

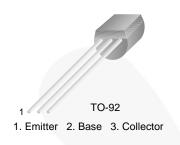
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.


February 2015

2N5550 NPN Epitaxial Silicon Transistor

Features

- Amplifier Transistor
- Collector-Emitter Voltage: V_{CEO} = 140 V

Ordering Information

Part Number	Part Number Top Mark		Packing Method	
2N5550BU	2N5550	TO-92 3L	Bulk	
2N5550TA	2N5550	TO-92 3L	Ammo	
2N5550TAR	2N5550	TO-92 3L	Ammo	
2N5550TF	2N5550	TO-92 3L	Tape and Reel	
2N5550TFR	2N5550	TO-92 3L	Tape and Reel	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	160	V
V _{CEO}	Collector-Emitter Voltage	140	V
V _{EBO}	Emitter-Base Voltage	6	V
۱ _C	Collector Current	600	mA
ТJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 to 150	°C

www.fairchildsemi.com

Thermal Characteristics⁽¹⁾

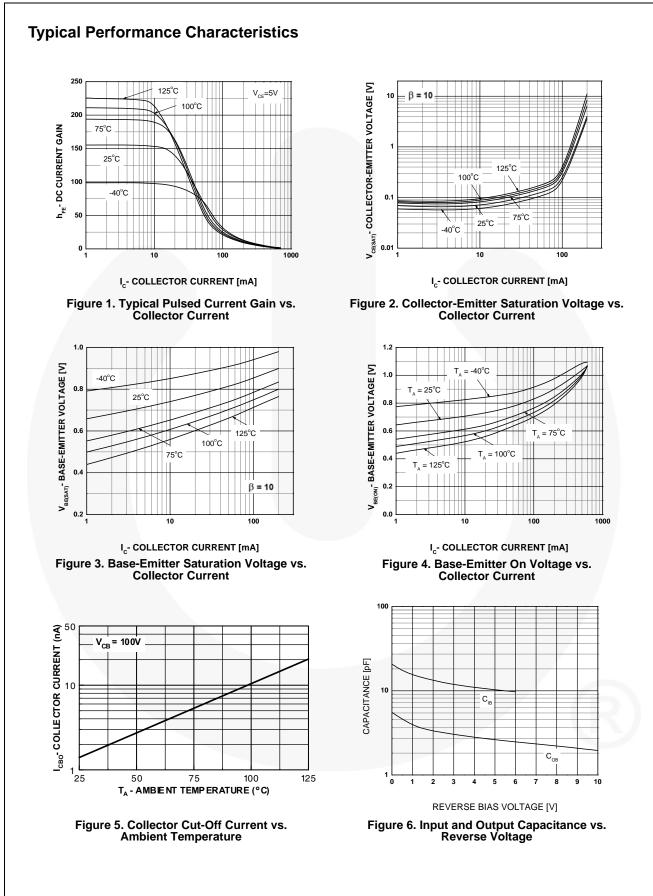
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Max.	Unit
Б	Total Device Dissipation	625	mW
PD	Derate Above 25°C	5.0	mW/°C
R _{θJA}	Thermal Resistance, Junction-to-Ambient	200	°C/W

Note:

