

CPC1125N

400V Normally-Closed Single-Pole 4-Pin SOP OptoMOS® Relay

Parameter	Rating	Units
Blocking Voltage	400	V _P
Load Current	100	mA _{rms} / mA _{DC}
On-Resistance (max)	35	Ω
LED Current to Operate	2	mA

Features

- 1500V_{rms} Input/Output Isolation
 Low Drive Power Requirements
- · High Reliability
- Arc-Free With No Snubbing Circuits
- No EMI/RFI Generation
- Small 4-Pin SOP Package
- Tape & Reel Version Available
- Flammability Rating UL 94 V-0

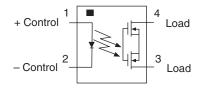
Applications

- Telecommunications
 - Telecom Switching
 - Tip/Ring Circuits
 - · Modem Switching (Laptop, Notebook, Pocket
 - Hook Switch
 - Dial Pulsing
 - Ground Start
 - Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- · Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

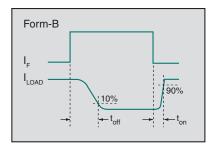
Description

CPC1125N is a miniature normally-closed (1-Form-B), single-pole solid state relay. It uses IXYS Integrated Circuits' patented, optically coupled, OptoMOS architecture to provide 1500V_{rms} of input/output isolation in a small 4-pin SOP package.

CPC1125N uses IXYS Integrated Circuits' state of the art double-molded vertical construction packaging to produce one of the world's smallest relays. It is ideal for replacing larger, less-reliable reed and electromechanical relays.


Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1172007
- EN/IEC 60950-1 Certified Component: Certificate available on our website


Ordering Information

Part #	Description
CPC1125N	4-Pin SOP (100/tube)
CPC1125NTR	4-Pin SOP (2000/reel)

Pin Configuration

Switching Characteristics of Normally-Closed Devices

Absolute Maximum Ratings @ 25°C

Parameter	Ratings	Units
Blocking Voltage	400	V _P
Reverse Input Voltage	5	V
Input Control Current	50	mA
Peak (10ms)	1	Α
Input Power Dissipation ¹	150	mW
Total Power Dissipation ²	400	mW
Isolation Voltage, Input to Output	1500	V _{rms}
Operational Temperature	-40 to +85	°C
Storage Temperature	-40 to +125	°C

¹ Derate linearly 1.33 mw / °C

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at +25°C, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

Electrical Characteristics @ 25°C

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Output Characteristics					'	
Load Current						
Continuous 1	I _F =0mA	IL	-	-	100	mA_{rms} / mA_{DC}
Peak	t =10ms	I _{LPK}	-	-	±350	mA _P
On-Resistance ²	I _L =100mA	R _{ON}	-	26	35	Ω
Switching Speeds						
Turn-On	I _F =5mA, V _L =10V	t _{on}	-	0.31	2	mo
Turn-Off		t _{off}	-	0.30	2	— ms
Off-State Leakage Current	V _L =400V, I _F =2mA	I _{LEAK}	-	-	5	μΑ
Output Capacitance	I _F =2mA, V _L = 50V, f=1MHz	C _{OUT}	-	6	-	pF
Input Characteristics						
Input Control Current to Activate 3	I _L =100mA	I _F	-	-	2	mA
Input Control Current to Deactivate	-	I _F	0.1	-	-	mA
Input Voltage Drop	I _F =5mA	V_{F}	0.9	1.2	1.5	V
Reverse Input Current	V _R =5V	I _R	-	-	10	μΑ
Common Characteristics	<u>'</u>			•	•	
Capacitance, Input to Output	V _{IO} =0V, f=1MHz	C_{IO}	-	1	-	pF

Load current derates linearly from 100mA @ 25°C to 60mA @ 85°C. Measurement taken within 1 second of on-time.

