than 2 V p-p. Anything greater may result in turning on the protection diodes on the input pins, which may degrade the jitter performance.
See Figure 35 for the CLK1 and CLK2 equivalent input circuit. These inputs are fully differential and self-biased. The signal must be ac-coupled using capacitors. If a single-ended input must be used, this can be accommodated by ac-coupling to one side of the differential input only. Bypass the other side of the input to a quiet ac ground by a capacitor.
Power down the unselected clock input (CLK1 or CLK2) to eliminate any possibility of unwanted crosstalk between the selected clock input and the unselected clock input.

## DIVIDERS

Each of the eight clock outputs of the AD9510 has its own divider. The divider can be bypassed to obtain an output at the same frequency as the input ( $1 \times$ ). When a divider is bypassed, it is powered down to save power.

All integer divide ratios from 1 to 32 can be selected. A divide ratio of 1 is selected by bypassing the divider.
Each divider can be configured for divide ratio, phase, and duty cycle. The phase and duty cycle values that can be selected depend on the divide ratio that is chosen.

## Setting the Divide Ratio

The divide ratio is determined by the values written via the serial control port (SCP) to the registers that control each individual output, OUT0 to OUT7. These are the even numbered registers beginning at Register 0x48 and going through Register 0x56. Each of these registers is divided into bits that control the number of clock cycles that the divider output stays high (HIGH_CYCLES[3:0]) and the number of clock cycles that the divider output stays low (LOW_CYCLES[7:4]). Each value is 4 bits and has the range of 0 to 15 .
The divide ratio is set by

$$
\text { Divide Ratio }=(\text { HIGH_CYCLES }+1)+\left(L O W _C Y C L E S+1\right)
$$

## Example 1:

Set the Divide Ratio $=2$
HIGH_CYCLES $=0$
LOW_CYCLES $=0$
Divide Ratio $=(0+1)+(0+1)=2$

## Example 2:

Set Divide Ratio $=8$
HIGH_CYCLES $=3$
LOW_CYCLES = 3
Divide Ratio $=(3+1)+(3+1)=8$
Note that a Divide Ratio of 8 can also be obtained by setting:
HIGH_CYCLES $=2$
LOW_CYCLES $=4$
Divide Ratio $=(2+1)+(4+1)=8$
Table 18. Duty Cycle and Divide Ratio

Divide Ratio	Duty Cycle (\%)	Address 0x48 to Address 0x56	
		LO[7:4]	HI[3:0]
2	50	0	0
3	67	0	1
3	33	1	0
4	50	1	1
4	75	0	2
4	25	2	0
5	60	1	2
5	40	2	1
5	80	0	3
5	20	3	0
6	50	2	2
6	67	1	3
6	33	3	1
6	83	0	4
6	17	4	0
7	57	2	3
7	43	3	2
7	71	1	4
7	29	4	1
7	86	0	5
7	14	5	0
8	50	3	3
8	63	2	4
8	38	4	2
8	75	1	5
8	25	5	1
8	88	0	6
8	13	6	0
9	56	3	4
9	44	4	3
9	67	2	5

Although the second set of settings produces the same divide ratio, the resulting duty cycle is not the same.

## Setting the Duty Cycle

The duty cycle and the divide ratio are related. Different divide ratios have different duty cycle options. For example, if Divide Ratio $=2$, the only duty cycle possible is $50 \%$. If the Divide Ratio $=4$, the duty cycle can be $25 \%, 50 \%$, or $75 \%$.
The duty cycle is set by

$$
\begin{aligned}
& \text { Duty Cycle }=(\text { HIGH_CYCLES + 1)/((HIGH_CYCLES }+1) \\
& \left.+\left(L O W _C Y C L E S ~+1\right)\right)
\end{aligned}
$$

See Table 18 for the values for the available duty cycles for each divide ratio.

Divide Ratio	Duty Cycle (\%)	Address 0x48 to Address 0x56	
		LO[7:4]	HI[3:0]
9	33	5	2
9	78	1	6
9	22	6	1
9	89	0	7
9	11	7	0
10	50	4	4
10	60	3	5
10	40	5	3
10	70	2	6
10	30	6	2
10	80	1	7
10	20	7	1
10	90	0	8
10	10	8	0
11	55	4	5
11	45	5	4
11	64	3	6
11	36	6	3
11	73	2	7
11	27	7	2
11	82	1	8
11	18	8	1
11	91	0	9
11	9	9	0
12	50	5	5
12	58	4	6
12	42	6	4
12	67	3	7
12	33	7	3
12	75	2	8
12	25	8	2

## AD9510

Divide Ratio	Duty Cycle (\%)	Address 0x48 to Address 0x56		Divide Ratio	Duty Cycle (\%)	Address 0x48 to Address 0x56	
		LO[7:4]	HI[3:0]			LO[7:4]	HI[3:0]
12	83	1	9	16	75	3	B
12	17	9	1	16	25	B	3
12	92	0	A	16	81	2	C
12	8	A	0	16	19	C	2
13	54	5	6	16	88	1	D
13	46	6	5	16	13	D	1
13	62	4	7	16	94	0	E
13	38	7	4	16	6	E	0
13	69	3	8	17	53	7	8
13	31	8	3	17	47	8	7
13	77	2	9	17	59	6	9
13	23	9	2	17	41	9	6
13	85	1	A	17	65	5	A
13	15	A	1	17	35	A	5
13	92	0	B	17	71	4	B
13	8	B	0	17	29	B	4
14	50	6	6	17	76	3	C
14	57	5	7	17	24	C	3
14	43	7	5	17	82	2	D
14	64	4	8	17	18	D	2
14	36	8	4	17	88	1	E
14	71	3	9	17	12	E	1
14	29	9	3	17	94	0	F
14	79	2	A	17	6	F	0
14	21	A	2	18	50	8	8
14	86	1	B	18	56	7	9
14	14	B	1	18	44	9	7
14	93	0	C	18	61	6	A
14	7	C	0	18	39	A	6
15	53	6	7	18	67	5	B
15	47	7	6	18	33	B	5
15	60	5	8	18	72	4	C
15	40	8	5	18	28	C	4
15	67	4	9	18	78	3	D
15	33	9	4	18	22	D	3
15	73	3	A	18	83	2	E
15	27	A	3	18	17	E	2
15	80	2	B	18	89	1	F
15	20	B	2	18	11	F	1
15	87	1	C	19	53	8	9
15	13	C	1	19	47	9	8
15	93	0	D	19	58	7	A
15	7	D	0	19	42	A	7
16	50	7	7	19	63	6	B
16	56	6	8	19	37	B	6
16	44	8	6	19	68	5	C
16	63	5	9	19	32	C	5
16	38	9	5	19	74	4	D
16	69	4	A	19	26	D	4
16	31	A	4	19	79	3	E


