#### The RF MOSFET Line 150W, 500MHz, 28V

Designed primarily for wideband large-signal output and driver stages from 100 - 500 MHz.

N-Channel enhancement mode

- Guaranteed performance @ 500 MHz, 28 Vdc Output power — 150 W Power gain — 10 dB (min.) Efficiency — 50% (min.)
- 100% tested for load mismatch at all phase angles with VSWR 30:1
- Overall lower capacitance @ 28 V Ciss — 135 pF Coss — 140 pF Crss — 17 pF
- Simplified AVC, ALC and modulation

Typical data for power amplifiers in industrial and commercial applications:

- Typical performance @ 400 MHz, 28 Vdc Output power — 150 W Power gain - 12.5 dB Efficiency - 60%
- Typical performance @ 225 MHz, 28 Vdc Output power — 200 W Power gain — 15 dB Efficiency — 65%



#### MAXIMUM RATINGS

| Rating                                                                | Symbol          | Value       | Unit          |
|-----------------------------------------------------------------------|-----------------|-------------|---------------|
| Drain–Source Voltage                                                  | VDSS            | 65          | Vdc           |
| Drain–Gate Voltage<br>(R <sub>GS</sub> = 1.0 M $\Omega$ )             | VDGR            | 65          | Vdc           |
| Gate-Source Voltage                                                   | V <sub>GS</sub> | ±40         | Adc           |
| Drain Current — Continuous                                            | ١D              | 26          | Adc           |
| Total Device Dissipation @ T <sub>C</sub> = 25°C<br>Derate above 25°C | PD              | 400<br>2.27 | Watts<br>W/∘C |
| Storage Temperature Range                                             | Tstg            | -65 to +150 | °C            |
| Operating Junction Temperature                                        | TJ              | 200         | °C            |
| THERMAL CHARACTERISTICS                                               |                 |             |               |

| Characteristic                       | Symbol           | Max  | Unit |
|--------------------------------------|------------------|------|------|
| Thermal Resistance, Junction to Case | R <sub>0JC</sub> | 0.44 | °C/W |

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

1

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Product Image





M/A-COM Products Released - Rev. 07.07

#### The RF MOSFET Line 150W, 500MHz, 28V

### M/A-COM Products

Released - Rev. 07.07

| ELECTRICAL CHARACTERISTICS (T <sub>C</sub> = 25°C unless otherwis                                                                                        | e noted)            |                                |      |     |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|------|-----|------|--|
| Characteristic                                                                                                                                           | Symbol              | Min                            | Тур  | Max | Unit |  |
| OFF CHARACTERISTICS (1)                                                                                                                                  |                     |                                |      |     |      |  |
| Drain–Source Breakdown Voltage<br>(V <sub>GS</sub> = 0, I <sub>D</sub> = 50 mA)                                                                          | V(BR)DSS            | 65                             | -    | -   | Vdc  |  |
| Zero Gate Voltage Drain Current<br>(V <sub>DS</sub> = 28 V, V <sub>GS</sub> = 0)                                                                         | IDSS                | _                              | -    | 1   | mA   |  |
| Gate-Source Leakage Current<br>(V <sub>GS</sub> = 20 V, V <sub>DS</sub> = 0)                                                                             | IGSS                | -                              | -    | 1   | μΑ   |  |
| ON CHARACTERISTICS (1)                                                                                                                                   |                     |                                |      |     |      |  |
| Gate Threshold Voltage (V <sub>DS</sub> = 10 V, I <sub>D</sub> = 100 mA)                                                                                 | VGS(th)             | 1.5                            | 2.5  | 4.5 | Vdc  |  |
| Drain–Source On–Voltage (V <sub>GS</sub> = 10 V, I <sub>D</sub> = 5 A)                                                                                   | V <sub>DS(on)</sub> | 0.5                            | 0.9  | 1.5 | Vdc  |  |
| Forward Transconductance ( $V_{DS}$ = 10 V, $I_D$ = 2.5 A)                                                                                               | 9fs                 | 3                              | 3.75 | —   | mhos |  |
| DYNAMIC CHARACTERISTICS (1)                                                                                                                              |                     |                                |      |     |      |  |
| Input Capacitance (V <sub>DS</sub> = 28 V, V <sub>GS</sub> = 0, f = 1 MHz)                                                                               | Ciss                | —                              | 135  | —   | pF   |  |
| Output Capacitance (V <sub>DS</sub> = 28 V, V <sub>GS</sub> = 0, f = 1 MHz)                                                                              | Coss                | -                              | 140  | -   | pF   |  |
| Reverse Transfer Capacitance (V <sub>DS</sub> = 28 V, V <sub>GS</sub> = 0, f = 1 MHz)                                                                    | Crss                | -                              | 17   | —   | pF   |  |
| FUNCTIONAL CHARACTERISTICS (2) (Figure 1)                                                                                                                |                     |                                |      |     |      |  |
| Common Source Power Gain<br>(V <sub>DD</sub> = 28 V, P <sub>out</sub> = 150 W, f = 500 MHz, I <sub>DQ</sub> = 2 x 100 mA)                                | G <sub>ps</sub>     | 10                             | 11.2 | -   | dB   |  |
| Drain Efficiency<br>(V <sub>DD</sub> = 28 V, P <sub>out</sub> = 150 W, f = 500 MHz, I <sub>DQ</sub> = 2 x 100 mA)                                        | η                   | 50                             | 55   | —   | %    |  |
| Electrical Ruggedness<br>(V <sub>DD</sub> = 28 V, P <sub>out</sub> = 150 W, f = 500 MHz, I <sub>DQ</sub> = 2 x 100 mA,<br>VSWR 30:1 at all Phase Angles) | Ψ                   | No Degradation in Output Power |      |     |      |  |

