

Fluke 1760 Three-Phase Power Quality Recorder Topas

Technical Data

Class-A compliance for the most demanding power quality tests

Designed for troubleshooting in utility and industrial power distribution systems in medium- and low-voltage networks, the three-phase Fluke 1760 Power Quality Recorder provides the flexibility to customize thresholds, algorithms, and measurement selections. It has 8 channels (4 currents /4 voltages or 8 voltages) and captures the most comprehensive details on user-selected parameters and allows for later analysis and reporting. There are four models to choose from:

Fluke 1760

	1760 Basic	1760TR Basic	1760	1760TR
Power quality statistics according to EN50160	٠	•	•	•
Voltage event list (dips, swells and interruptions)	•	•	•	•
Continuous recording of:			·	
Voltage	•	•	•	•
Current	•	•	•	•
Power P, Q, S	•	•	•	•
Power factor	•	•	•	•
kWh	•	•	•	•
Flicker	•	•	•	•
Unbalance	•	•	•	•
Frequency	•	•	•	•
Voltage and current harmonics to the 50 th / Interharmonics	•	•	•	•
THD	٠	•	•	•
Mains signaling	•	•	•	•
Triggered recordings	•	•	•	•
Online mode (Oscilloscope, transients and events)	•	•	•	•
Fast transient analysis up to 10 MHz		•		•
4 600V voltage probes			•	•
4 dual-range flexible current probes (1000 A / 200 A ac)			•	•
GPS time sync receiver			•	•
Memory		2 GB Flas	h memory	

Applications

Detailed disturbance analysis -

Perform high-speed transient analysis and uncover root cause of equipment malfunction for later mitigation and predictive maintenance. The fast transient option, with its 6000 V measurement range, allows capture of lightning strikes.

Class-A quality-of-service

compliance – Validate incoming power quality at the service entrance. Thanks to Class A compliance, the Fluke 1760 allows undisputable verification.

Event correlation at multiple

locations – Thanks to GPS time synchronization, users can quickly detect where a fault occurred first, either inside or outside the facility.

Galvanic separation and DC

coupling: Allows complete measurements for example on UPS systems including the battery voltage and power output.

Power quality and power load

studies – Assess baseline power quality to validate compatibility with critical systems before installation and verify electrical system capacity before adding loads.

User-configurable operation

The versatile measurement algorithms and trigger settings allow the expert user to optimize the 1760 for each application to capture exactly the data required. Data can be transferred to a computer directly or via an Ethernet network, and retrieved during logging without interrupting the measurements.

Rugged and reliable

The instrument, accessories, and power supply help you safely conduct tests with 600 V CAT III rating and EN 61010-1 conformance. The Fluke 1760 features a fully insulated housing, which helps protect the user, equipment, and surroundings from electrical shock. With a 2 GB compact flash memory instead of a hard disk, there are no rotating parts inside the instrument, increasing its reliability and durability for everyday use.

Broad measurement range

Developed in cooperation with power utilities providers, the Fluke 1760 provides statistical analysis of power quality according to EN 50160. It automatically captures voltage and current waveform data on all phases simultaneously. A variety of power quality and power parameters are measured, including RMS values, flicker, voltage dips, voltage swells, voltage unbalance, current and voltage harmonics to the 50th, interharmonics, THD, mains signaling, reactive power, transients, and power factor.

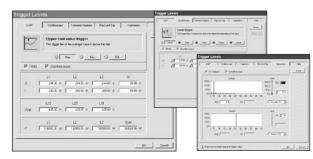
Plug and play

The Fluke 1760 power quality recorder features easy plug and play setup for immediate use. The current and voltage probes are plugged in separately into the instrument, which automatically detects, configures, and provides power to the probes. All accessories are individually calibrated and can be shared with multiple Fluke 1760 recorders.

Fully Class-A Compliant

The Fluke 1760 is fully compliant with the new IEC 61000-4-30 Class-A standard, which defines the measurement methods required for each power parameter in order to obtain reliable, repeatable, and comparable results. With the GPS time synchronization accessory, data recorded with multiple instruments can be correlated with Class-A precision.

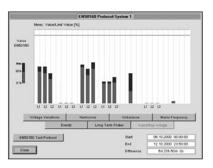
What is Class-A conformity?