Divide Ratio	Duty Cycle (\%)	Address $0 \times 48$ to Address 0x56	
		LO[7:4]	HI[3:0]
19	21	E	3
19	84	2	F
19	16	F	2
20	50	9	9
20	55	8	A
20	45	A	8
20	60	7	B
20	40	B	7
20	65	6	C
20	35	C	6
20	70	5	D
20	30	D	5
20	75	4	E
20	25	E	4
20	80	3	F
20	20	F	3
21	52	9	A
21	48	A	9
21	57	8	B
21	43	B	8
21	62	7	C
21	38	C	7
21	67	6	D
21	33	D	6
21	71	5	E
21	29	E	5
21	76	4	F
21	24	F	4
22	50	A	A
22	55	9	B
22	45	B	9
22	59	8	C
22	41	C	8
22	64	7	D
22	36	D	7
22	68	6	E
22	32	E	6
22	73	5	F
22	27	F	5
23	52	A	B
23	48	B	A
23	57	9	C
23	43	C	9
23	61	8	D
23	39	D	8
23	65	7	E
23	35	E	7
23	70	6	F


Divide Ratio	Duty Cycle (\%)	Address 0x48 to Address 0x56	
		LO[7:4]	HI[3:0]
23	30	F	6
24	50	B	B
24	54	A	C
24	46	C	A
24	58	9	D
24	42	D	9
24	63	8	E
24	38	E	8
24	67	7	F
24	33	F	7
25	52	B	C
25	48	C	B
25	56	A	D
25	44	D	A
25	60	9	E
25	40	E	9
25	64	8	F
25	36	F	8
26	50	C	C
26	54	B	D
26	46	D	B
26	58	A	E
26	42	E	A
26	62	9	F
26	38	F	9
27	52	C	D
27	48	D	C
27	56	B	E
27	44	E	B
27	59	A	F
27	41	F	A
28	50	D	D
28	54	C	E
28	46	E	C
28	57	B	F
28	43	F	B
29	52	D	E
29	48	E	D
29	55	C	F
29	45	F	C
30	50	E	E
30	53	D	F
30	47	F	D
31	52	E	F
31	48	F	E
32	50	F	F

## Divider Phase Offset

The phase of each output can be selected, depending on the divide ratio chosen. This is selected by writing the appropriate values to the registers which set the phase and start high/low bit for each output. These are the odd numbered registers from Register 0x49 to Register 0x57. Each divider has a 4-bit phase offset [3:0] and a start high or low bit [4].
Following a sync pulse, the phase offset word determines how many fast clock (CLK1 or CLK2) cycles to wait before initiating a clock output edge. The Start H/L bit determines if the divider output starts low or high. By giving each divider a different phase offset, output-to-output delays can be set in increments of the fast clock period, tcık.

Figure 39 shows four dividers, each set for DIV $=4,50 \%$ duty cycle. By incrementing the phase offset from 0 to 3 , each output is offset from the initial edge by a multiple of tcle.


Figure 39. Phase Offset—All Dividers Set for DIV =4, Phase Set from 0 to 3
For example:
CLK1 $=491.52 \mathrm{MHz}$
$\mathrm{t}_{\text {CLK } 1}=1 / 491.52=2.0345 \mathrm{~ns}$
For DIV $=4$
Phase Offset $0=0 \mathrm{~ns}$
Phase Offset $1=2.0345 \mathrm{~ns}$
Phase Offset $2=4.069$ ns
Phase Offset $3=6.104 \mathrm{~ns}$
The four outputs can also be described as:

$$
\begin{aligned}
& \text { OUT1 }=0^{\circ} \\
& \text { OUT2 }=90^{\circ} \\
& \text { OUT3 }=180^{\circ} \\
& \text { OUT4 }=270^{\circ}
\end{aligned}
$$

Setting the phase offset to Phase $=4$ results in the same relative phase as the first channel, Phase $=0^{\circ}$ or $360^{\circ}$.
In general, by combining the 4-bit phase offset and the Start H/L bit, there are 32 possible phase offset states (see Table 19).

Table 19. Phase Offset-Start H/L Bit

Phase Offset (Fast Clock Rising Edges)	Address 0x49 to Address 0x57	
	Phase Offset[3:0]	Start H/L[4]
0	0	0
1	1	0
2	2	0
3	3	0
4	4	0
5	5	0
6	6	0
7	7	0
8	8	0
9	9	0
10	10	$0$
11	11	$0$
12	12	0
13	13	0
14	14	0
15	15	0
16	0	1
17	1	1
18	2	1
19	3	1
20	4	1
21	5	1
22	6	1
23	7	1
24	8	1
25	9	1
26	10	1
27	11	1
28	12	1
29	13	$1$
30	14	1
31	15	1

The resolution of the phase offset is set by the fast clock period ( $\mathrm{t}_{\text {cLK }}$ ) at CLK1 or CLK2. As a result, every divide ratio does not have 32 unique phase offsets available. For any divide ratio, the number of unique phase offsets is numerically equal to the divide ratio (see Table 19):

DIV $=4$
Unique Phase Offsets Are Phase $=0,1,2,3$
DIV $=7$
Unique Phase Offsets Are Phase $=0,1,2,3,4,5,6$
DIV $=18$
Unique Phase Offsets Are Phase $=0,1,2,3,4,5,6,7,8,9$, $10,11,12,13,14,15,16,17$

Phase offsets can be related to degrees by calculating the phase step for a particular divide ratio:

Phase Step $=360^{\circ} /($ Divide Ratio $)=360^{\circ} / D I V$
Using some of the same examples,

$$
\text { DIV }=4
$$

Phase Step $=360^{\circ} / 4=90^{\circ}$
Unique Phase Offsets in Degrees Are Phase $=0^{\circ}, 90^{\circ}$,
$180^{\circ}, 270^{\circ}$
DIV $=7$
Phase Step $=360^{\circ} / 7=51.43^{\circ}$
Unique Phase Offsets in Degrees Are Phase $=0^{\circ}, 51.43^{\circ}$,
$102.86^{\circ}, 154.29^{\circ}, 205.71^{\circ}, 257.15^{\circ}, 308.57^{\circ}$

## DELAY BLOCK

OUT5 and OUT6 (LVDS/CMOS) include an analog delay element that can be programmed (from Register 0x34 to Register 0x3A) to give variable time delays ( $\Delta \mathrm{t}$ ) in the clock signal passing through that output.


Figure 40. Analog Delay (OUT5 and OUT6)
The amount of delay that can be used is determined by the frequency of the clock being delayed. The amount of delay can approach one-half cycle of the clock period. For example, for a 10 MHz clock, the delay can extend to the full 8 ns maximum of which the delay element is capable. However, for a 100 MHz clock (with $50 \%$ duty cycle), the maximum delay is less than 5 ns (or half of the period).
OUT5 and OUT6 allow a full-scale delay in the range 1 ns to 8 ns. The full-scale delay is selected by choosing a combination of ramp current and the number of capacitors by writing the appropriate values into Register 0x35 and Register 0x39. There are 25 fine delay settings (Register 0x36 and Register 0x3A = 00000 b to 11000 b ) for each full scale, set by Register $0 \times 36$ and Register 0x3A.
This path adds some jitter greater than that specified for the nondelay outputs. Therefore, use the delay function primarily for clocking digital chips, such as FPGA, ASIC, DUC, and DDC, rather than for data converters. The jitter is higher for long full scales ( $\sim 8 \mathrm{~ns}$ ). This is because the delay block uses a ramp and trip points to create the variable delay. A longer ramp means more noise can be introduced.