1. Each side of device measured separately.

2. Measured in push-pull configuration.

2

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.









#### Figure 1. 500 MHz Test Circuit

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.

#### The RF MOSFET Line 150W, 500MHz, 28V



M/A-COM Products Released - Rev. 07.07



Figure 2. Output Power versus Input Power



#### TYPICAL CHARACTERISTICS





Figure 4. Drain Current versus Gate Voltage (Transfer Characteristics)



Figure 5. Output Power versus Supply Voltage

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.

#### The RF MOSFET Line 150W, 500MHz, 28V

Technology Solutions

M/A-COM Products Released - Rev. 07.07



Figure 6. Output Power versus Supply Voltage



Figure 7. Output Power versus Supply Voltage

5

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.



# Technology Solutions

#### M/A-COM Products Released - Rev. 07.07



#### TYPICAL CHARACTERISTICS



Figure 10. DC Safe Operating Area

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.

## The RF MOSFET Line 150W, 500MHz, 28V



#### M/A-COM Products Released - Rev. 07.07



| f<br>(MHz) | Z <sub>in</sub><br>Ohms | Z <sub>OL</sub> *<br>Ohms |
|------------|-------------------------|---------------------------|
| 225        | 1.6 – j2.30             | 3.2 – j1.50               |
| 400        | 1.9 + j0.48             | 2.3 – j0.19               |
| 500        | 1.9 + j2.60             | 2.0 + j1.30               |

ZOL\* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.

Note: Input and output impedance values given are measured from gate to gate and drain to drain respectively.

Figure 11. Series Equivalent Input/Output Impedance

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.

## The RF MOSFET Line 150W, 500MHz, 28V



M/A-COM Products Released - Rev. 07.07



Figure 12. 400 MHz Test Circuit

8

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.



M/A-COM Products Released - Rev. 07.07



Unless otherwise noted, all chip capacitors are ATC Type 100 or Equivalent.

Figure 13. 225 MHz Test Circuit

9

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.



#### The RF MOSFET Line 150W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07



(Not to Scale)

Figure 14. MRF275G Component Location (500 MHz)



Figure 15. MRF275G Circuit Board Photo Master (500 MHz)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.

#### The RF MOSFET Line 150W, 500MHz, 28V



**M/A-COM Products** Released - Rev. 07.07

NOTE: S-Parameter data represents measurements taken from one chip only.