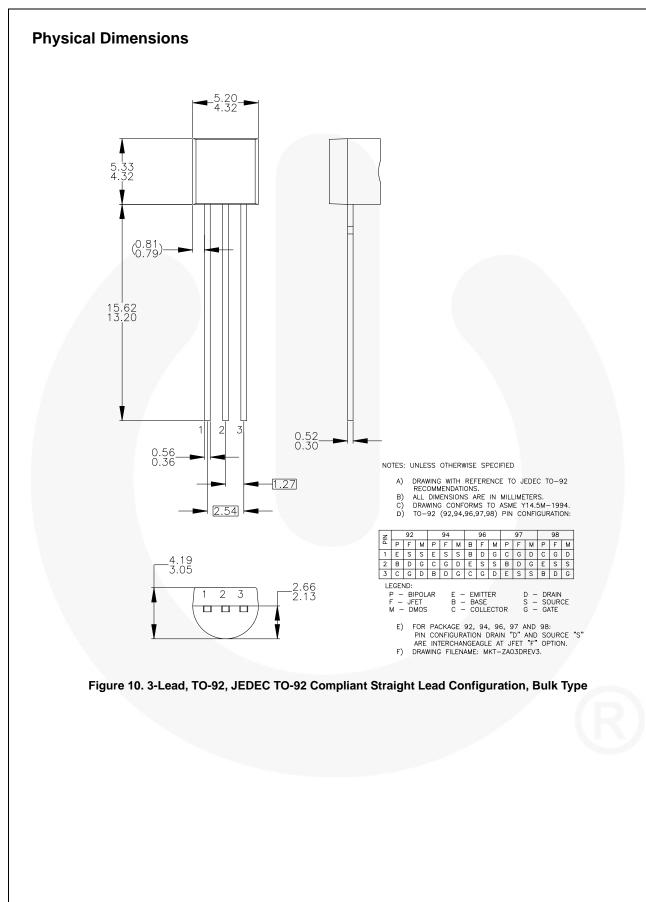
1. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

Electrical Characteristics

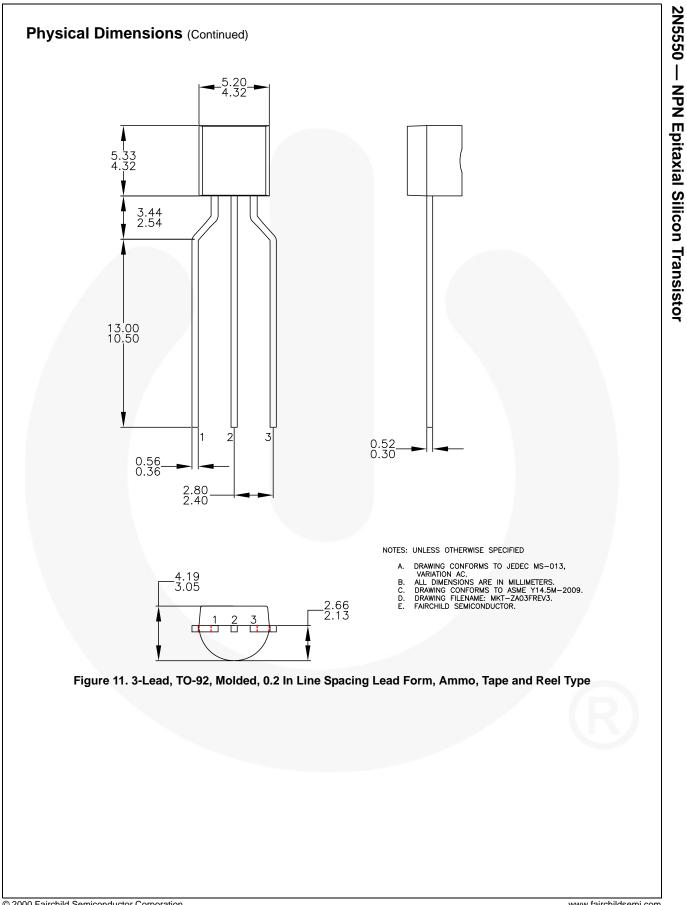

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	160			V
BV _{CEO}	Collector-Emitter Breakdown Voltage ⁽²⁾	$I_{\rm C} = 1 {\rm mA}, I_{\rm B} = 0$	140			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	6			V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = 100 \text{ V}, I_{E} = 0$			100	nA
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = 4 V, I_{C} = 0$			50	nA
h _{FE}		$I_{C} = 1 \text{ mA}, V_{CE} = 5 \text{ V}$	60			
	DC Current Gain ⁽²⁾	I _C = 10 mA, V _{CE} = 5 V	60		250	
		I _C = 50 mA, V _{CE} = 5 V	20			
) (t)	Collector-Emitter Saturation Voltage ⁽²⁾	I _C = 10 mA, I _B = 1 mA			0.15	v
V _{CE} (sat)		$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5 \text{ mA}$			0.25	Ň
V _{BE} (sat) E	Base-Emitter Saturation Voltage ⁽²⁾	I _C = 10 mA, I _B = 1 mA			1.0	V
		$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5 \text{ mA}$			1.2	
f _T	Current Gain Bandwidth Product	$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ f = 100 MHz	100		300	MHz
C _{ob}	Output Capacitance	V _{CB} = 10 V, I _E = 0, f = 1 MHz			6	pF
NF	Noise Figure	$ I_C = 250 \ \mu\text{A}, \ V_{CE} = 5 \ \text{V}, \\ R_S = 1 \ \text{k}\Omega, f = 10 \ \text{Hz to} \\ 15.7 \ \text{kHz} $			10	dB

