#### **General Description**

The MAX2120 evaluation kit (EV kit) simplifies the testing and evaluation of the IC direct-conversion tuner. The evaluation kit is fully assembled and tested at the factory. Standard 50 $\Omega$  SMA and BNC connectors are included on the EV kit for the inputs and outputs to allow quick and easy evaluation on the test bench.

This document provides a list of equipment required to evaluate the device, a straightforward test procedure to verify functionality, a description of the EV kit circuit, the circuit schematic, a component list for the kit, and artwork for each layer of the PCB.

#### **Features**

- Easy Evaluation of the MAX2120
- 50Ω RF Input SMA Connector
- 50Ω Baseband Output BNC Connector
- Single 3.3V ±5% Supply
- I<sup>2</sup>C 2-Wire Serial Interface
- All Critical Peripheral Components Included
- Fully Assembled and Tested
- PC Control Software (available at www.maximintegrated.com/evkitsoftware)

#### **Ordering Information**

| PART          | TYPE   |
|---------------|--------|
| MAX2120EVKIT+ | EV Kit |

+Denotes lead(Pb)-free and RoHS compliant.

| DESIGNATION                                                                 | QTY | DESCRIPTION                                                                        |
|-----------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------|
| ADDR                                                                        | 0   | Not installed, 3-pin (1 x 3) inline<br>header, 0.01in centers<br>Sullins PEC36SAAN |
| BB_I_O/P,<br>BB_Q_O/P                                                       | 2   | 50Ω BNC PC mounts<br>Amphenol 31-5329-52RFX                                        |
| BB_IN, BB_IP,<br>BB_QN, BB_QP,<br>CP_OUT,<br>J12, J13, J17,<br>REF_O/P, VGC | 10  | PC mini red test points<br>Keystone 5000                                           |
| C1–C6, C9, C14                                                              | 8   | 1000pF ±10% ceramic capacitors<br>(0603)<br>Murata GRM188R71H102K                  |
| C7, C13, C19,<br>C20, C75                                                   |     | 0.1µF ±10% ceramic capacitors<br>(0603)<br>Murata GRM188R71C104K                   |
| C8, C12,<br>C25–C29                                                         | 0   | Not installed, capacitors                                                          |

# Component List

| DESIGNATION             | QTY | DESCRIPTION                                                        |
|-------------------------|-----|--------------------------------------------------------------------|
| C10, C11                | 2   | 0.047µF ±10% ceramic capacitors<br>(0603)<br>Murata GRM188R71C473K |
| C15                     | 1   | 0.033µF ±10% ceramic capacitor<br>(0603)<br>Murata GRM188R61A334K  |
| C16                     | 1   | 0.022µF ±10% ceramic capacitor<br>(0603)<br>Murata GRM188R71H223K  |
| C17, C18                | 2   | 10μF ±10% tantalum capacitors<br>(C Case)<br>AVX TAJC016K016       |
| C22                     | 1   | 43.2Ω ±1% resistor (0603)*                                         |
| C23, C24,<br>C71–C73    | 5   | 330pF ±5% ceramic capacitors<br>(0603)<br>Murata GRM1885C1H331J    |
| J6 1 DB25 rig<br>AMP 57 |     | DB25 right-angle male connector<br>AMP 5747238-4                   |



# Evaluates: MAX2120

# **Component List (continued)**

| DESIGNATION                                                                              | QTY | DESCRIPTION                                                                         |
|------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------|
| JP_VCC,<br>VCC_BB,<br>VCC_DIG,<br>VCC_LO,<br>VCC_RF1,<br>VCC_RF2,<br>VCC_SYN,<br>VCC_VCO | 0   | Not installed, 2-pin (1 x 2) inline<br>headers, 0.01in centers<br>Sullins PEC36SAAN |
| L1                                                                                       | 1   | 33pF ±5% capacitor (0603)<br>Murata GRM1885C1H330J                                  |
| R2, R12,<br>R18–R20, R22,<br>R25, R27–R33                                                | 0   | Not installed, resistors                                                            |
| R3, R7,<br>R15–R17, R21                                                                  | 6   | 0Ω ±5% resistors (0603)*                                                            |
| R4, R5, R13,<br>R24                                                                      | 4   | 1kΩ ±5% resistors (0603)*                                                           |
| R6                                                                                       | 1   | 820Ω ±5% resistor (0603)*                                                           |
| R8                                                                                       | 1   | 86.6Ω ±1% resistor (0603)*                                                          |
| R9–R11, R41,<br>R42                                                                      | 5   | 100Ω ±1% resistors (0603)*                                                          |
| R14, R43                                                                                 | 2   | 5.1kΩ ±5% resistors (0603)*                                                         |
| R23, R26                                                                                 | 2   | 0.1µF ±10% ceramic capacitors<br>(0603)<br>Murata GRM188R71C104K                    |
| R46, R47                                                                                 | 2   | 2.7kΩ ±5% resistors (0603)*                                                         |

