AUTOMOTIVE

RoHS

COMPLIANT

FREE

GREEN

(5-2008)

Vishay Semiconductors

Power SMD LED PLCC-2

DESCRIPTION

This device has been designed to meet the increasing demand for white SMD LED.

The package of the VLMW33.. is the PLCC-2.

It consists of a lead frame which is embedded in a white thermoplast. The reflector inside this package is filled with a mixture of epoxy and TAG phosphor.

The TAG phosphor converts the blue emission partially to yellow, which mixes with the remaining blue to give white.

PRODUCT GROUP AND PACKAGE DATA

Product group: LEDPackage: SMD PLCC-2Product series: power

• Angle of half intensity: ± 60°

FEATURES

- · High efficient InGaN technology
- Chromaticity coordinate categorized according to CIE1931 per packing unit
- Typical color temperature 5500 K
- ESD-withstand voltage: Up to 1 kV according to JESD22-A114-B
- EIA and ICE standard package
- Compatible with IR-reflow, vapor phase and wave solder processes according to CECC 00802 and J-STD-020
- · Available in 8 mm tape reel
- Preconditioning according to JEDEC[®] level 2a
- AEC-Q101 qualified
- Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

- Automotive: Backlighting in dashboards and switches
- Telecommunication: Indicator and backlighting in telephone and fax
- · Backlighting for audio and video equipment
- Backlighting in office equipment
- Indoor and outdoor message boards
- · Flat backlight for LCDs, switches, and symbols
- Illumination purposes, alternative to incandescent lamps
- · General use

PARTS TABLE														
PART	COLOR	LUMINOUS INTENSITY (mcd)		at I _F (mA)	CO	COORDINATE (x, y)		at I _F (mA)	FORWARD VOLTAGE (V)		at I _F	TECHNOLOGY		
		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		
VLMW33S2V1-5K8L-08	White	224	-	900	20	-	0.33, 0.33	-	20	-	3.7	4.2	20	InGaN/TAG on SiC
VLMW33S2V1-5K8L-18	White	224	-	900	20	-	0.33, 0.33	-	20	-	3.7	4.2	20	InGaN/TAG on SiC
VLMW33T2U2-5K8L-08	White	355	-	710	20	-	0.33, 0.33	-	20	-	3.7	4.2	20	InGaN/TAG on SiC
VLMW33T2U2-5K8L-18	White	355	-	710	20	-	0.33, 0.33	-	20	-	3.7	4.2	20	InGaN/TAG on SiC
VLMW33U2AA-5K8L-08	White	560	-	1400	20	-	0.33, 0.33	-	20	-	3.7	4.2	20	InGaN/TAG on SiC
VLMW33U2AA-5K8L-18	White	560	-	1400	20	-	0.33, 0.33	-	20	-	3.7	4.2	20	InGaN/TAG on SiC
VLMW33T2AA-5K8L-08	White	355	-	1400	20	-	0.33, 0.33	-	20	-	3.7	4.2	20	InGaN/TAG on SiC
VLMW33T2AA-5K8L-18	White	355	-	1400	20	-	0.33, 0.33	-	20	-	3.7	4.2	20	InGaN/TAG on SiC

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) VLMW33							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Reverse voltage (1)		V_{R}	5	V			
DC forward current	T _{amb} ≤ 70 °C	I _F	30	mA			
Surge forward current	t _p ≤ 10 μs	I _{FSM}	0.1	Α			
Power dissipation		P _V	127	mW			
Junction temperature		Tj	110	°C			
Storage temperature range		T _{stg}	-40 to +100	°C			
Operating temperature range		T _{amb}	-40 to +100	°C			
Thermal resistance junction/ambient	Mounted on PC board (pad size > 16 mm ²)	R _{thJA}	400	K/W			

Note

⁽¹⁾ Driving the LED in reverse direction is suitable for short term application

OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) VLMW33, WHITE									
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN	TYP.	MAX	UNIT		
Luminous intensity		VLMW33S2V1	Ι _V	224	-	900	mcd		
	I _F = 20 mA	VLMW33T2U2	I _V	355	-	710	mcd		
		VLMW33U2AA	Ι _V	560	-	1400	mcd		
		VLMW33T2AA	Ι _V	355	-	1400	mcd		
Chromaticity coordinate x acc. to CIE 1931	I _F = 20 mA	VLMW33	х	-	0.33	-			
Chromaticity coordinate y acc. to CIE 1931	I _F = 20 mA	VLMW33	у	-	0.33	-			
Angle of half intensity	I _F = 20 mA		φ	-	± 60	-	deg		
Forward voltage	I _F = 20 mA		V _F	-	3.7	4.2	V		
Reverse voltage	I _R = 10 μA		V_R	5	-	-	V		
Temperature coefficient of V _F	I _F = 20 mA		TC _{VF}	-	-4	-	mV/K		
Temperature coefficient of I _V	I _F = 20 mA		TC _{IV}	-	-0.5	-	%/K		