Power quality measurement is a relatively new, and quickly evolving field. There are hundreds of manufacturers around the world with unique measurement methodologies. Whereas basic single- and three-phase electrical measurements like rms voltage and current were defined long ago, many power quality parameters were not previously defined, forcing manufacturers to develop their own algorithms. With so much variation between instruments, electricians tend to waste too much time trying to understand an instrument's capabilities and measurement algorithms instead of understanding the quality of the power itself!

The new IEC 61000-4-30 Class-A standard takes the guesswork out of selecting a power quality instrument. The standard IEC 61000-4-30 defines the measurement methods for each parameter to obtain reliable, repeatable and comparable results. In addition, the accuracy, bandwidth and minimum set of parameters are all clearly defined.

PQ Analyze software

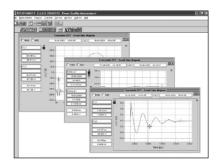
The Fluke 1760 includes comprehensive software for detailed power quality analysis on PCs with Windows[®] based operating systems. In the online function, the software enables remote instrument setup, job processing, real-time verification of actual measurement values, and data download in the online function. Data can be viewed in trend diagrams for root cause analysis or in statistical summaries in a variety of formats. You can also generate professional reports with the Report Writer function.

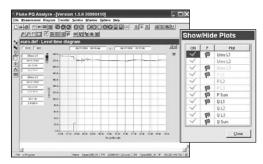

Individual trigger settings to capture events, RMS values, waveforms, and fast transients. The 1760 comes with default settings, so that the user does not need to set triggers in standard applications. Individual settings can be stored for next time.

000	4 b kbi 🔳 💕			
lytes	Start	Difference	End	
0	01.10.2005 17:09:47	1d 0h 5m 54r	00.10.200	05 01:15:40
EN50150				
Day	il —			
Free Interval	1			
10 Min	i —			
Events				
3.	1.	i	1.	
RMS	1			
Oscilloscope	1			
Rip.Cont.Sig.				
Transient	i			

Overview of data for each measurement function. The user can select which data is to be downloaded to the PC.

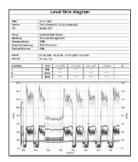
U n:	ce:	L1 100.00 %	L2 100.00 %	L3 [100.00	*						
	and the second se		values (10min):	1008							
U min.	207.00 V Au	alysis period:	t Week = 1000 value	a.							
Ю7 Екри 95%-\	anded Display /alues	Value		Close	tanan tanan 1 mu 1 mu 1 mu 1 mu 1 mu 1 mu 1 mu 1 mu	21 - 22 - 22 - 22 - 22 - 22 - 22 - 22 -					
11	Overvoltage:	231.17	v					1			-
200	Voltage Dips:	210.07	v					10	1		
L2	Overvoltage:	230.83	v			ing.	+	-	Tana M	1 2	*
	Voltage Dipr	219.51	v		w []	(person)					
L3	Overvoltage:	232.11	v								


For root cause analysis, different measurements such as flicker, voltage and THD can be shown in the same time plot, to help you quickly identify the cause of a disturbance.


Quick power quality assessment – Summary overview of seven power quality parameters on one dashboard according to EN 50160.