## Calculating the Delay

The following values and equations are used to calculate the delay of the delay block.

> Value of Ramp Current Control Bits (Register 0x35 or Register $0 \times 39[2: 0])=I$ IRAMP_BITS
> $I_{\text {RAMP }}(\mu \mathrm{A})=200 \times($ IRAMP_BITS +1$)$
> No. of Caps $=$ No. of $0 \mathrm{~s}+1$ in Ramp Control Capacitor (Register $0 \times 35$ or Register $0 \times 39[5: 3])$, that is, $101=1+1=$ $2 ; 110=2 ; 100=2+1=3 ; 001=2+1=3 ; 111=0+1=1)$ DELAY_RANGE $(\mathrm{ns})=200 \times\left((\right.$ No. of Caps +3$\left.) /\left(I_{\text {RAMP }}\right)\right) \times$ 1.3286
> Offset $(\mathrm{ns})=0.34+\left(1600-I_{\text {RAMP }}\right) \times 10^{-4}+\left(\frac{\text { No.of Caps }-1}{I_{\text {RAMP }}}\right) \times 6$

$$
\begin{aligned}
& \text { DELAY_FULL_SCALE }(\mathrm{ns})=D E L A Y _R A N G E \times(24 / 31)+ \\
& \text { Offset }
\end{aligned}
$$

FINE_ADJ = Value of Delay Fine Adjust (Register $0 \times 36$ or Register $0 \times 3 A[5: 1]$ ), that is, $11000=24$

$$
\operatorname{Delay}(\mathrm{ns})=O f f s e t+D E L A Y _R A N G E \times F I N E _A D J \times(1 / 31)
$$

## OUTPUTS

The AD9510 offers three different output level choices: LVPECL, LVDS, and CMOS. OUT0 to OUT3 are LVPECL only. OUT4 to OUT7 can be selected as either LVDS or CMOS. Each output can be enabled or turned off as needed to save power.

The simplified equivalent circuit of the LVPECL outputs is shown in Figure 41.


Figure 41. LVPECL Output Simplified Equivalent Circuit


Figure 42. LVDS Output Simplified Equivalent Circuit

## POWER-DOWN MODES

## Chip Power-Down or Sleep Mode—PDB

The PDB chip power-down turns off most of the functions and currents in the AD9510. When the PDB mode is enabled, a chip power-down is activated by taking the FUNCTION pin to a logic low level. The chip remains in this power-down state until PDB is brought back to logic high. When woken up, the AD9510 returns to the settings programmed into its registers prior to the powerdown, unless the registers are changed by new programming while the PDB mode is active.

The PDB power-down mode shuts down the currents on the chip, except the bias current necessary to maintain the LVPECL outputs in a safe shutdown mode. This is needed to protect the LVPECL output circuitry from damage that can be caused by certain termination and load configurations when tristated. Because this is not a complete power-down, it is also called sleep mode.

When the AD9510 is in a PDB power-down or sleep mode, the chip is in the following state:

- The PLL is off (asynchronous power-down).
- All clocks and sync circuits are off.
- All dividers are off.
- All LVDS/CMOS outputs are off.
- All LVPECL outputs are in safe off mode.
- The serial control port is active, and the chip responds to commands.

If the AD9510 clock outputs must be synchronized to each other, a SYNC (see the Single-Chip Synchronization section) is required upon exiting power-down mode.

## PLL Power-Down

The PLL section of the AD9510 can be selectively powered down. There are three PLL power-down modes, set by the values in Register 0x0A[1:0], as shown in Table 20.

Table 20. Register 0x0A: PLL Power-Down

$[\mathbf{1 ]}]$	$[\mathbf{0}]$	Mode
0	0	Normal Operation
0	1	Asynchronous Power-Down
1	0	Normal Operation
1	1	Synchronous Power-Down

In asynchronous power-down mode, the device powers down as soon as the registers are updated.
In synchronous power-down mode, the PLL power-down is gated by the charge pump to prevent unwanted frequency jumps. The device goes into power-down on the occurrence of the next charge pump event after the registers are updated.

## Distribution Power-Down

The distribution section can be powered down by writing to Register $0 \times 58[3]=1$. This turns off the bias to the distribution section. If the LVPECL power-down mode is normal operation
[00], it is possible for a low impedance load on that LVPECL output to draw significant current during this power-down. If the LVPECL power-down mode is set to [11], the LVPECL output is not protected from reverse bias and can be damaged under certain termination conditions.

When combined with the PLL power-down, this mode results in the lowest possible power-down current for the AD9510.

## Individual Clock Output Power-Down

Any of the eight clock distribution outputs can be powered down individually by writing to the appropriate registers via the SCP. The register map details the individual power-down settings for each output. The LVDS/CMOS outputs can be powered down, regardless of their output load configuration.
The LVPECL outputs have multiple power-down modes (see Register Address 3C, Register Address 3D, Register Address 3E, and Register Address 3F in Table 25). These give some flexibility in dealing with various output termination conditions. When the mode is set to [10], the LVPECL output is protected from reverse bias to $2 \mathrm{VBE}+1 \mathrm{~V}$. If the mode is set to [11], the LVPECL output is not protected from reverse bias and can be damaged under certain termination conditions. This setting also affects the operation when the distribution block is powered down with Register 0x58[3] = 1 b (see the Distribution Power-Down section).

## Individual Circuit Block Power-Down

Many of the AD9510 circuit blocks (CLK1, CLK2, REFIN, and so on) can be powered down individually. This gives flexibility in configuring the part for power savings whenever certain chip functions are not needed.

## RESET MODES

The AD9510 has several ways to force the chip into a reset condition.

## Power-On Reset—Start-Up Conditions when $V_{s}$ is Applied

A power-on reset (POR) is issued when the $V_{s}$ power supply is turned on. This initializes the chip to the power-on conditions that are determined by the default register settings. These are indicated in the default value column of Table 24.

## Asynchronous Reset via the FUNCTION Pin

As mentioned in the FUNCTION Pin section, a hard reset, RESETB: Register 0x58[6:5] = 00b (Default), restores the chip to the default settings.

## Soft Reset via the Serial Port

The serial control port allows a soft reset by writing to Register $0 \mathrm{x} 00[5]=1 \mathrm{~b}$. When this bit is set, the chip executes a soft reset. This restores the default values to the internal registers, except for Register 0x00 itself.
This bit is not self-clearing. The bit must be written to Register $0 \mathrm{x} 00[5]=0 \mathrm{~b}$ in order for the operation of the part to continue.