|          |       |           | \$24  |           | ( <u>D</u> O   | \$12 \$22 |                | 12        |
|----------|-------|-----------|-------|-----------|----------------|-----------|----------------|-----------|
| f<br>MHz | 1544  | h         | 1824L | <u>دا</u> | l <b>S</b> tal | 1Z        | l <b>S</b> aal | <u>در</u> |
| 30       | 0.822 | Ψ<br>_172 | 634   | Ψ<br>91   | 0.027          | ψ<br>3    | 0.946          | Ψ<br>_173 |
| 40       | 0.846 | -172      | 4.32  | 81        | 0.027          | -6        | 0.859          | -172      |
| 50       | 0.842 | -174      | 3.62  | 79        | 0.027          | -8        | 0.863          | -175      |
| 60       | 0.838 | -175      | 3.03  | 79        | 0.027          | -5        | 0.923          | _177      |
| 70       | 0.836 | -175      | 2.76  | 80        | 0.028          | -3        | 1 010          | -178      |
| 80       | 0.841 | -176      | 2.43  | 78        | 0.029          | -4        | 1.080          | -178      |
| 90       | 0.849 | -176      | 2.19  | 74        | 0.029          | -7        | 1.150          | -176      |
| 100      | 0.857 | -176      | 1.89  | 68        | 0.028          | -13       | 1.110          | -176      |
| 110      | 0.864 | -176      | 1.66  | 63        | 0.026          | -19       | 1.050          | -177      |
| 120      | 0.868 | -176      | 1.43  | 60        | 0.024          | -19       | 0.958          | -175      |
| 130      | 0.871 | -176      | 1.25  | 59        | 0.023          | -19       | 0.905          | -176      |
| 140      | 0.874 | -176      | 1.15  | 59        | 0.023          | -17       | 0.914          | -177      |
| 150      | 0.876 | -176      | 1.11  | 59        | 0.023          | -16       | 0.969          | -178      |
| 160      | 0.880 | -176      | 1.06  | 59        | 0.023          | -17       | 1.060          | -178      |
| 170      | 0.885 | -177      | 1.01  | 55        | 0.023          | -18       | 1.130          | -177      |
| 180      | 0.891 | -177      | 0.96  | 51        | 0.023          | -23       | 1.190          | -178      |
| 190      | 0.896 | -177      | 0.87  | 45        | 0.022          | -26       | 1.140          | -179      |
| 200      | 0.900 | -177      | 0.77  | 43        | 0.020          | -26       | 1.050          | -177      |
| 210      | 0.904 | -177      | 0.69  | 42        | 0.018          | -25       | 0.958          | -176      |
| 220      | 0.907 | -177      | 0.63  | 43        | 0.017          | -23       | 0.924          | -175      |
| 230      | 0.909 | -177      | 0.60  | 43        | 0.018          | -23       | 0.981          | -178      |
| 240      | 0.912 | -178      | 0.58  | 44        | 0.017          | -22       | 0.981          | -180      |
| 250      | 0.915 | -178      | 0.58  | 42        | 0.017          | -20       | 1.040          | -179      |
| 260      | 0.918 | -178      | 0.56  | 40        | 0.016          | -20       | 1.150          | -180      |
| 270      | 0.922 | -178      | 0.54  | 34        | 0.015          | -24       | 1.170          | 179       |
| 280      | 0.925 | -179      | 0.49  | 32        | 0.014          | -27       | 1.130          | -180      |
| 290      | 0.927 | -179      | 0.43  | 28        | 0.013          | -27       | 1.010          | -178      |
| 300      | 0.930 | -179      | 0.41  | 30        | 0.013          | -23       | 0.964          | -178      |
| 310      | 0.932 | -179      | 0.40  | 32        | 0.013          | -14       | 0.936          | -178      |
| 320      | 0.934 | -180      | 0.39  | 31        | 0.012          | -9        | 0.948          | 180       |
| 330      | 0.936 | -180      | 0.35  | 32        | 0.011          | -9        | 1.000          | 180       |
| 340      | 0.938 | 180       | 0.38  | 31        | 0.011          | -12       | 1.070          | 178       |
| 350      | 0.941 | 180       | 0.35  | 28        | 0.011          | -12       | 1.100          | 180       |
| 360      | 0.943 | 179       | 0.33  | 23        | 0.011          | -10       | 1.120          | -180      |
| 370      | 0.944 | 179       | 0.30  | 21        | 0.011          | -4        | 1.080          | 180       |
| 380      | 0.945 | 179       | 0.29  | 21        | 0.009          | 1         | 1.020          | 180       |
| 390      | 0.947 | 179       | 0.28  | 22        | 0.008          | 3         | 0.966          | -180      |
| 400      | 0.948 | 179       | 0.26  | 25        | 0.008          | 4         | 0.936          | -179      |
| 410      | 0.949 | 178       | 0.26  | 24        | 0.010          | 5         | 1.010          | 179       |
| 420      | 0.951 | 178       | 0.25  | 25        | 0.010          | 11        | 1.040          | 178       |

| Table 1. Common Source S-Parameters (VDS = 12 V, ID = 4.5 |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| - 1 | - 1 |
|-----|-----|
| . 1 |     |
|     |     |

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.



