

Vishay Siliconix

Si1403CDL vs. Si1403BDL

P-Channel, 20 V (D-S) MOSFET **Description:**

Package: SC70-6 Pin Out: Identical

Part Number Replacements: Si1403CDL-T1-GE3 replaces Si1403BDL-T1-E3

Si1403CDL-T1-GE3 replaces Si1403BDL-T1-GE3

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)											
PARAMETER	SYMBOL	SYMBOL Si1403CDL Si1		UNIT							
Drain-Source Voltage		V _{DS}	- 20	- 20	V						
Gate-Source Voltage	V_{GS}	± 12	± 12	V							
Continuous Drain Current	T _A = 25 °C	I-	- 1.6	- 1.5							
	T _A = 70 °C	I _D	- 1.3	- 1.2ª	Α						
Pulsed Drain Current	I _{DM}	- 5	- 5	^							
Continuous Source Current (MOSFET Diode	I _S	- 0.5	- 0.8								
Power Dissipation	T _A = 25 °C	P _D	0.6	0.625	W						
	T _A = 70 °C	r _D	0.4	0.4 ^a							
Operating Junction and Storage Temperature Range		T_J and T_{stg}	- 55 to 150	- 55 to 150	°C						
Maximum Junction-to-Ambient	R _{thJA}	220	200	°C/W							

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)												
			Si1403CDL Si1403BDL		•							
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT			
Static												
Gate-Threshold Voltage		V _{GS(th)}	- 0.6		- 1.5	- 0.6		- 1.3	V			
Gate-Body Leakage		I_{GSS}			± 100			± 100	nA			
Zero Gate Voltage Drain Current		I _{DSS}			- 1			- 1	μΑ			
On-State Drain Current	$V_{GS} = -4.5 \text{ V}$	I _{D(on)}	- 2			- 2			Α			
Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}$	R _{DS(on)}		0.116	0.140		0.120	0.150	Ω			
	$V_{GS} = -3.6 \text{ V}$			0.133	0.160		0.140	0.175				
	$V_{GS} = -2.5 \text{ V}$			0.177	0.222		0.220	0.265				
Forward Transconductance		9 _{fs}		5			3.4		S			
Diode Forward Voltage		V_{SD}		- 0.83	- 1.2		- 0.8	- 1.1	V			
Dynamic												
Total Gate Charge		Q_g		4	8		2.9	4.5				
Gate-Source Charge		Q _{gs}		0.7			0.65		nC			
Gate-Drain Charge		Q _{gd}		1.4			1					
Gate Resistance		R_g	2	7	14		9		Ω			

Note

Specification comparisons are supplied as a courtesy to compare two devices and do not constitute a commercial product datasheet or any guarantee of identical performance. Designers should refer to the appropriate datasheets of the same number for guaranteed specification limits.

Document Number: 67377 www.vishay.com Revision: 20-Dec-10

a. T_A = 85 °C instead of 70 °C.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9