| DESIGNATION | NATION QTY DESCRIPTION |                                                                                                                                                           |  |
|-------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| REF_INPUT   | 0                      | Not installed, SMA edge-mount<br>connector, round contact<br>Emerson 142-0701-801                                                                         |  |
| RF_INPUT    | 1                      | SMA edge-mount connector,<br>round contact<br>Emerson 142-0701-801                                                                                        |  |
|             |                        | DVBS tuner (28 TQFN-EP**)<br>Maxim MAX2120CTI+                                                                                                            |  |
| U2, U4      | 0                      | Not installed, single-supply op amps<br>with R2R outputs<br>Maxim MAX4453ESA                                                                              |  |
| U3          | 1                      | 74LV07A hex buffer/driver OC<br>TI SN74LV07ADR                                                                                                            |  |
| U5          | 0                      | Not installed, open I/O comparator<br>Maxim MAX985                                                                                                        |  |
| Y1          | 1                      | 4MHz crystal<br>Citizen America 300-8526-1-ND<br>Digi-Key HCM49-4.000MABJ-UT                                                                              |  |
| _           | 0                      | Not installed, shunts (JP_VCC,<br>VCC_BB, VCC_DIG, VCC_LO,<br>VCC_RF1, VCC_RF2, VCC_SYN,<br>VCC_VCO)<br>Shorting jumpers, 2 position<br>Sullins SSC02SYAN |  |
| —           | 1                      | PCB: MAX2112/20 EVALUATION KIT                                                                                                                            |  |

\*Use lead-free parts only. \*\*EP = Exposed pad.

# **Component Suppliers**

| SUPPLIER                   | WEBSITE                     |
|----------------------------|-----------------------------|
| AMP/Tyco Electronics       | www.tycoelectronics.com     |
| Amphenol RF                | www.amphenolrf.com          |
| AVX Corp.                  | www.avxcorp.com             |
| Digi-Key Corp.             | www.digikey.com             |
| Emerson Network Power      | www.emersonnetworkpower.com |
| Keystone Electronics Corp. | www.keyelco.com             |
| Murata Americas            | www.murataamericas.com      |
| Sullins Electronics Corp.  | www.sullinselectronics.com  |
| Texas instruments          | www.ti.com                  |

Note: Indicate that you are using the MAX2120 when contacting these component suppliers.

#### Evaluates: MAX2120

#### **Quick Start**

#### **Test Equipment Required**

- MAX2120 EV kit
- Dual-output power supply capable of supplying up to 3.3V at > 160mA for V<sub>CC</sub> and 3V at > 50µA for V<sub>GC</sub> gain control voltage
- RF signal generator capable of delivering at least 0dBm of output power at frequencies up to 2.175GHz
- RF spectrum analyzer capable of covering the operating frequency range of the device
- PC laptop or tablet with Microsoft Windows XP<sup>®</sup>, Windows<sup>®</sup> 7, 8 operating system and a spare USB port
- USB-A male to USB-B male cable
- US keyboard
- Multichannel digital oscilloscope (optional)
- Network analyzer to measure return loss (optional)
- Ammeter to measure supply current (optional)

#### Procedure

The EV kit is fully assembled and factory tested. Follow the instructions in the *Connections and Setup* section for proper device evaluation.

#### **Measurement Considerations**

The EV kit includes on-board matching circuitry at the MAX2120 RF input to convert the  $50\Omega$  source to a  $75\Omega$  input. Note that the input power to the device must be adjusted to account for the -6dB power loss of the matching resistor network.