Voltage Dips Voltage Dips Dens Interruption Voltage Dips Dens Interruption Voltage dip 3-ph Voltage dip 3-ph Voltage dip 3-ph Voltage dip 3-ph Lis Voltage dip 3-ph Lis Voltage dip 3-ph Lis Voltage dip 3-ph Lis Dens Interruption 3-ph	Ξ	vents - Analysis		
Voltage Days Doort.Interruption Doort.Interruption Voltage Stars Voltage Star			AI .	x
Voltage Digs Dhort: Endersuption Voltage Step 3-ph Voltage Step 3-ph Step 4-1 Digital 3-0 THS Lower List 30 Step 4-1 Step 4	~	Voltage Swells	Unflagged only	•
Dhorf Interruption Dolog Interruption Voltage Stats Dolog Interruption Voltage Stats Dolog Interruption 3-ph 16 Dhorf Interruption 3-ph 16 Dhorf Interruption 3-ph 1 Dolog Interruption 3-ph 1 Dolog Interruption Dolog Interruption Dolog Interruption Dolog Interruption Dolog Interruption Dolog Interruption Dolog Dolog Interruption Dolog			Z AI	-
v Long Interruption V Uolange Sevelia 3-ph V Volange Sevelia 3-ph 4 → Bhort interruption 3-ph 4 → Bhort interruption 3-ph 4 → Bhort interruption 3-ph 5 → Bhort List 30 → Bhort Usit 30 → Bhort Suber List 30 → Bhort Suber Scott 5 → Bhort Scott 5				
v Voltage dig 3-ph b Tobat interruption 3-ph b Jajutal 1/0 v Brits Lower List 200 2010 Diget List 2010	1	Long Interruption	Flagged only VS	
Phote interruption 3-ph Song interruption 3-ph Jack 1/0	1	Voltage Swells 3-ph	18	
 ∫ong intervejion 3=ph ↓ Jong intervejion 3=ph ↓ JUSI Lower List ↓ JUSI	1	Voltage dip 3-ph	16	
Digital 1/0 Digital 1/0 PHT Lower List 0 PHT Lower List 0 PHT Lower List 0 PHT Lower List 0 Adge Triggers Deat Value enceding 0 Phan Value enceding 0 Phan Value enceding 0 Phan Value enceding 0 Phan Value enceding 0 Nave Pon deviation 0 Time Trigger 0 The Discourse 0 08:40.23 End 08:05.2008 08:40.23 End 08:05.2008 08:40.23	~	Short interruption 3-ph	4	
y Diff. Lower List 00 PRI: Upper List 00 PRI: Upper List 00 Reg Triggers 0 Sine Wave devision 0 Phase Fin devestion 0 Phase Fin (So 0 Transions events 0 Tase Trigger 0 Tab Trigger 0 Sint 08.05.2000 08:40.23 End 09.05.2000 12:32:13	4	Long interruption 3-ph	1	
v ZRU Depar Lisat 02 ZRU Defat 1000000000000000000000000000000000000		Digital I/0	0	
2010 Distra 00 Adgo Triggers 00 Sine Wave deviation 0 Peak Value exceedings 0 Place Triggers 0 Tabe Trigger 0 Tab 10 Sine Mark doviation 0 Tabe Trigger 0 Tabe 0 Tabe 0 Sinf 08.05.2000 08:40.23 End 09.05.2000 12:30:13	~	RMS Lower Limit		
Nage Triggers 0 Sine Ward deviation 0 Peak Value exceedings 0 Phase Shifts 0 Maye Pora deviation 0 Sipple control signal 0 Transient events 0 THD 3				
Bine Mave averianion 0 Peak Value seccedings 0 Phase Shifts 0 Mave Port deviation 0 Ripple control signal 0 Transiend revents 0 THD 3 Start 08.05.2000 08:40.23 End 09.05.2000 12:02:13	~	RMS Delta	30	
Peak Value exceedings 0 Phase Shifts 0 Mave Pora deviation 0 Sipple control signal 0 Transient events 0 Time Trigger 0 Staft 08.05.000 08:00.23 End 09.05.000 12:03		Edge Triggers	0	
Phase Shifts 0 Wave Port deviation 0 Ripple control signal 0 Transiand revents 0 Title Trigger 0 Title Control signal 0 Start 08.05.2000 08:40.23 End 09.05.2000 12:021			0	
Marce Form deviation 0 Sipple control signal 0 Transione events 0 Table Trigger 0 TRD 3 End 09.05.2006 08:00.23 End 09.05.2006 12:02:13			0	
Bipple control signal 0 Transiton events 0 Tibe Trigger 0 Stat 08.05.000 08:02:23 End 09.05.000 12:02:13		Phase Shifts	0	
Transience avents 0 Transience avents 0 Time 0 Time 0 Start 08.05.2000 08:40.23 End 09.05.2000 12:32:13		Wave Form deviation	0	
Tibe Trigger 0 TID 3 1 Start 08.05.2008 08/9223 End 09.05.2008 12/22/13				
Start 08.06.2006.08-10.22 End 09.05.2008.12:32:10				
Start 08.05.2006 08:40:23 End 08.05.2006 12:32:13				
End 09.05.2006 12:32:13	~	THD	0	•
End 09.05.2006 12:32:13				
		8	Start 08.05.2006 08:49:23	
Difference 1d 3h 42m 60s		1	Ind 09.05.2008 12:32:13	1
		Dł	ifference 1d 3h 42m 60s	

The Event List summarizes how often an event occurred during the selected time period.