## SINGLE-CHIP SYNCHRONIZATION <br> SYNCB-Hardware SYNC

The AD9510 clocks can be synchronized to each other at any time. The outputs of the clocks are forced into a known state with respect to each other and then allowed to continue clocking from that state in synchronicity. Before a synchronization is done, the FUNCTION Pin must be set to act as the SYNCB: Register 0x58[6:5] = 01 b input (Register 0x58[6:5] = 01b). Synchronization is done by forcing the FUNCTION pin low, creating a SYNCB signal and then releasing it.

See the SYNCB: Register 0x58[6:5] = 01b section for a more detailed description of what happens when the SYNCB: Register 0x58[6:5] = 01b signal is issued.

## Soft SYNC—Register 0x58[2]

A soft SYNC can be issued by means of a bit in Registers 0x58[2]. This soft SYNC works the same as the SYNCB, except that the polarity is reversed. A 1 written to this bit forces the clock outputs into a known state with respect to each other. When a 0 is subsequently written to this bit, the clock outputs continue clocking from that state in synchronicity.

## MULTICHIP SYNCHRONIZATION

The AD9510 provides a means of synchronizing two or more AD9510s. This is not an active synchronization; it requires user monitoring and action. The arrangement of two AD9510s to be synchronized is shown in Figure 43.
Synchronization of two or more AD9510s requires a fast clock and a slow clock. The fast clock can be up to 1 GHz and can be the clock driving the master AD9510 CLK1 input or one of the outputs of the master. The fast clock acts as the input to the distribution section of the slave AD9510 and is connected to its CLK1 input. The PLL can be used on the master, but the slave PLL is not used.
The slow clock is the clock that is synchronized across the two chips. This clock must be no faster than one-fourth of the fast clock, and no greater than 250 MHz . The slow clock is taken from one of the outputs of the master AD9510 and acts as the REFIN (or CLK2) input to the slave AD9510. One of the outputs of the slave must provide this same frequency back to the CLK2 (or REFIN) input of the slave.

Multichip synchronization is enabled by writing Register $0 \times 58[0]=1$ on the slave AD9510. When this bit is set, the STATUS pin becomes the output for the SYNC signal. A low signal indicates an in-sync condition, and a high indicates an out-of-sync condition.
Register 0x58[1] selects the number of fast clock cycles that are the maximum separation of the slow clock edges that are considered synchronized. When Register 0x58[1] = 0 (default), the slow clock edges must be coincident within 1 to 1.5 high speed clock cycles. If the coincidence of the slow clock edges is closer than this amount, the SYNC flag stays low. If the coincidence of the slow clock edges is greater than this amount, the SYNC flag is set high. When Register $0 \mathrm{x} 58[1]=1 \mathrm{~b}$, the amount of coincidence required is 0.5 fast clock cycles to 1 fast clock cycles.
Whenever the SYNC flag is set high, indicating an out-of-sync condition, a SYNCB signal applied simultaneously at the FUNCTION pins of both AD9510s brings the slow clocks into synchronization.


Figure 43. Multichip Synchronization

## SERIAL CONTROL PORT

The AD9510 serial control port is a flexible, synchronous, serial communications port that allows an easy interface with many industry-standard microcontrollers and microprocessors. The AD9510 serial control port is compatible with most synchronous transfer formats, including both the Motorola SPI ${ }^{\oplus}$ and Intel ${ }^{\oplus}$ SSR ${ }^{\circledR}$ protocols. The serial control port allows read/write access to all registers that configure the AD9510. Single or multiple byte transfers are supported, as well as MSB first or LSB first transfer formats. The AD9510 serial control port can be configured for a single bidirectional input/output pin (SDIO only) or for two unidirectional input/output pins (SDIO/SDO).

## SERIAL CONTROL PORT PIN DESCRIPTIONS

SCLK (serial clock) is the serial shift clock. This pin is an input. SCLK is used to synchronize serial control port reads and writes. Write data bits are registered on the rising edge of this clock, and read data bits are registered on the falling edge. This pin is internally pulled down by a $30 \mathrm{k} \Omega$ resistor to ground.

SDIO (serial data input/output) is a dual-purpose pin and acts as either an input only or as both an input/output. The AD9510 defaults to two unidirectional pins for input/output, with SDIO used as an input, and SDO as an output. Alternatively, SDIO can be used as a bidirectional input/output pin by writing to the SDO enable register at Register $0 \times 00[7]=1 \mathrm{~b}$.
SDO (serial data out) is used only in the unidirectional input/ output mode (Register $0 \times 00[7]=0$, default) as a separate output pin for reading back data. The AD9510 defaults to this input/ output mode. Bidirectional input/output mode (using SDIO as both input and output) can be enabled by writing to the SDO enable register at Register 0x00[7] = 1 .

CSB (chip select bar) is an active low control that gates the read and write cycles. When CSB is high, SDO and SDIO are in a high impedance state. This pin is internally pulled down by a $30 \mathrm{k} \Omega$ resistor to ground. Do not leave it unconnected or tied low. See the General Operation of Serial Control Port section on the use of the CSB in a communication cycle.


## GENERAL OPERATION OF SERIAL CONTROL PORT

## Framing a Communication Cycle with CSB

Each communications cycle (a write or a read operation) is gated by the CSB line. CSB must be brought low to initiate a communication cycle. CSB must be brought high at the completion of a communication cycle (see Figure 52). If CSB is not brought high at the end of each write or read cycle (on a byte boundary), the last byte is not loaded into the register buffer.

CSB stall high is supported in modes where three or fewer bytes of data (plus instruction data) are transferred (W1:W0 must be
set to 00,01 , or 10 , see Table 21). In these modes, CSB can temporarily return high on any byte boundary, allowing time for the system controller to process the next byte. CSB can go high on byte boundaries only and can go high during either part (instruction or data) of the transfer. During this period, the serial control port state machine enters a wait state until all data is sent. If the system controller decides to abort the transfer before all of the data is sent, the state machine must be reset by either completing the remaining transfer or by returning the CSB low for at least one complete SCLK cycle (but less than eight SCLK cycles). Raising the CSB on a nonbyte boundary terminates the serial transfer and flushes the buffer.

In the streaming mode ( $\mathrm{W} 1: \mathrm{W} 0=11 \mathrm{~b}$ ), any number of data bytes can be transferred in a continuous stream. The register address is automatically incremented or decremented (see the MSB/LSB First Transfers section). CSB must be raised at the end of the last byte to be transferred, thereby ending the stream mode.

## Communication Cycle—Instruction Plus Data

There are two parts to a communication cycle with the AD9510. The first writes a 16 -bit instruction word into the AD9510, coincident with the first 16 SCLK rising edges. The instruction word provides the AD9510 serial control port with information regarding the data transfer, which is the second part of the communication cycle. The instruction word defines whether the upcoming data transfer is a read or a write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer.

