

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

July 2015

FCD5N60_F085

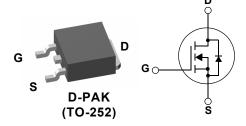
N-Channel SuperFET® MOSFET

600 V, 4.6 A, 1.1 Ω

Features

- 600V, 4.6A, typ. $R_{ds(on)}$ =860m Ω @ V_{GS} =10V
- Ultra Low Gate Charge (Typ. Q_q = 16 nC)
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

Applications


- Automotive On Board Charger
- Automotive DC/DC Converter for HEV

SuperFETTM is Fairchild's proprietary new generation of high voltage MOSFETs utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is suitable for various automotive DC/DC power conversion.

For current package drawing, please refer to the Fairchild website at http://www.fairchildsemi.com/package-drawings/TO/TO252A03.pdf.

MOSFET Maximum Ratings T_{.1} = 25°C unless otherwise noted.

Symbol	Parameter		Ratings	Units
V_{DSS}	Drain-to-Source Voltage		600	V
V_{GS}	Gate-to-Source Voltage		±30	V
	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C = 25°C	4.6	^
ID	Pulsed Drain Current	T _C = 25°C	See Figure 4	A
E _{AS}	Single Pulse Avalanche Energy	(Note 1)	29	mJ
D	Power Dissipation		54	W
P_{D}	Derate Above 25°C		1.56	W/°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 150	°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case		2.3	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient (Note 2)		83	°C/W

Notes:

- 1: Starting $T_J = 25^{\circ}C$, L = 10mH, $I_{AS} = 2.4A$, $V_{DD} = 100V$ during inductor charging and $V_{DD} = 0V$ during time in avalanche.
- 2: R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,JC} is guaranteed by design, while R_{0,JA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCD5N60	FCD5N60_F085	D-PAK(TO-252)	13"	16mm	2500units

Units

nΑ

Max.

±100

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted.

Parameter

Gate-to-Source Leakage Current

Off Characteristics							
B _{VDSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	600	-	-	V	
1	Drain-to-Source Leakage Current	V_{DS} =600V, $T_J = 25^{\circ}C$	-	-	1	μΑ	
IDSS	Dialii-to-Source Leakage Current	$V_{00} = 0V$ $T_1 = 150^{\circ}C$ (Note 4)	_	_	10	пΔ	

 $V_{GS} = \pm 30V$

Test Conditions

Min.

Тур.

On Characteristics

Symbol

 I_{GSS}

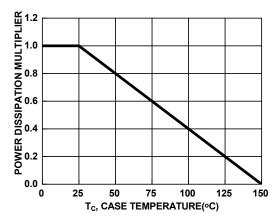
$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, I	_D = 250μA	3.0	-	5.0	V
R _{DS(on)} Drain to Source On Resistance	I _D = 4.6A,	$T_J = 25^{\circ}C$	-	0.86	1.1	Ω	
	V _{GS} = 10V	$T_J = 150^{\circ}C \text{ (Note 4)}$	-	2.5	3.2	Ω	

Dynamic Characteristics

C _{iss}	Input Capacitance	.,		-	570	-	pF
C _{oss}	Output Capacitance	V _{DS} = 25V, V _{GS} = — f = 1MHz	$V_{DS} = 25V, V_{GS} = 0V,$		280	-	pF
C _{rss}	Reverse Transfer Capacitance			-	20	-	pF
R_g	Gate Resistance	f = 1MHz		-	1.9	-	Ω
$Q_{g(ToT)}$	Total Gate Charge	$V_{GS} = 0$ to 10V	V _{DD} = 480V	-	16	21	nC
$Q_{g(th)}$	Threshold Gate Charge	$V_{GS} = 0$ to 2V	I _D = 4.6A	-	1.0	-	nC
Q_{gs}	Gate-to-Source Gate Charge		_	-	3.2	-	nC
Q_{gd}	Gate-to-Drain "Miller" Charge			-	7.6	-	nC

Switching Characteristics

t _{on}	Turn-On Time		-	-	84	ns
t _{d(on)}	Turn-On Delay		-	18	-	ns
t _r	Rise Time	$V_{DD} = 300V, I_{D} = 4.6A,$	-	19	-	ns
t _{d(off)}	Turn-Off Delay	V_{DD} = 300V, I_{D} = 4.6A, V_{GS} = 10V, R_{GEN} = 25 Ω	-	48	-	ns
t _f	Fall Time		-	13	-	ns
t _{off}	Turn-Off Time		-	-	178	ns


Drain-Source Diode Characteristics

V_{SD}	Source-to-Drain Diode Voltage	I _{SD} = 4.6A, V _{GS} = 0V	-	-	1.25	V
t _{rr}	Reverse-Recovery Time	V _{DD} = 480V, I _F = 4.6A,	-	190	250	ns
Q _{rr}	Reverse-Recovery Charge	$dI_{SD}/dt = 100A/\mu s$	-	1.7	2.2	μС

Note

4: The maximum value is specified by design at T_J = 150°C. Product is not tested to this condition in production.