#### The RF MOSFET Line 150W, 500MHz, 28V

#### M/A-COM Products Released - Rev. 07.07

| f    | \$ <sub>11</sub> |     | S                | 21 | S.               | \$ <sub>12</sub> |                  | \$ <sub>22</sub> |  |  |
|------|------------------|-----|------------------|----|------------------|------------------|------------------|------------------|--|--|
| MHz  | \$ <sub>11</sub> | φ   | \$ <sub>21</sub> | φ  | \$ <sub>12</sub> | φ                | \$ <sub>22</sub> | φ                |  |  |
| 430  | 0.952            | 178 | 0.25             | 22 | 0.010            | 19               | 1.080            | 177              |  |  |
| 440  | 0.953            | 177 | 0.24             | 19 | 0.009            | 22               | 1.100            | 178              |  |  |
| 450  | 0.955            | 177 | 0.24             | 16 | 0.008            | 21               | 1.100            | 179              |  |  |
| 460  | 0.956            | 177 | 0.21             | 15 | 0.008            | 11               | 1.080            | 177              |  |  |
| 470  | 0.956            | 177 | 0.20             | 16 | 0.009            | 16               | 0.992            | 178              |  |  |
| 480  | 0.957            | 176 | 0.19             | 18 | 0.010            | 27               | 0.975            | 179              |  |  |
| 490  | 0.958            | 176 | 0.19             | 18 | 0.010            | 40               | 0.974            | 178              |  |  |
| 500  | 0.960            | 176 | 0.19             | 19 | 0.010            | 46               | 1.010            | 177              |  |  |
| 600  | 0.956            | 175 | 0.18             | 12 | 0.007            | 49               | 0.940            | 175              |  |  |
| 700  | 0.958            | 172 | 0.11             | 14 | 0.018            | 61               | 0.989            | 173              |  |  |
| 800  | 0.962            | 170 | 0.10             | 12 | 0.029            | 51               | 0.967            | 172              |  |  |
| 900  | 0.965            | 168 | 0.08             | 16 | 0.021            | 72               | 0.973            | 170              |  |  |
| 1000 | 0.964            | 165 | 0.07             | 12 | 0.021            | 57               | 1.010            | 168              |  |  |

Table 1. Common Source S-Parameters (VDS = 12 V, ID = 4.5 A) continued

12

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.