## Write

If the instruction word is for a write operation ( $\mathrm{I} 15=0 \mathrm{~b}$ ), the second part is the transfer of data into the serial control port buffer of the AD9510. The length of the transfer (1,2,3 bytes, or streaming mode) is indicated by 2 bits (W1:W0) in the instruction byte. CSB can be raised after each sequence of 8 bits to stall the bus (except after the last byte, where it ends the cycle). When the bus is stalled, the serial transfer resumes when CSB is lowered. Stalling on nonbyte boundaries resets the serial control port.
Since data is written into a serial control port buffer area, not directly into the actual control registers of the AD9510, an additional operation is needed to transfer the serial control port buffer contents to the actual control registers of the AD9510, thereby causing them to take effect. This update command consists of writing to Register $0 \times 5 \mathrm{~A}[0]=1 \mathrm{~b}$. This update bit is self-clearing (it is not required to write 0 to it to clear it). Since any number of bytes of data can be changed before issuing an update command, the update simultaneously enables all register changes since any previous update.
Phase offsets or divider synchronization do not become effective until a SYNC is issued (see the Single-Chip Synchronization section).

## Read

If the instruction word is for a read operation ( $\mathrm{I} 15=1 \mathrm{~b}$ ), the next $\mathrm{N} \times 8$ SCLK cycles clock out the data from the address specified in the instruction word, where N is 1 to 4 as determined by W1:W0. The readback data is valid on the falling edge of SCLK.
The default mode of the AD9510 serial control port is unidirectional mode; therefore, the requested data appears on the SDO pin. It is possible to set the AD9510 to bidirectional mode by writing the SDO enable register at Register $0 \times 00[7]=1 b$. In bidirectional mode, the readback data appears on the SDIO pin.

A readback request reads the data that is in the serial control port buffer area, not the active data in the actual control registers of the AD9510.


Figure 45. Relationship Between Serial Control Port Register Buffers and Control Registers of the AD9510

The AD9510 uses Address $0 \times 00$ to Address 0x5A. Although the AD9510 serial control port allows both 8-bit and 16-bit instructions, the 8-bit instruction mode provides access to five address bits (A4 to A0) only, which restricts its use to the address space Address 0x00 to Address 0x01. The AD9510 defaults to 16-bit instruction mode on power-up. The 8 -bit instruction mode (although defined for this serial control port) is not useful for the AD9510; therefore, it is not discussed further in this data sheet.

## THE INSTRUCTION WORD (16 BITS)

The MSB of the instruction word is $\mathrm{R} / \overline{\mathrm{W}}$, which indicates whether the instruction is a read or a write. The next two bits, W1:W0, indicate the length of the transfer in bytes. The final 13 bits are the address (A12:A0) at which to begin the read or write operation.
For a write, the instruction word is followed by the number of bytes of data indicated by Bits W1:W0, which is interpreted according to Table 21.

Table 21. Byte Transfer Count

W1	W0	Bytes to Transfer
0	0	1
0	1	2
1	0	3
1	1	Streaming mode

A12:A0: These 13 bits select the address within the register map that is written to or read from during the data transfer portion of the communications cycle. The AD9510 does not use all of the 13-bit address space. Only Bits[A6:A0] are needed to cover the range of the Address $0 \times 5 \mathrm{~A}$ registers used by the AD9510. Bits[A12:A7] must always be 0b. For multibyte transfers, this address is the starting byte address. In MSB first mode, subsequent bytes increment the address.

## MSB/LSB FIRST TRANSFERS

The AD9510 instruction word and byte data can be MSB first or LSB first. The default for the AD9510 is MSB first. Set the LSB first mode by writing 1 b to Register $0 \times 00[6]$. This takes effect immediately (since it only affects the operation of the serial control port) and does not require that an update be executed. Immediately after the LSB first bit is set, all serial control port operations are changed to LSB first order.
When MSB first mode is active, the instruction and data bytes must be written from MSB to LSB. Multibyte data transfers in MSB first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes must follow in order from high address to low address. In MSB first mode, the serial control port internal address generator decrements for each data byte of the multibyte transfer cycle.
When LSB_FIRST $=1 \mathrm{~b}$ (LSB first), the instruction and data bytes must be written from LSB to MSB. Multibyte data transfers in LSB first format start with an instruction byte that includes the register address of the least significant data byte followed by multiple data bytes. The serial control port internal byte address generator increments for each byte of the multibyte transfer cycle.
The AD9510 serial control port register address decrements from the register address just written toward Address $0 \times 0000$ for multibyte input/output operations if the MSB first mode is active (default). If the LSB first mode is active, the serial control port register address increments from the address just written toward Address 0x1FFF for multibyte input/output operations.
Unused addresses are not skipped during multibyte input/output operations; therefore, it is important to avoid multibyte input/ output operations that would include these addresses.

## AD9510

Table 22. Serial Control Port, 16-Bit Instruction Word, MSB First

MSB															
$\mathbf{I 1 5}$	$\mathbf{I 1 4}$	$\mathbf{I 1 3}$	$\mathbf{I 1 2}$	$\mathbf{I 1 1}$	$\mathbf{I 1 0}$	$\mathbf{I 9}$	$\mathbf{I 8}$	$\mathbf{1 7}$	$\mathbf{I 6}$	$\mathbf{I 5}$	$\mathbf{1 4}$	$\mathbf{I 3}$	$\mathbf{I 2}$	$\mathbf{I 1}$	$\mathbf{I 0}$
$\mathrm{R} / \overline{\mathrm{W}}$	W 1	W 0	$\mathrm{~A} 12=0$	$\mathrm{~A} 11=0$	$\mathrm{~A} 10=0$	$\mathrm{~A} 9=0$	$\mathrm{~A} 8=0$	$\mathrm{~A} 7=0$	A 6	A 5	A 4	A 3	A 2	A 1	A 0

ssk



Figure 47. Serial Control Port Read—MSB First, 16-Bit Instruction, 4 Bytes Data


Figure 48. Serial Control Port Write-MSB First, 16-Bit Instruction, Timing Measurements


Figure 49. Timing Diagram for Serial Control Port Register Read


Figure 50. Serial Control Port Write—LSB First, 16-Bit Instruction, 2 Bytes Data


Figure 51. Serial Control Port Timing—Write

Table 23. Serial Control Port Timing

Parameter	Description
$t_{\text {DS }}$	Setup time between data and rising edge of SCLK
$\mathrm{t}_{\mathrm{DH}}$	Hold time between data and rising edge of SCLK
$\mathrm{t}_{\mathrm{CLK}}$	Period of the clock
$\mathrm{t}_{\mathrm{S}}$	Setup time between CSB and SCLK
$\mathrm{t}_{\mathrm{H}}$	Hold time between CSB and SCLK
$\mathrm{t}_{\mathrm{HI}}$	Minimum period that SCLK must be in a logic high state
$\mathrm{t}_{\mathrm{LO}}$	Minimum period that SCLK must be in a logic low state



TIMING DIAGRAM FOR TWO SUCCESSIVE CUMMUNICATION CYCLES. NOTE THAT CSB MUST BE TOGGLED HIGH AND THEN LOW AT THE COMPLETION OF A COMMUNICATION CYCLE.