LUMINOUS INTENSITY CLASSIFICATION							
GROUP	LIGHT INTENSITY (mcd)						
STANDARD	OPTIONAL	MIN.	MAX.				
S	1	180	224				
	2	224	280				
Т	1	280	355				
	2	355	450				
U	1	450	560				
	2	560	710				
V	1	710	900				
	2	900	1120				
AA	1	1120	1400				

Note

• Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

The above type numbers represent the order groups which include only a few brightness groups.

Only one group will be shipped on each reel (there will be no mixing of two groups on each reel).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel.

In order to ensure availability, single wavelength groups will not be orderable.

CROSSING TABLE							
VISHAY	OSRAM						
VLMW33S2V1	LWT67C-S2V1						
VLMW33T2U2	LWT67C-T2U2						

www.vishay.com

Vishay Semiconductors

CHROMATICITY COORDINATED GROUPS FOR WHITE SMD LED								
	Х	Υ		Х	Υ			
	0.291	0.268		0.330	0.330			
5L	0.285	0.279		0.330	0.347			
3L	0.307	0.312	7	0.347	0.371			
	0.310	0.297		0.345	0.352			
	0.296	0.259		0.330	0.310			
5K	0.291	0.268	7K	0.330	0.330			
or.	0.310	0.297		0.338	0.342			
	0.313	0.284		0.352	0.344			
	0.310	0.297		0.345	0.352			
CI.	0.307	0.312		0.347	0.371			
6L	0.330	0.347		0.367	0.401			
	0.330	0.330		0.364	0.380			
	0.313	0.284		0.352	0.344			
ev.	0.310	0.297		0.338	0.342			
6K	0.330	0.330	on on	0.364	0.380			
	0.330	0.310		0.360	0.357			

Note

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

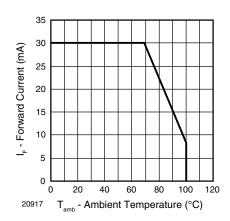


Fig. 1 - Forward Current vs. Ambient Temperature

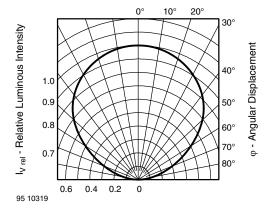


Fig. 2 - Relative Luminous Intensity vs. Angular Displacement

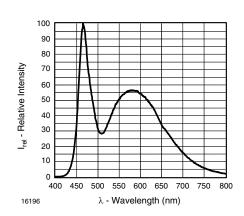


Fig. 3 - Relative Intensity vs. Wavelength

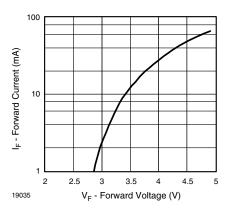


Fig. 4 - Forward Current vs. Forward Voltage

[•] Chromaticity coordinate groups are tested at a current pulse duration of 25 ms and a tolerance of \pm 0.01

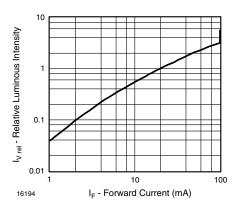


Fig. 5 - Relative Luminous Intensity vs. Forward Current

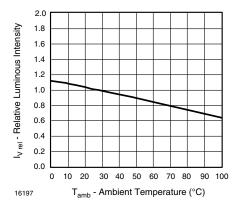


Fig. 6 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 7 - Forward Voltage vs. Ambient Temperature

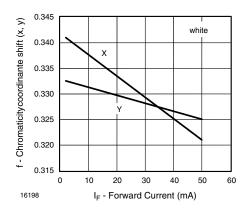


Fig. 8 - Chromaticity Coordinate Shift vs. Forward Current

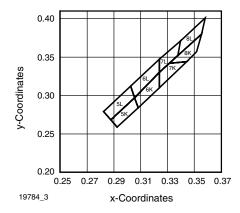
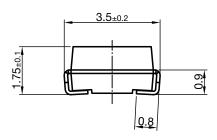
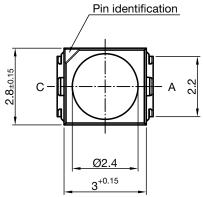
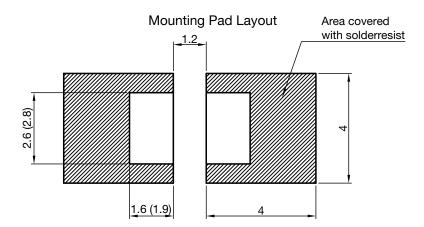