#### The RF MOSFET Line 150W, 500MHz, 28V

#### **M/A-COM Products** Released - Rev. 07.07

|     | Table 2. Common Source S-Parameters ( $v_{DS} = 24 v$ , $i_D = 0.35 mA$ ) |      |                  |    |                  |                  |                  |                 |  |  |
|-----|---------------------------------------------------------------------------|------|------------------|----|------------------|------------------|------------------|-----------------|--|--|
| f   | S                                                                         | 11   | S                | 21 | 5                | \$ <sub>12</sub> |                  | s <sub>22</sub> |  |  |
| MHz | \$ <sub>11</sub>                                                          | φ    | \$ <sub>21</sub> | φ  | \$ <sub>12</sub> | φ                | \$ <sub>22</sub> | φ               |  |  |
| 30  | 0.829                                                                     | -170 | 9.20             | 92 | 0.023            | 4                | 0.915            | -171            |  |  |
| 40  | 0.858                                                                     | -172 | 6.30             | 83 | 0.022            | -4               | 0.834            | -170            |  |  |
| 50  | 0.852                                                                     | -173 | 5.28             | 80 | 0.023            | -6               | 0.836            | -174            |  |  |
| 60  | 0.846                                                                     | -174 | 4.42             | 80 | 0.023            | -3               | 0.892            | -175            |  |  |
| 70  | 0.843                                                                     | -175 | 4.01             | 81 | 0.024            | -1               | 0.978            | -177            |  |  |
| 80  | 0.847                                                                     | -175 | 3.53             | 80 | 0.024            | -2               | 1.050            | -177            |  |  |
| 90  | 0.855                                                                     | -175 | 3.18             | 76 | 0.024            | -5               | 1.110            | -176            |  |  |
| 100 | 0.865                                                                     | -176 | 2.75             | 70 | 0.023            | -10              | 1.080            | -175            |  |  |
| 110 | 0.872                                                                     | -176 | 2.43             | 65 | 0.022            | -16              | 1.020            | -176            |  |  |
| 120 | 0.874                                                                     | -176 | 2.10             | 62 | 0.020            | -16              | 0.932            | -174            |  |  |
| 130 | 0.876                                                                     | -176 | 1.84             | 61 | 0.019            | -15              | 0.882            | -175            |  |  |
| 140 | 0.878                                                                     | -176 | 1.70             | 61 | 0.019            | -14              | 0.889            | -176            |  |  |
| 150 | 0.880                                                                     | -176 | 1.63             | 61 | 0.019            | -13              | 0.943            | -177            |  |  |
| 160 | 0.883                                                                     | -176 | 1.56             | 61 | 0.019            | -13              | 1.030            | -177            |  |  |
| 170 | 0.888                                                                     | -177 | 1.49             | 58 | 0.019            | -14              | 1.100            | -176            |  |  |
| 180 | 0.894                                                                     | -177 | 1.42             | 53 | 0.019            | -18              | 1.160            | -176            |  |  |
| 190 | 0.899                                                                     | -177 | 1.29             | 47 | 0.018            | -22              | 1.120            | -177            |  |  |
| 200 | 0.902                                                                     | -177 | 1.14             | 45 | 0.017            | -24              | 1.030            | -176            |  |  |
| 210 | 0.905                                                                     | -177 | 1.02             | 44 | 0.015            | -23              | 0.941            | -175            |  |  |
| 220 | 0.907                                                                     | -177 | 0.94             | 46 | 0.015            | -19              | 0.903            | -174            |  |  |
| 230 | 0.909                                                                     | -178 | 0.89             | 45 | 0.015            | -16              | 0.957            | -177            |  |  |
| 240 | 0.912                                                                     | -178 | 0.87             | 46 | 0.014            | -15              | 0.961            | -179            |  |  |
| 250 | 0.915                                                                     | -178 | 0.86             | 44 | 0.014            | -15              | 1.020            | -178            |  |  |
| 260 | 0.918                                                                     | -178 | 0.83             | 42 | 0.014            | -17              | 1.120            | -178            |  |  |
| 270 | 0.922                                                                     | -178 | 0.80             | 36 | 0.013            | -19              | 1.140            | -180            |  |  |

~ / A 1/ 1 ~ ~ ~ ~ 

13

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠
- Visit www.macomtech.com for additional data sheets and product information.