By double-clicking on an event, the software displays any trends related to this event.

The 1760 provides flagging of data according to IEC 61000-4-30 Class-A. The flagging feature alerts the user that either a dip, swell or interruption occurred during a specific time interval. Values out of nominal ranges are marked by either a colored background or with a flag symbol.

Using an Ethernet connection, the power can be monitored in realtime to view phasor diagrams, trends, waveforms, meter screens and more.

The report-generator function allows the user to create custom professional reports quickly and easily.

Overview of measuremen	t functions
Statistical Evaluation	Power quality statistics according to EN 50160 and DISDIP tables like ITIC, CEBEMA, ANSI
Event List	Dips, swells and interruptions are detected and stored in the event list. Also any trigger which fires generates an event added to this list. The Event list shows the exact time when the event occurred as well as the duration and magnitude. Sorting by several attributes of these events is possible to select one for further root cause analysis. RMS values, transients and fast transients can be stored if a trigger fires.
Continuous Recording	 Fluke 1760 records RMS values together with corresponding minimum and maximum values for: Voltage Current Power P, Q, S Power Factor kWh Flicker Unbalance Frequency Harmonics/Interharmonics
	continuously with the following time aggregations: Day 10min Free Interval, e.g.: 15 min, 2h
Triggered Recordings	RMS: Aggregation time is adjustable between 10 ms (1/2 cycle), 20ms (1 cycle), 200ms (10/12 cycles) or 3 sec (150/180 cycles). Calculating RMS values, Harmonics and Interharmonics is performed synchronous to the power frequency. Basic aggregation for harmonics and interharmonics is 200ms Oscilloscope: Sample rate is 10,24 kHz for all 8 channels Fast Transients: Sample rate is selectable from 100 kHz to 10 MHz for channel 1-4 FFT of Fast Transients
Mains Signalling	Phases and N-conductor, Voltage and current
Online Mode	Variable refresh rate. This feature allows verification of instrument set up and delivers a quick overview of oscilloscope, transients and events.

General specifications	
Intrinsic uncertainty	refers to reference conditions and is guaranteed for two years
Quality system	developed, manufactured as per ISO 9001: 2000
Environment conditions Operating temp. range Working temp. range Storage temp. range Reference temperature Climatic class Max. operating altitude	0 °C +50 °C; 32 °F +122°F -20 °C +50 °C; -4°F +122°F -20 °C +60 °C; -4°F 140°F 23 °C ± 2 K; 74°F ± 2 K B2 (IEC 654-1), -20 °C +50 °C; -4°F +122° 2000 m: max. 600 V CAT IV'), power supply: 300 V CAT III 5000 m: max 600 V CAT III 5000 m: max 600 V CAT III) depending on sensor
Reference conditions	Environment temp.: 23 °C \pm 2 K ; 74°F \pm 2 K Power supply: 230 V \pm 10 %, Power frequency: 50 Hz / 60 Hz Signal: declared input voltage U_{din} Averaging: 10 minute intervals
Housing	insulated, robust plastics housing
EMC Emission Immunity	Class-A as per IEC/EN 61326-1 IEC/EN 61326-1
Power supply Range Safety Power consumption Battery pack	AC: 83 V 264 V, 4565 Hz DC: 100 V 375 V IEC/EN 61010-1 2 nd edition 300 V CAT III max. 54VA NIMH, 7.2 V, 2.7 Ah In case of a power supply failure an internal battery maintains the supply for up to 40 minutes. Afterwards, or in case of discharged accumulators the Fluke 1760 is turned off and continues the measurements with the latest settings as soon as the supply voltage returns. The battery can be replaced by the user.
Display Power LED Channel LEDs	 Fluke 1760 features LED indicators for the status of the 8 channels, phase sequence, power supply (mains or accumulator), memory usage, time synchronization, and data transfer. Permanent light: normal power supply from mains. OFF: supply via internal accumulator in case of a power failure. 3-color LEDs per channel for: overload condition under load condition signal level in nominal rang
Data memory	2 GB Flash memory depending on model
Memory model	Linea
Interfaces	Ethernet (100MB/s), compatible to Windows [®] 98/ME/NT/2000/XP RS 232, external modem via RS 232
Baud rate for RS 232	9600 Baud 115 kBaud
Dimensions (H x W x D)	325 mm x 300 m x 65 mm; 2.8 x 11.8 x 2.6 in.
Weight (without accessories)	appr. 4.9 kg; 10.8 lbs.
Warranty	2 year
Calibration interval	1 year recommended for Class-A, otherwise 2 years