## REGISTER MAP AND DESCRIPTION

## SUMMARY TABLE

Table 24. AD9510 Register Map


Addr   (Hex)	Parameter	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Def. Value (Hex)	Notes
3E	LVPECL OUT2	Not used				Output level[3:2]		Power-down[1:0]		08	On
3F	LVPECL OUT3	Not used				Output level[3:2]		Power-down[1:0]		08	On
40	$\begin{aligned} & \text { LVDS_CMOS } \\ & \text { OUT4 } \end{aligned}$	Not used			CMOS inverted driver on	Logic select	Output level[2:1]		Output power	02	LVDS, on
41	$\begin{aligned} & \hline \text { LVDS_CMOS } \\ & \text { OUT5 } \end{aligned}$	Not used			CMOS inverted driver on	Logic select	Output level[2:1]		Output power	02	LVDS, on
42	$\begin{aligned} & \text { LVDS_CMOS } \\ & \text { OUT6 } \end{aligned}$	Not used			CMOS inverted driver on	Logic select	Output level[2:1]		Output power	03	LVDS, off
43	$\begin{aligned} & \text { LVDS_CMOS } \\ & \text { OUT7 } \end{aligned}$	Not used			CMOS inverted driver on	Logic select	Output level[2:1]		Output power	03	LVDS, off
44		Not used									
	CLK1 and CLK2	Input receivers									
45	Clocks select, power-down (PD) options	Not used		$\begin{gathered} \text { CLKs in } \\ \text { PD } \end{gathered}$	REFIN PD	CLK to PLL PD	$\begin{gathered} \hline \text { CLK2 } \\ \text { PD } \end{gathered}$	$\begin{gathered} \hline \text { CLK1 } \\ \text { PD } \end{gathered}$	Select CLK IN	01	All clocks on, select CLK1
$\begin{aligned} & \hline 46, \\ & 47 \\ & \hline \end{aligned}$		Not used									
	Dividers										
48	Divider 0	Low cycles[7:4]				High cycles[3:0]				00	Divide by 2
49	Divider 0	Bypass	No sync	Force	Start H/L	Phase offset[3:0]				00	Phase $=0$
4A	Divider 1	Low cycles[7:4]				High cycles[3:0]				00	Divide by 2
4B	Divider 1	Bypass	No sync	Force	Start H/L	Phase offset[3:0]				00	Phase $=0$
4C	Divider 2	Low cycles[7:4]				High cycles[3:0]				11	Divide by 4
4D	Divider 2	Bypass	No sync	Force	Start H/L	Phase offset[3:0]				00	Phase $=0$
4E	Divider 3	Low cycles[7:4]				High cycles[3:0]				33	Divide by 8
4F	Divider 3	Bypass	No sync	Force	Start H/L	Phase offset[3:0]				00	Phase $=0$
50	Divider 4	Low cycles[7:4]				High cycles[3:0]				00	Divide by 2
51	Divider 4	Bypass	No sync	Force	Start H/L	Phase offset[3:0]				00	Phase $=0$
52	Divider 5	Low cycles[7:4]				High cycles[3:0]				11	Divide by 4
53	Divider 5	Bypass	No sync	Force	Start H/L	Phase offset[3:0]				00	Phase $=0$
54	Divider 6	Low cycles[7:4]				High cycles[3:0]				00	Divide by 2
55	Divider 6	Bypass	No sync	Force	Start H/L	Phase offset[3:0]				00	Phase $=0$
56	Divider 7	Low cycles[7:4]				High cycles[3:0]				00	Divide by 2
57	Divider 7	Bypass	No sync	Force	Start H/L	Phase offset[3:0]				00	Phase $=0$
	Function										
58	FUNCTION Pin and sync	Not used	Set FUN	TION Pin	PD sync	$\begin{aligned} & \text { PD all } \\ & \text { ref. } \end{aligned}$	Sync reg.	Sync select	Sync enable	00	$\begin{aligned} & \text { FUNCTION } \\ & \text { pin }= \\ & \text { RESETB } \end{aligned}$
59		Not used									
5A	Update registers	Not used							Update registers	00	Selfclearing bit
	END										

## REGISTER MAP DESCRIPTION

Table 25 lists the AD9510 control registers by hexadecimal address. A specific bit or range of bits within a register is indicated by square brackets. For example, [3] refers to Bit 3, while [5:2] refers to the range of bits from Bit 5 through Bit 2 . Table 25 describes the functionality of the control registers on a bit-by-bit basis. For a more concise (but less descriptive) table, see Table 24.

Table 25. AD9510 Register Descriptions


Reg. Addr. (Hex)	Bit(s)	Name	Description				
08	[5:2]	PLL mux control					
			[5]	[4]	[3]	[2]	MUXOUT-Signal on STATUS Pin
			0	0	0	0	Off (signal goes low) (default)
			0	0	0	1	Digital lock detect (active high)
			0	0	1	0	N divider output
			0	0	1	1	Digital lock detect (active low)
			0	1	0	0	R divider output
			0	1	0	1	Analog lock detect (N channel, open-drain)
			0	1	1	0	A counter output
			0	1	1	1	Prescaler output (NCLK)
				0	0	0	PFD up pulse
				0	0	1	PFD down pulse
				0		0	Loss of reference (active high)
				0		1	Tristate
						0	Analog lock detect (P channel, open-drain)
						1	Loss of reference or loss of lock (inverse of DLD) (active high)
						0	Loss of reference or loss of lock (inverse of DLD) (active low)
				1	1	1	Loss of reference (active low)
			MUXOUT is the PLL portion of the STATUS output MUX.				
08	[6]	Phase frequency detector (PFD) polarity	$0=$ negative (default), 1 = positive				
08	[7]		Not used.				
09	[0]	Reset all counters	$0=$ normal (default), $1=$ reset $\mathrm{R}, \mathrm{A}$, and B counters.				
09	[1]	N-counter reset	$0=$ normal (default), $1=$ reset $A$ and $B$ counters.				
09	[2]	R-counter reset	$0=$ normal (default), 1 = reset R counter.				
09	[3]		Not used.				
09	[6:4]	Charge pump (CP) current setting					
			[6]		[	[4]	ICP (mA)
			0		0		0.60
			0		1		
			0		0		1.8
			0		1		2.4
			1		0	0	3.0
			1		1		3.6
			1		0	0	4.2
							4.8
			Default $=000 \mathrm{~b}$.   These currents assume: CPR $_{\text {set }}=5.1 \mathrm{k} \Omega$.   Actual current can be calculated by: CP_LSB $=3.06 /$ CPR $_{\text {set }}$.				
	[7]		Not				
OA	[1:0]	PLL power-down	01 = Asynchronous power-down (default).				
			[1]	[0]		Mode	
			0   0   1   1	0 1 0 1		Norma   Asynch   Norma   Synchr	operation   onous power-down operation   nous power-down