#### **M/A-COM Products** Released - Rev. 07.07

| Table 2. Common Source S–Parameters (V <sub>DS</sub> = 24 V, I <sub>D</sub> = 0.35 mA) continued |                  |                  |                  |                  |                  |                  |                 |      |  |
|--------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------|--|
| f                                                                                                | s                | \$ <sub>11</sub> |                  | \$ <sub>21</sub> |                  | \$ <sub>12</sub> |                 | 22   |  |
| MHz                                                                                              | \$ <sub>11</sub> | φ                | \$ <sub>21</sub> | φ                | \$ <sub>12</sub> | φ                | S <sub>22</sub> | ф    |  |
| 280                                                                                              | 0.925            | -179             | 0.73             | 34               | 0.013            | -20              | 1.110           | -179 |  |
| 290                                                                                              | 0.927            | -179             | 0.65             | 32               | 0.011            | -18              | 0.994           | -177 |  |
| 300                                                                                              | 0.929            | -179             | 0.62             | 32               | 0.011            | -15              | 0.948           | -177 |  |
| 310                                                                                              | 0.931            | -179             | 0.60             | 34               | 0.010            | -9               | 0.916           | -177 |  |
| 320                                                                                              | 0.932            | -180             | 0.57             | 33               | 0.010            | -6               | 0.934           | -180 |  |
| 330                                                                                              | 0.934            | -180             | 0.53             | 34               | 0.010            | -4               | 0.985           | -180 |  |
| 340                                                                                              | 0.937            | 180              | 0.56             | 33               | 0.010            | -2               | 1.050           | 179  |  |
| 350                                                                                              | 0.939            | 180              | 0.53             | 30               | 0.010            | 0                | 1.090           | -179 |  |
| 360                                                                                              | 0.941            | 179              | 0.50             | 25               | 0.010            | 0                | 1.110           | -178 |  |
| 370                                                                                              | 0.943            | 179              | 0.46             | 23               | 0.009            | 0                | 1.080           | -179 |  |
| 380                                                                                              | 0.944            | 179              | 0.44             | 22               | 0.009            | 2                | 1.010           | -179 |  |
| 390                                                                                              | 0.945            | 179              | 0.41             | 24               | 0.008            | 8                | 0.956           | -179 |  |
| 400                                                                                              | 0.946            | 178              | 0.40             | 27               | 0.008            | 16               | 0.926           | -178 |  |
| 410                                                                                              | 0.947            | 178              | 0.38             | 26               | 0.009            | 20               | 1.000           | -180 |  |
| 420                                                                                              | 0.949            | 178              | 0.38             | 26               | 0.009            | 22               | 1.040           | 179  |  |
| 430                                                                                              | 0.950            | 178              | 0.37             | 23               | 0.009            | 25               | 1.070           | 179  |  |
| 440                                                                                              | 0.952            | 177              | 0.36             | 21               | 0.009            | 26               | 1.090           | 180  |  |
| 450                                                                                              | 0.953            | 177              | 0.36             | 18               | 0.009            | 28               | 1.090           | -180 |  |
| 460                                                                                              | 0.954            | 177              | 0.31             | 17               | 0.009            | 24               | 1.070           | 178  |  |
| 470                                                                                              | 0.955            | 177              | 0.30             | 17               | 0.009            | 29               | 0.990           | 179  |  |
| 480                                                                                              | 0.956            | 176              | 0.29             | 19               | 0.009            | 36               | 0.963           | -179 |  |
| 490                                                                                              | 0.957            | 176              | 0.29             | 20               | 0.010            | 45               | 0.959           | 180  |  |
| 500                                                                                              | 0.958            | 176              | 0.28             | 20               | 0.010            | 50               | 0.996           | 178  |  |
| 600                                                                                              | 0.956            | 175              | 0.24             | 12               | 0.006            | 90               | 0.924           | 176  |  |
| 700                                                                                              | 0.959            | 172              | 0.16             | 13               | 0.019            | 63               | 0.986           | 174  |  |
| 800                                                                                              | 0.963            | 170              | 0.14             | 10               | 0.023            | 63               | 0.963           | 173  |  |
| 900                                                                                              | 0.968            | 168              | 0.12             | 11               | 0.026            | 84               | 0.967           | 171  |  |
| 1000                                                                                             | 0.969            | 165              | 0.09             | 7                | 0.025            | 70               | 1.000           | 169  |  |

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.
- M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.



#### **M/A-COM Products** Released - Rev. 07.07

| Table 3. Common Source S-Parameters ( $V_{DS}$ = 28 V, $I_{D}$ = 0.39 mA) |                  |      |                  |                  |                  |                  |                  |      |  |  |
|---------------------------------------------------------------------------|------------------|------|------------------|------------------|------------------|------------------|------------------|------|--|--|
| f                                                                         | S                | 11   | S                | \$ <sub>21</sub> |                  | \$ <sub>12</sub> |                  | 22   |  |  |
| MHz                                                                       | \$ <sub>11</sub> | φ    | \$ <sub>21</sub> | φ                | \$ <sub>12</sub> | φ                | \$ <sub>22</sub> | φ    |  |  |
| 30                                                                        | 0.834            | -169 | 10.08            | 93               | 0.021            | 4                | 0.807            | -171 |  |  |
| 40                                                                        | 0.863            | -172 | 6.91             | 83               | 0.021            | -4               | 0.828            | -170 |  |  |
| 50                                                                        | 0.857            | -173 | 5.79             | 81               | 0.021            | -5               | 0.830            | -173 |  |  |
| 60                                                                        | 0.851            | -174 | 4.86             | 81               | 0.022            | -3               | 0.883            | -175 |  |  |
| 70                                                                        | 0.848            | -175 | 4.41             | 82               | 0.022            | -1               | 0.970            | -177 |  |  |
| 80                                                                        | 0.852            | -175 | 3.87             | 80               | 0.022            | -1               | 1.040            | -177 |  |  |
| 90                                                                        | 0.860            | -175 | 3.49             | 77               | 0.023            | -5               | 1.100            | -176 |  |  |
| 100                                                                       | 0.869            | -176 | 3.03             | 71               | 0.022            | -9               | 1.070            | -175 |  |  |
| 110                                                                       | 0.876            | -176 | 2.68             | 66               | 0.021            | -14              | 1.010            | -176 |  |  |
| 120                                                                       | 0.878            | -176 | 2.31             | 63               | 0.019            | -14              | 0.923            | -174 |  |  |
| 130                                                                       | 0.879            | -176 | 2.03             | 62               | 0.018            | -15              | 0.876            | -175 |  |  |