Signal conditioning	
Range for 50 Hz systems	50 Hz ± 15 % (42.5 Hz 57.5 Hz)
Range for 60 Hz systems	60 Hz ± 15 % (51 Hz 69 Hz)
Resolution	16 ppm
Sampling frequency for 50 Hz power frequency	10.24 kHz, The sampling rate is synchronized to mains frequency.
Uncertainty for frequency measurements	< 20 ppm
Uncertainty of internal clock	< 1s / day
Measurement intervals Min-, Max-values Transients	Aggregation of the interval values as per IEC 61000-4-30 Class-A Half cycle, e.g.: 10 ms RMS values at 50Hz Sample rate 100 kHz10 MHz per channel
Harmonics	as per IEC 61000-4-7:2002: 200 ms
Flicker	as per EN 61000-4-15:2003: 10 min (Pst), 2 h (Plt)

Measurement inputs	
Number of inputs	8 galvanically isolated inputs for voltage and current measurements.
Sensor safety	up to 600 V CAT IV depending on sensor
Basic safety	300 V CAT III
Nominal voltage (rms)	100 mV
Range (peak value)	280 mV
Overload capacity (rms)	1000 V, continuously
Voltage rise rate	max. 15 kV / μs
Input resistance	1 MΩ
Input capacitance	5 pF
Input filter	Each channel is equipped with a passive low-pass filter, an anti-aliasing filter and a 16-bit A/D converter. All channels are sampled synchronously with a common quartz-controlled clock pulse. The filters protect against voltage transients and limit the signal rise rate, reduce high frequency components and especially the noise voltage above half the sampling rate of the A/D converter by 80 dB, thus achieving very small measuring errors in an exceptionally large amplitude range. This is also valid under extreme operating conditions like transient voltages at the output of converters.

Uncertainties						
Uncertainty at reference conditions With Sensor 1000 V With Sensor 600 V	Uncertainty including the voltage sensors is in compliance with IEC 61000-4-30 Class-A. All voltage sensors are suitable for DC5 kHz 0,1% at Udin = 480 V and 600 V P-N 0,1% at Udin = 230 V P-N					
Intrinsic uncertainty for harmonics	Class I as per EN 61000-4-7:2002					
Reference conditions	23 °C \pm 2 K < 60 % rH; 74 °F \pm 2 K < 60 % rH Warmed up instrument > 3h Power supply: 100 V 250 V ac					
Temperature drift:	100 ppm / K					
Aging:	< 0.05 % / year					
Common mode rejection	> 100 dB at 50 Hz					
Temperature drift	Change of amplification through temperature: $< 0.005 $ %/K.					
Aging	Change of amplification due to ageing: < 0.04 %/year					
Noise	Noise voltage, input short-circuited: $<$ 40 μ V.					
DC	± (0.2% rdg + 0.1% sensor)					

Optional probe accessories

Voltage probes

Model no.	Туре	Range rms	Vnom	Vmax. Contin.	Fast Transient Range V _{p<1ms}	Intrinsic error	Operating voltage
TPS VOLTPROBE 10 V	VOLTAGE PROBE 10 V	0.1 V to 17 V	10 V	100 V	-	0.15%	150 V CAT I V
TPS VOLTPROBE 100 V	VOLTAGE PROBES 100 V	1 V to 170 V	100 V	1000 V	6000	0.15%	600 V CAT IV
TPS VOLTPROBE 400 V	VOLTAGE PROBES 400 V	4 V to 680 V	400 V	1000 V	6000	0.15%	600 V CAT IV
TPS VOLTPROBE 750 V	VOLTAGE PROBE 400 V/750 V PEAK	4 V to 680 V	400 V	1000 V	5 to 750 detects voltage harmonics > 50st with fast transient	0.2%	600 V CAT IV
TPS VOLTPROBE 600 V	VOLTAGE PROBE 600 V	10 V to 1000 V	600 V	1000 V	6000	>0.1%	600 V CAT IV
TPS VOLTPROBE 1 KV	VOLTAGE PROBE 1000 V	10 V to 1700 V	1000 V	2000 V	6000	> 0.1%	600 V CAT IV