## AD9510



AD9510

Reg. Addr.   (Hex)	Bit(s)	Name	Description							
35	[2:0]	Ramp current OUT5 OUT6	The slowest ramp (200 $\mu \mathrm{A}$ ) sets the longest full scale of approximately 10 ns .							
			[2]				[1]	[0]	Ramp Current ( $\mu \mathrm{A}$ )	
			$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$				$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	2004006008001000120014001600	
$35$	[5:3]	Ramp capacitor OUT5 OUT6	Selects the number of capacitors in ramp generation circuit. More capacitors $\rightarrow$ slower ramp.							
			[5]		[4]		[3]		Number of Capacitors	
			0 0   0 0   0    0 1   1 1   1 0   1 0   1 1			0    0    1    1    0    0    1    1			$\begin{aligned} & 4 \text { (default } \\ & 3 \\ & 3 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	
$\begin{aligned} & 36 \\ & 3 A \end{aligned}$	[5:1]	Delay fine adjust OUT5 OUT6	Sets delay within full scale of the ramp; there are 25 steps. $00000 \rightarrow$ zero delay (default).   $11000 \rightarrow$ maximum delay.							
$\begin{aligned} & \hline 3 C \\ & 3 D \\ & 3 E \\ & 3 F \end{aligned}$	[1:0]	Power-down LVPECL   OUTO   OUT1   OUT2   OUT3								
			Mode   On   PD1   PD2   PD3		$\left[\begin{array}{l}{[0]} \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right.$	Description   Normal operation Test only-do Safe power-do has load resistors Total power-do load resistors.	use   Par   . Us	ial power-down; use only if output has n	if output	$\begin{array}{\|l\|} \hline \text { Output } \\ \hline \text { On } \\ \text { Off } \\ \text { Off } \\ \text { Off } \end{array}$
$\begin{aligned} & \hline 3 C \\ & 3 D \\ & 3 \mathrm{E} \\ & 3 \mathrm{~F} \end{aligned}$	[3:2]	Output level LVPECL OUT0 OUT1 OUT2 OUT3	Outpu	le-en	volta	levels for LVPECL	utpu			
			[3]   0   0   1   1				$\mathbf{2}]$   0   1   0   1		Output   500   340   810 (def   660	oltage (mV)

$\left.\begin{array}{l|l|l|ll}\hline \begin{array}{l}\text { Reg. } \\ \text { Addr. } \\ \text { (Hex) }\end{array} & \text { Bit(s) } & \text { Name } & & \text { Description }\end{array}\right]$

AD9510

Reg. Addr.   (Hex)	Bit(s)	Name	Description
$\begin{aligned} & 48 \\ & 4 \mathrm{~A} \\ & 4 \mathrm{C} \\ & 4 \mathrm{E} \\ & 50 \\ & 52 \\ & 54 \\ & 56 \end{aligned}$	[3:0]	Divider high OUTO OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7	Number of clock cycles divider output stays high.
$\begin{aligned} & 48 \\ & 4 \mathrm{~A} \\ & 4 \mathrm{C} \\ & 4 \mathrm{E} \\ & 50 \\ & 52 \\ & 54 \\ & 56 \end{aligned}$	[7:4]	Divider low OUTO OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7	Number of clock cycles divider output stays low.
$\begin{aligned} & 49 \\ & 4 B \\ & 4 D \\ & 4 F \\ & 51 \\ & 53 \\ & 55 \\ & 57 \end{aligned}$	[3:0]	Phase offset OUTO OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7	Phase offset (default $=0000 \mathrm{~b}$ ).
$\begin{aligned} & 49 \\ & 4 B \\ & 4 D \\ & 4 F \\ & 51 \\ & 53 \\ & 55 \\ & 57 \end{aligned}$	[4]	Start OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7	Selects start high or start low (default $=0 \mathrm{~b}$ ).
$\begin{aligned} & 49 \\ & 4 B \\ & 4 D \\ & 4 F \\ & 51 \\ & 53 \\ & 55 \\ & 57 \end{aligned}$	[5]	Force   OUTO   OUT1   OUT2   OUT3   OUT4   OUT5   OUT6   OUT7	Forces individual outputs to the state specified in start (see the previous section of this table). This function requires that Nosync (see the next section of this table) also be set (default $=0 b$ ).



## POWER SUPPLY

The AD9510 requires a $3.3 \mathrm{~V} \pm 5 \%$ power supply for $\mathrm{V}_{\mathrm{s}}$. The tables in the Specifications section give the performance expected from the AD9510 with the power supply voltage within this range. The absolute maximum range of $-0.3 \mathrm{~V}-+3.6 \mathrm{~V}$, with respect to GND, must never be exceeded on the VS pin.
Follow good engineering practice in the layout of power supply traces and the ground plane of the printed circuit board (PCB). Bypass the power supply on the PCB with adequate capacitance ( $>10 \mu \mathrm{~F}$ ). Bypass the AD9510 with adequate capacitors ( $0.1 \mu \mathrm{~F}$ ) at all power pins as close as possible to the part. The layout of the AD9510 evaluation board (AD9510/PCBZ or AD9510-VCO/PCBZ) is a good example.

The AD9510 is a complex part that is programmed for its desired operating configuration by on-chip registers. These registers are not maintained over a shutdown of external power. This means that the registers can lose their programmed values if $\mathrm{V}_{\mathrm{s}}$ is lost long enough for the internal voltages to collapse. Careful bypassing protects the part from memory loss under normal conditions. Nonetheless, it is important that the $\mathrm{V}_{\text {s }}$ power supply not become intermittent, or the AD9510 risks losing its programming.

The internal bias currents of the AD9510 are set by the Rset and $\mathrm{CPR}_{\text {SET }}$ resistors. These resistors must be as close as possible to the values given as conditions in the Specifications section $\left(\mathrm{R}_{\text {SET }}=4.12 \mathrm{k} \Omega\right.$ and $\left.\mathrm{CPR}_{\text {SET }}=5.1 \mathrm{k} \Omega\right)$. These values are standard $1 \%$ resistor values, and are readily obtainable. The bias currents set by these resistors determine the logic levels and operating conditions of the internal blocks of the AD9510. The performance figures given in the Specifications section assume that these resistor values are used.

The VCP pin is the supply pin for the charge pump (CP). The voltage at this pin $\left(\mathrm{V}_{\mathrm{CP}}\right)$ can be from $\mathrm{V}_{\mathrm{s}}$ up to 5.5 V , as required to match the tuning voltage range of a specific $\mathrm{VCO} / \mathrm{VCXO}$. This voltage must never exceed the absolute maximum of 6 V . Additionally, never allow $\mathrm{V}_{\mathrm{CP}}$ to be less than -0.3 V below $\mathrm{V}_{\mathrm{S}}$ or GND, whichever is lower.

The exposed metal paddle on the AD9510 package is an electrical connection, as well as a thermal enhancement. For the device to function properly, the paddle must be properly attached to ground (GND). The PCB acts as a heat sink for the AD9510; therefore, this GND connection must provide a good thermal path to a larger dissipation area, such as a ground plane on the PCB. See the layout of the AD9510 evaluation board (AD9510/PCBZ or AD9510-VCO/PCBZ) for a good example.