² Derate linearly 3.33 mw / °C

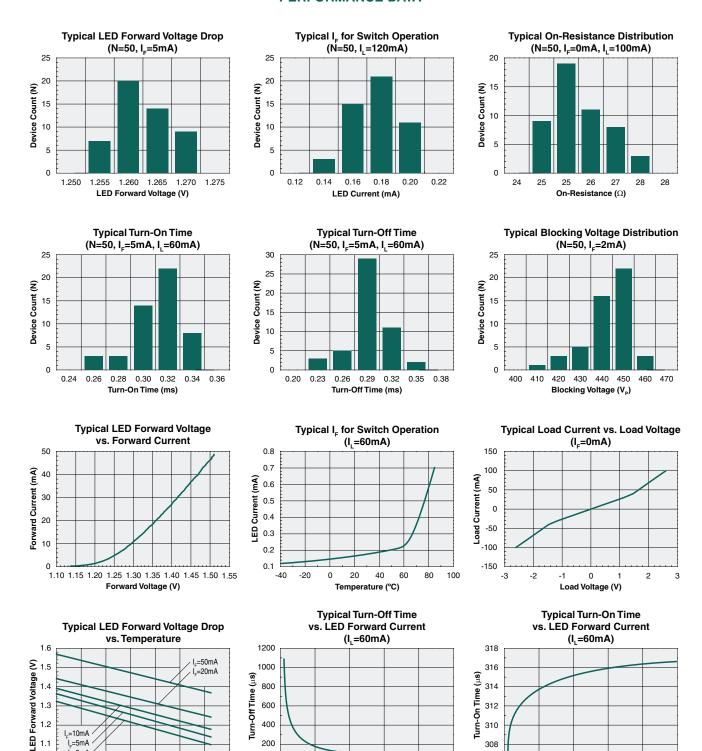
For applications requiring high temperature operation (greater than 60°C) a minimum LED drive current of 4mA is recommended.

1.2

1.0

-40 -20

I_E=10mA I = 5mA


I_=2mA

40

Temperature (°C)

80 100

PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at 25°C. For guaranteed parameters not indicated in the written specifications, please contact our application department.

20

30

LED Current (mA)

40

50

310

308

306

0

10

20

LED Current (mA)

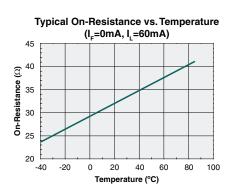
30

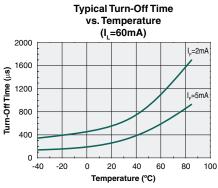
40

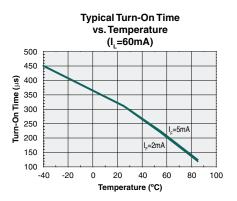
50

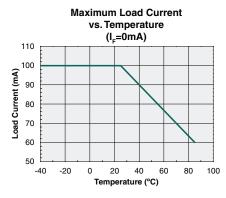
400

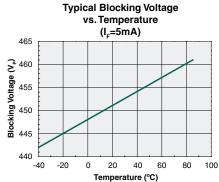
200

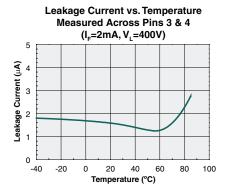

0

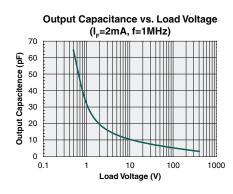

0

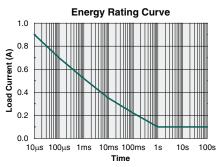

10




PERFORMANCE DATA*







Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Classification
CPC1125N	MSL 3

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

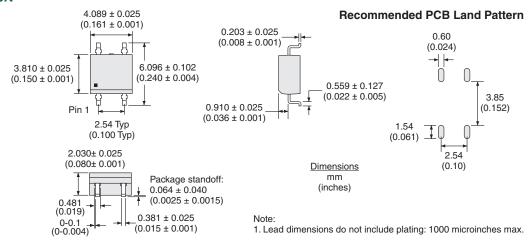
Soldering Profile

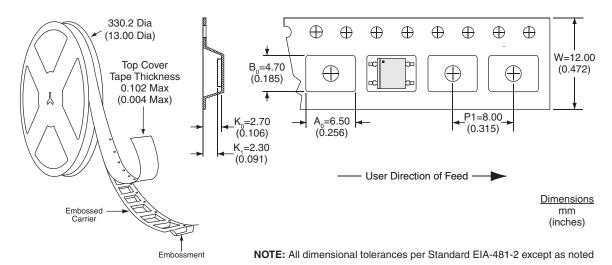
Provided in the table below is the Classification Temperature (T_C) of this product and the maximum dwell time the body temperature of this device may be (T_C - 5)°C or greater. The classification temperature sets the Maximum Body Temperature allowed for this device during lead-free reflow processes. For through-hole devices, and any other processes, the guidelines of **J-STD-020** must be observed.

Device	Classification Temperature (T _c)	Dwell Time (t _p)	Max Reflow Cycles
CPC1125N	260°C	30 seconds	3

Board Wash

IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include, but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to flux or solvents that are Chlorine- or Fluorine-based.





MECHANICAL DIMENSIONS

CPC1125N

CPC1125NTR Tape & Reel

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits' Standard Terms and Conditions of Sale, IXYS Integrated Circuits assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits' product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits reserves the right to discontinue or make changes to its products at any time without notice.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9