Typical Characteristics

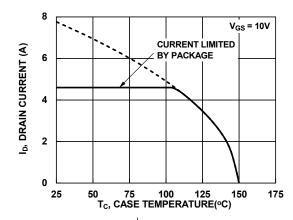


Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs.

Case Temperature

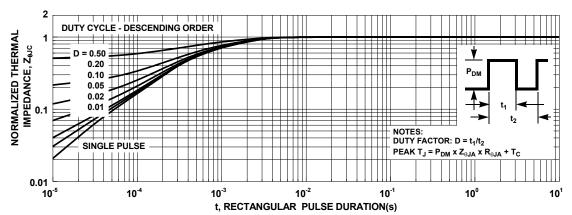


Figure 3. Normalized Maximum Transient Thermal Impedance

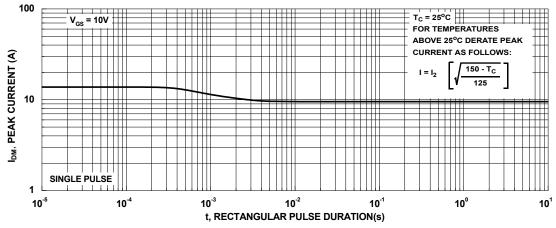
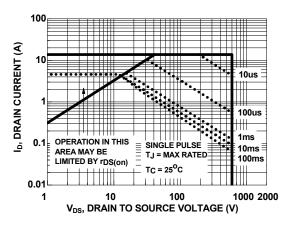



Figure 4. Peak Current Capability

Typical Characteristics

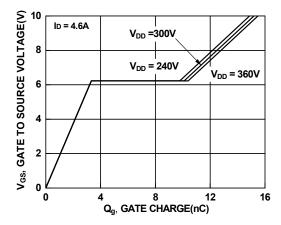
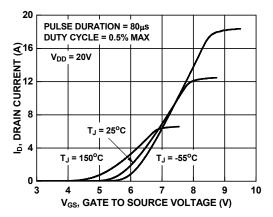



Figure 5. Forward Bias Safe Operating Area

Figure 6. Gate Charge vs. Gate to Source Voltage

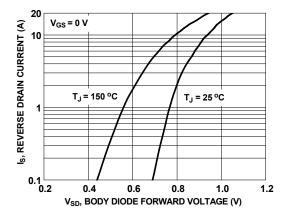
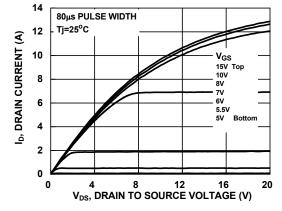



Figure 7. Transfer Characteristics

Figure 8. Forward Diode Characteristics

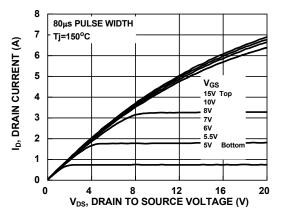


Figure 9. Saturation Characteristics

Figure 10. Saturation Characteristics

Typical Characteristics

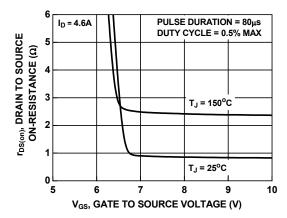


Figure 11. R_{DSON} vs. Gate Voltage



Figure 12. Normalized R_{DSON} vs. Junction Temperature

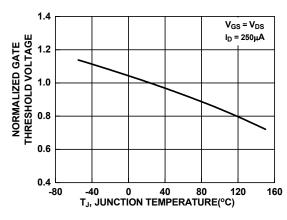


Figure 13. Normalized Gate Threshold Voltage vs. Temperature

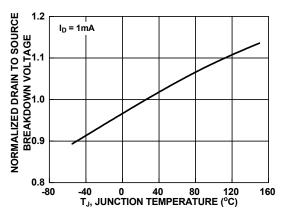


Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

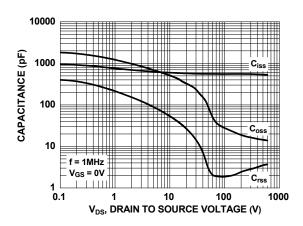


Figure 15. Capacitance vs. Drain to Source Voltage

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AttitudeEngine™ Awinda[®] AX-CAP®*

BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$

Current Transfer Logic™ DEUXPEED® Dual Cool™

EcoSPARK® EfficentMax™ ESBC™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT[®]

FAST® FastvCore™ FETBench™

F-PFS™ FRFET®

Global Power ResourceSM

GreenBridge™ Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™

MillerDrive™ MotionMax™ MotionGrid[®] MTi[®] MTx® MVN® mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR®

Power Supply_WebDesigner™

PowerTrench® PowerXS™

Programmable Active Droop™

QFET[®] QS™ Quiet Series™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

RapidConfigure™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SyncFET™ Sync-Lock™

SYSTEM ®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM Xsens™

仙童 ™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FCD5N60_F085

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9