## POWER MANAGEMENT

The power usage of the AD9510 can be managed to use only the power required for the functions being used. Unused features and circuitry can be powered down to save power. The following circuit blocks can be powered down, or are powered down when not selected (see the Register Map and Description section):

- The PLL section can be powered down if not needed.
- Any of the dividers are powered down when bypassedequivalent to divide-by-one.
- The adjustable delay blocks on OUT5 and OUT6 are powered down when not selected.
- Any output can be powered down. However, LVPECL outputs have both a safe and an off condition. When the LVPECL output is terminated, use only the safe shutdown to protect the LVPECL output devices. This still consumes some power.
- The entire distribution section can be powered down when not needed.

Powering down a functional block does not cause the programming information for that block (in the registers) to be lost. This means that blocks can be powered on and off without otherwise having to reprogram the AD9510. However, synchronization is lost. A SYNC must be issued to resynchronize (see the Single-Chip Synchronization section).

## APPLICATIONS INFORMATION

## USING THE AD9510 OUTPUTS FOR ADC CLOCK APPLICATIONS

Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. An ADC can be thought of as a sampling mixer; any noise, distortion, or timing jitter on the clock is combined with the desired signal at the analog-todigital output. Clock integrity requirements scale with the analog input frequency and resolution, with higher analog input frequency applications at $\geq 14$-bit resolution being the most stringent. The theoretical SNR of an ADC is limited by the ADC resolution and the jitter on the sampling clock. Considering an ideal ADC of infinite resolution where the step size and quantization error can be ignored, the available SNR can be expressed approximately by

$$
S N R=20 \times \log \left[\frac{1}{2 \pi f t_{j}}\right]
$$

where:
$f$ is the highest analog frequency being digitized.
$t_{j}$ is the rms jitter on the sampling clock.
Figure 53 shows the required sampling clock jitter as a function of the analog frequency and effective number of bits (ENOB).


Figure 53. ENOB and SNR vs. Analog Input Frequency
See Application Note AN-756, Sampled Systems and the Effects of Clock Phase Noise and Jitter, and Application Note AN-501, Aperture Uncertainty and ADC System Performance.
Many high performance ADCs feature differential clock inputs to simplify the task of providing the required low jitter clock on a noisy PCB. (Distributing a single-ended clock on a noisy PCB can result in coupled noise on the sample clock. Differential distribution has inherent common-mode rejection, which can provide superior clock performance in a noisy environment.)

The AD9510 features both LVPECL and LVDS outputs that provide differential clock outputs, which enable clock solutions that maximize converter SNR performance. Consider the input requirements of the ADC (differential or single-ended, logic level, termination) when selecting the best clocking/converter solution.

## CMOS CLOCK DISTRIBUTION

The AD9510 provides four clock outputs (OUT4 to OUT7), which are selectable as either CMOS or LVDS levels. When selected as CMOS, these outputs provide for driving devices requiring CMOS level logic at their clock inputs.
Whenever single-ended CMOS clocking is used, follow some of the following general guidelines.

Point-to-point nets must be designed such that a driver has one receiver only on the net, if possible. This allows for simple termination schemes and minimizes ringing due to possible mismatched impedances on the net. Series termination at the source is generally required to provide transmission line matching and/or to reduce current transients at the driver. The value of the resistor is dependent on the board design and timing requirements (typically $10 \Omega$ to $100 \Omega$ is used). CMOS outputs are limited in terms of the capacitive load or trace length that they can drive. Typically, trace lengths less than 3 inches are recommended to preserve signal rise/fall times and preserve signal integrity.


Figure 54. Series Termination of CMOS Output
Termination at the far end of the PCB trace is a second option. The CMOS outputs of the AD9510 do not supply enough current to provide a full voltage swing with a low impedance resistive, far-end termination, as shown in Figure 55. The far-end termination network must match the PCB trace impedance and provide the desired switching point. The reduced signal swing may still meet receiver input requirements in some applications. This can be useful when driving long trace lengths on less critical nets.


Figure 55. CMOS Output with Far-End Termination

Because of the limitations of single-ended CMOS clocking, consider using differential outputs when driving high speed signals over long traces. The AD9510 offers both LVPECL and LVDS outputs, which are better suited for driving long traces where the inherent noise immunity of differential signaling provides superior performance for clocking converters.

## LVPECL CLOCK DISTRIBUTION

The low voltage, positive emitter-coupled, logic (LVPECL) outputs of the AD9510 provide the lowest jitter clock signals available from the AD9510. The LVPECL outputs (because they are open emitter) require a dc termination to bias the output transistors. A simplified equivalent circuit in Figure 41 shows the LVPECL output stage.
In most applications, a standard LVPECL far-end termination is recommended, as shown in Figure 56. The resistor network is designed to match the transmission line impedance ( $50 \Omega$ ) and the desired switching threshold (1.3 V).


Figure 56. LVPECL Far-End Termination


Figure 57. LVPECL with Parallel Transmission Line

## LVDS CLOCK DISTRIBUTION

Low voltage differential signaling (LVDS) is a second differential output option for the AD9510. LVDS uses a current mode output stage with several user-selectable current levels. The normal value (default) for this current is 3.5 mA , which yields 350 mV output swing across a $100 \Omega$ resistor. The LVDS outputs meet or exceed all ANSI/TIA/EIA-644 specifications.

A recommended termination circuit for the LVDS outputs is shown in Figure 58.


Figure 58. LVDS Output Termination
See Application Note AN-586, LVDS Data Outputs for High-Speed Analog-to-Digital Converters, for more information on LVDS.

## POWER AND GROUNDING CONSIDERATIONS AND POWER SUPPLY REJECTION

Many applications seek high speed and performance under less than ideal operating conditions. In these application circuits, the implementation and construction of the PCB is as important as the circuit design. Proper RF techniques must be used for device selection, placement, and routing, as well as for power supply bypassing and grounding to ensure optimum performance.

## AD9510

## OUTLINE DIMENSIONS


*COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4 EXCEPT FOR EXPOSED PAD DIMENSION
-
Figure 59. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
$9 \mathrm{~mm} \times 9 \mathrm{~mm}$ Body, Very Thin Quad (CP-64-1)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9510BCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-64-1
AD9510BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-64-1
AD9510/PCBZ		Evaluation Board Without VCO or VCXO or Loop Filter	

[^2]
## Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

## http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9


[^0]:    ${ }^{1}$ CLK1 and CLK2 are electrically identical; each can be used as either a differential or a single-ended input.
    ${ }^{2}$ With a $50 \Omega$ termination, this is -12.5 dBm .
    ${ }^{3}$ With a $50 \Omega$ termination, this is +10 dBm .

[^1]:    ${ }^{1}$ These measurements are for CLK1. For CLK2, add approximately 25 ps.
    ${ }^{2}$ This is the difference between any two similar delay paths within a single device operating at the same voltage and temperature.
    ${ }^{3}$ This is the difference between any two similar delay paths across multiple devices operating at the same voltage and temperature.
    ${ }^{4}$ The maximum delay that can be used is a little less than one half the period of the clock. A longer delay disables the output.
    ${ }^{5}$ Incremental delay; does not include propagation delay.
    ${ }^{6}$ All delays between zero scale and full scale can be estimated by linear interpolation.

[^2]:    ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