#### **Connections and Setup**

This section provides a step-by-step guide to testing the basic functionality of the EV kit in UHF mode. **Caution: Do not turn on DC power or RF signal generators until all connections are completed.** 

- 1) Verify that all jumpers are in place.
- With its output disabled, connect the DC power supply to VGC set to 0.5V (maximum gain).
- 3) With its output disabled, set the DC power supply to 3.3V. Connect the power supply to the VCC (through an ammeter if desired) and GND terminals on the EV kit. If available, set the current limit to 200mA.

Windows and Windows XP are registered trademarks and registered service marks of Microsoft Corporation.

- 4) With its output disabled, set the RF signal generator to a 955MHz frequency at -69dBm to account for the 6dB resistive pad loss. When measuring noise figure, this 6dB must also be accounted for by subtracting 6dB from the measured noise figure, unless the pad has been removed.
- 5) Connect the output of the RF signal generator to the SMA connector labeled RF \_INPUT on the evaluation board.
- Connect the PC to the INTF3000 interface board using the USB-A male to USB-B male cable. On the INTF3000, place a jumper between pins 1-2 on JU1 (VBUS Pos). Connect the 25-pin connector of the INTF3000 (J4) directly to the 25-pin connector on the EV kit (J6).
- 7) Turn on the 3.3V  $V_{CC}$  power supply, followed by the 3V gain-control power supply. The supply current from the 3.3V  $V_{CC}$  supply should read approximately 100mA, and the supply current from the 3V  $V_{GC}$  should read approximately 50µA. Be sure to adjust the power supply to account for any voltage drop across the ammeter.
- Install and run the IC control software. Software is available for download on the Maxim website at www.maximintegrated.com/evkitsoftware.
- Load the default register settings from the control software by clicking Edit: Load Defaults. Set ICP = 1 and BBG[3:0] = 1011.
- 10) Connect the output to a spectrum analyzer or an oscilloscope.
- 11) Enable the RF signal generator's output.
- Activate and set the power level of the RF generator to achieve 1V<sub>P-P</sub> at the baseband BNC connector outputs.
- 13) Check the I/Q outputs.
- 14) Observe the baseband output at 5MHz with  $1V_{P-P}$ .

#### Evaluates: MAX2120

#### **Layout Considerations**

The EV kit can serve as a guide for PCB layout. Keep RF signal lines as short as possible to minimize losses and radiation. Use controlled impedance on all high-frequency traces. The exposed paddle must be soldered evenly to the board's ground plane for proper operation. Use abundant vias beneath the exposed paddle for maximum heat dissipation. Use abundant ground vias between RF traces to minimize undesired coupling.

To minimize coupling between different sections of the IC, the ideal power-supply layout is a star configuration, which has a large decoupling capacitor at the central  $V_{CC}$  node. The  $V_{CC}$  traces branch out from this node, with each trace going to separate  $V_{CC}$  pins of the IC. Each  $V_{CC}$  pin must have a bypass capacitor with a low impedance to ground at the frequency of interest. Do not share ground vias among multiple connections to the PCB ground plane.



Figure 1. MAX2120 EV Kit Schematic



Figure 2. MAX2120 EV Kit PCB Layout—Component Placement Guide



Figure 3. MAX2120 EV Kit PCB Layout—Top



Figure 4. MAX2120 EV Kit PCB Layout—Bottom



Figure 5. MAX2120 EV Kit PCB Layout—Top Soldermask



Figure 6. MAX2120 EV Kit PCB Layout—Bottom Soldermask

### Evaluates: MAX2120

#### **Revision History**

| REVISION<br>NUMBER | REVISION<br>DATE | DESCRIPTION                                   | PAGES<br>CHANGED |
|--------------------|------------------|-----------------------------------------------|------------------|
| 0                  | 11/07            | Initial release                               | —                |
| 1                  | 5/10             | Updated L1 in the Component List and Figure 1 | 2, 5             |
| 2                  | 11/14            | Updated Quick Start section                   | 3                |

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.





Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

#### Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

#### http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

#### Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru\_4

moschip.ru\_6 moschip.ru\_9