Note:


2. Pulse test: pulse width $\leq 300~\mu s,~duty~cycle \leq 2\%$

2N5550 — NPN Epitaxial Silicon Transistor



2N5550 — NPN Epitaxial Silicon Transistor

Typical Performance Characteristics (Continued) 260 240 240 220 220 200 200 180 h FE - SMALL SIGNAL CURRENT GAIN 16 FREG = 20 MHz = 1.0 mA Ιc V_{CE} = 10V 12 8 4 BV CER-′160 ⊾ 0.1 0 1 10 100 1000 10 50 1 **RESISTANCE** (kΩ) I c - COLLECTOR CURRENT (mA) Figure 8. Small Signal Current Gain vs. Collector Current Figure 7. Collector- Emitter Breakdown Voltage with Resistance between Emitter-Base 700 **P** - **POWER DISSIPATION (mW)** 200 - 200 100 100 **P** - **P** TO-92 SOT-23 0 50 75 100 TEMPERATURE (°C) 0 25 125 150 Figure 9. Power Dissipation vs. Ambient Temperature

2N5550 — NPN Epitaxial Silicon Transistor

FAIRCHILD. TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ F-PFS™ **OPTOPLANAR[®]** AttitudeEngine™ **FRFET**[®] Awinda[®] AX-CAP[®]* Global Power Resource SM ® TinyBoost® GreenBridge™ TinyBuck® PowerTrench[®] BitSiC™ TinyCalc™ Green FPS™ PowerXS™ Build it Now™ TinyLogic® Green FPS™ e-Series™ Programmable Active Droop™ CorePI US™ Gmax™ TINYOPTO™ QFET CorePOWER™ TinyPower™ GTO™ QS™ CROSSVOLT™ TinyPWM™ IntelliMAX™ Quiet Series™ TinvWire™ CTL™ RapidConfigure™ ISOPI ANAR™ Current Transfer Logic™ TranSiC™ Making Small Speakers Sound Louder ⊃™ **DEUXPEED**[®] and Better TriFault Detect™ Saving our world, 1mW/W/kW at a time™ Dual Cool™ TRUECURRENT®* MegaBuck™ SignalWise™ **EcoSPARK[®]** MICROCOUPLER™ μSerDes™ SmartMax™ EfficientMax™ MicroFET™ SMART START™ ESBC™ MicroPak™ Solutions for Your Success™ MicroPak2™ F UHC SPM[€] MillerDrive™ Ultra FRFET™ Fairchild® STEALTH™ MotionMax™ UniFET™ Fairchild Semiconductor® SuperFET[®] MotionGrid® VCX™ FACT Quiet Series™ SuperSOT™-3 MTi[®] VisualMax™ FACT[®] FAST[®] SuperSOT™-6 MTx® VoltagePlus™ SuperSOT™-8 MVN® XS™ FastvCore™ SupreMOS® mWSaver® Xsens™ FETBench™ SyncFET™ OptoHiT™ 仙童™ **FPS**TM Sync-Lock™ **OPTOLOGIC®** * Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms			
Datasheet Identification	Product Status	Definition	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.	
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.	

© Fairchild Semiconductor Corporation

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

<u>2N5550_D28Z</u> <u>2N5550_D75Z</u> <u>2N5550TFR</u> <u>2N5550BU</u> <u>2N5550_J24Z</u> <u>2N5550_D26Z</u> <u>2N5550TA</u> <u>2N5550TA</u> <u>2N5550TAR_Q</u>

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9