#### • • **T** - 1-1 -..... .... . . . ~

15

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.



#### The RF MOSFET Line 150W, 500MHz, 28V

### M/A-COM Products

Released - Rev. 07.07

| f    | \$11             |      | S                | 21 | S               | \$12 |                  | \$22 |  |
|------|------------------|------|------------------|----|-----------------|------|------------------|------|--|
| MHz  | \$ <sub>11</sub> | φ    | \$ <sub>21</sub> | φ  | S <sub>12</sub> | φ    | \$ <sub>22</sub> | φ    |  |
| 140  | 0.881            | -176 | 1.87             | 62 | 0.018           | -13  | 0.884            | -176 |  |
| 150  | 0.883            | -176 | 1.79             | 62 | 0.018           | -11  | 0.934            | -177 |  |
| 160  | 0.886            | -177 | 1.72             | 62 | 0.018           | -11  | 1.020            | -177 |  |
| 170  | 0.890            | -177 | 1.64             | 58 | 0.018           | -12  | 1.090            | -176 |  |
| 180  | 0.896            | -177 | 1.56             | 54 | 0.018           | -16  | 1.150            | -176 |  |
| 190  | 0.901            | -177 | 1.42             | 48 | 0.018           | -21  | 1.110            | -177 |  |
| 200  | 0.904            | -177 | 1.26             | 46 | 0.017           | -19  | 1.030            | -176 |  |
| 210  | 0.907            | -177 | 1.13             | 45 | 0.015           | -14  | 0.938            | -175 |  |
| 220  | 0.908            | -177 | 1.03             | 47 | 0.013           | -13  | 0.897            | -174 |  |
| 230  | 0.910            | -178 | 0.99             | 46 | 0.014           | -15  | 0.948            | -176 |  |
| 240  | 0.912            | -178 | 0.96             | 47 | 0.014           | -13  | 0.956            | -179 |  |
| 250  | 0.916            | -178 | 0.95             | 45 | 0.014           | -10  | 1.020            | -178 |  |
| 260  | 0.919            | -178 | 0.93             | 42 | 0.013           | -12  | 1.120            | -178 |  |
| 270  | 0.922            | -179 | 0.89             | 37 | 0.012           | -15  | 1.140            | -179 |  |
| 280  | 0.925            | -179 | 0.81             | 35 | 0.012           | -16  | 1.110            | -178 |  |
| 290  | 0.927            | -179 | 0.72             | 33 | 0.011           | -16  | 0.988            | -176 |  |
| 300  | 0.929            | -179 | 0.69             | 33 | 0.011           | -10  | 0.944            | -177 |  |
| 310  | 0.931            | -179 | 0.66             | 35 | 0.012           | 5    | 0.920            | -177 |  |
| 320  | 0.933            | -180 | 0.63             | 34 | 0.011           | 16   | 0.936            | -180 |  |
| 330  | 0.934            | -180 | 0.59             | 35 | 0.009           | 14   | 0.989            | -180 |  |
| 340  | 0.937            | 180  | 0.62             | 34 | 0.009           | 3    | 1.050            | 180  |  |
| 350  | 0.939            | 180  | 0.59             | 31 | 0.010           | 4    | 1.080            | -179 |  |
| 360  | 0.941            | 179  | 0.55             | 26 | 0.010           | 8    | 1.110            | -178 |  |
| 370  | 0.943            | 179  | 0.51             | 24 | 0.009           | 11   | 1.070            | -179 |  |
| 380  | 0.944            | 179  | 0.49             | 23 | 0.008           | 17   | 1.010            | -178 |  |
| 390  | 0.945            | 179  | 0.46             | 25 | 0.008           | 24   | 0.949            | -178 |  |
| 400  | 0.946            | 178  | 0.44             | 27 | 0.007           | 20   | 0.922            | -178 |  |
| 410  | 0.947            | 178  | 0.43             | 26 | 0.010           | 19   | 0.995            | -180 |  |
| 420  | 0.949            | 178  | 0.42             | 27 | 0.012           | 29   | 1.030            | 179  |  |
| 430  | 0.950            | 178  | 0.41             | 24 | 0.010           | 41   | 1.060            | 179  |  |
| 440  | 0.951            | 177  | 0.40             | 21 | 0.008           | 40   | 1.090            | 180  |  |
| 450  | 0.953            | 177  | 0.39             | 19 | 0.008           | 34   | 1.090            | -180 |  |
| 460  | 0.953            | 177  | 0.35             | 17 | 0.009           | 26   | 1.070            | 178  |  |
| 470  | 0.954            | 177  | 0.33             | 18 | 0.010           | 30   | 0.983            | 179  |  |
| 480  | 0.955            | 176  | 0.32             | 19 | 0.012           | 43   | 0.964            | -180 |  |
| 490  | 0.956            | 176  | 0.32             | 20 | 0.012           | 60   | 0.956            | 179  |  |
| 500  | 0.957            | 176  | 0.31             | 21 | 0.010           | 65   | 0.993            | 178  |  |
| 600  | 0.955            | 174  | 0.26             | 13 | 0.012           | 67   | 0.926            | 176  |  |
| 700  | 0.958            | 172  | 0.18             | 12 | 0.018           | 64   | 0.984            | 174  |  |
| 800  | 0.963            | 170  | 0.15             | 9  | 0.020           | 89   | 0.961            | 173  |  |
| 900  | 0.966            | 168  | 0.13             | 9  | 0.028           | 81   | 0.967            | 171  |  |
| 1000 | 0.968            | 165  | 0.10             | 6  | 0.033           | 73   | 0.997            | 169  |  |