Fig. 9 - Coordinates of Colorgroups

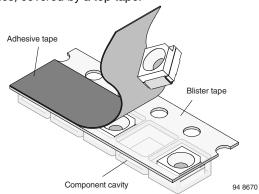
PACKAGE DIMENSIONS in millimeters



Dimensions in mm

Drawing-No.: 6.541-5067.01-4

Issue: 6; 23.09.13


Dimensions: Reflow and vapor phase (wave soldering)

METHOD OF TAPING/POLARITY AND TAPE AND REEL

SMD LED (VLM.3-SERIES)

Vishay's LEDs in SMD packages are available in an antistatic 8 mm blister tape (in accordance with DIN IEC 40 (CO) 564) for automatic component insertion. The blister tape is a plastic strip with impressed component cavities, covered by a top tape.

TAPING OF VLM.3...

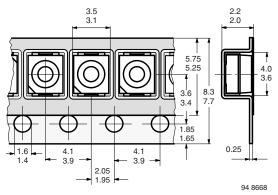


Fig. 10 - Tape Dimensions in mm for PLCC-2

REEL PACKAGE DIMENSION IN MILLIMETERS FOR SMD LEDS, TAPE OPTION GS08 (= 1500 PCS.)

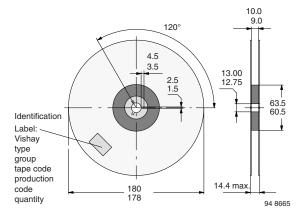


Fig. 11 - Reel Dimensions - GS08

REEL PACKAGE DIMENSION IN MILLIMETERS FOR SMD LEDS, TAPE OPTION GS18 (= 8000 PCS.) PREFERRED

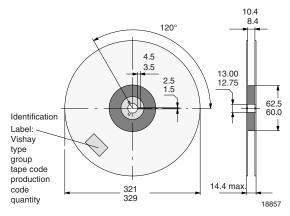


Fig. 12 - Reel Dimensions - GS18

SOLDERING PROFILE

IR Reflow Soldering Profile for Lead (Pb)-free Soldering Preconditioning acc. to JEDEC level 2a

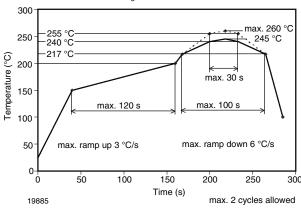


Fig. 13 - Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-020)

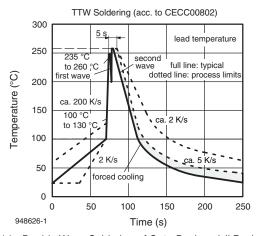
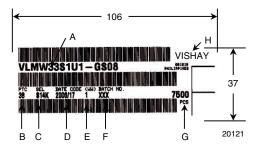
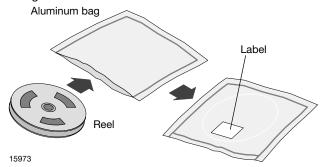



Fig. 14 - Double Wave Soldering of Opto Devices (all Packages)


BAR CODE PRODUCT LABEL (example)

- A) Type of component
- B) Manufacturing plant
- C) SEL selection code (bin):
 - e.g.: S1 = code for luminous intensity group 4K = code for color group
- D) Date code year/week
- E) Day code (e.g. 1: Monday)
- F) Batch no.
- G) Total quantity
- H) Company code

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

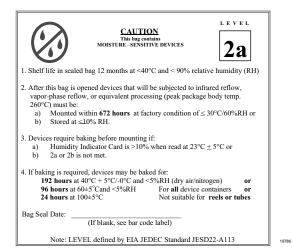
FINAL PACKING

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.


After more than 672 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition: 192 h at 40 $^{\circ}$ C + 5 $^{\circ}$ C / - 0 $^{\circ}$ C and < 5 $^{\circ}$ RH (dry air/nitrogen) or

96 h at 60 °C + 5 °C and < 5 % RH for all device containers or

24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC standard JESD22-A112 level 2a label is included on all dry bags.

Example of JESD22-A112 level 2a label

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electro-static sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9