#### Table 3. Common Source S-Parameters (VDS = 28 V, ID = 0.39 mA) continued

|   | 0 |
|---|---|
| 1 | n |
|   | ~ |

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.







M/A-COM Products Released - Rev. 07.07



#### Figure 16. MRF275G Test Fixture RF POWER MOSFET CONSIDERATIONS

#### **MOSFET CAPACITANCES**

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (Cgd), and gate-to-source (Cgs). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source (Cds).

These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on datasheets. The relationships between the interterminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways:

- 1. Drain shorted to source and positive voltage at the gate.
- Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.



The Ciss given in the electrical characteristics table was measured using method 2 above. It should be noted that Ciss, Coss, Crss are measured at zero drain current and are provided for general information about the device. They are not RF design parameters and no attempt should be made to use them as such.

#### **DRAIN CHARACTERISTICS**

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

#### **GATE CHARACTERISTICS**

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th).

**Gate Voltage Rating** — Never exceed the gate voltage rating (or any of the maximum ratings on the front page). Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region.

17

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

#### The RF MOSFET Line 150W, 500MHz, 28V

**Gate Termination** — The gates of this device are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

**Gate Protection** — These devices do not have an internalmonolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

#### HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with grounded equipment.

#### **DESIGN CONSIDERATIONS**

The MRF275G is a RF power N-channel enhancement



#### M/A-COM Products Released - Rev. 07.07

mode field–effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. M/A-COM RF MOS-FETs feature a vertical structure with a planar design. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

#### DC BIAS

The MRF275G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF275G was characterized at IDQ = 100 mA, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias system.

#### GAIN CONTROL

Power output of the MRF275G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

Commitment to produce in volume is not guaranteed.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.

<sup>•</sup> North America Tel: 800.366.2266 / Fax: 978.366.2266

## The RF MOSFET Line 150W, 500MHz, 28V

# Technology Solutions

#### M/A-COM Products Released - Rev. 07.07

#### PACKAGE DIMENSIONS



ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
  Visit www.macomtech.com for additional data sheets and product information.





Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

#### Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

#### http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

#### Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.З, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru\_4

moschip.ru\_6 moschip.ru\_9