Current probes and Shunts for AC and DC currents

Model No.	Туре	Measuring Range selectable per software	Peak current for sinusoidal currents	Intrinsic error	Frequency Range	Operating voltage	Phase error	Jaw opening
TPS FLEX 18	Flexible Current Probe	1 Å to 100 Å 5 Å to 500 Å	240 A 1350 A	1 %	45 Hz to 3.0 kHz	300 V CAT IV	0.5 °	45 cm length 2 M cable
TPS FLEX 24	Flexible Current Probe	2 A to 200 A 10 A to 1000 A	480 A 2700 A	1 %	45 Hz to 3.0 kHz	600 V CAT I V	0.5 °	61 cm length 2 M cable
TPS FLEX 36	Flexible Current Probe	30 A to 3000 A 60 A to 6000 A	10 kA 19 kA	1 %	45 Hz to 3.0 kHz	300 V CAT I V	0.5 °	91 cm length 4 M cable
TPS CLAMP 10 A / 1 A	CLIP-ON CURRENT TRANS- FORMER	0.01 A to 1 A 0.1 A to 10 A	3.7 A 37 A	0.5 %	40 Hz to 10 kHz	300 V CAT I V	0.5 °	< 15 mm diameter or 15 X 17 mm bush bars
TPS CLAMP 50 A / 5 A	CLIP-ON CURRENT TRANS- FORMER	0.05 A to 5 A 0.5 A to 50 A	18 A 180 A	0.5 %	40 Hz to 10 kHz	300 V CAT I V	0.5 °	< 15 mm diameter or 15 X 17 mm bush bars
TPS CLAMP 200 A / 20 A	CLIP-ON CURRENT TRANS- FORMER	0.2 A to 20 A 2 A to 200 A	74 A 300 A	0.5 %	40 Hz to 10 kHz	300 V CAT I V	0.5 °	< 15 mm diameter or 15 X 17 mm bush bars
TPS SHUNT 20MA	SHUNT 20 mA ac/dc	0 to 55 mA	77.8 mA I _{max} =1.5A	0.2 %	DC to 3.0 kHz	300 V CAT II	0.1 °	-
TPS SHUNT 5A	SHUNT 5A ac/dc	0 to 10 A	21.9 A I _{max} =10 A	0.2 %	DC to 3.0 kHz	300 V CAT II	0.1 °	-

Errors in % of measuring range at 23 °C ± 2 K; 74 °F ± 2 K, for 48 to 65 Hz Phase angle error at nominal current I_{max} maximum current without time limit (for ac and dc shunts)

Ordering Information

Fluke 1760 Basic Power Quality Recorder Topas Fluke 1760TR Basic Power Quality Recorder Topas Fluke 1760 Power Quality Recorder Topas Fluke 1760TR Power Quality Recorder Topas

Includes:

- 2 GB internal Flash-memory
- PC software on CD-ROM
- 1 Ethernet cable for network connection
- 1 crosslink Ethernet cable for direct PC connection
- 1 mains cable
- · Hardware and software manual
- 1 carrying bag

Recommended probe accessories

- TPS VOLTPROBE 10 V
- TPS VOLTPROBE 100 V
- TPS VOLTPROBE 400 V
- TPS VOLTPROBE 750 V
- TPS VOLTPROBE 600 V
- TPS VOLTPROBE 1 KV
- TPS FLEX 18
- TPS FLEX 24
- TPS FLEX 36
- TPS CLAMP 10 A / 1 A
- TPS CLAMP 50 A / 5A
- TPS CLAMP 200 A / 20 A
- TPS SHUNT 20 MA
- TPS SHUNT 5 A

10 V Voltage Probe (Range: 0.1 V to 17 V) 100 V Voltage Probe (Range: 1 V to 170 V) 400 V Voltage Probes (Range: 4 V to 680 V) 400 V / 750 V Peak Voltage Probe (Range: 4 V to 680 V) 600 V Voltage Probes (Range: 10 V to 1000 V) 1000 V Voltage Probe (Range: 10 V to 1700 V) Flexible Current Probe (Range: 1 A to 100 A / 5 A to 500 A) Flexible Current Probe (Range: 2 A to 200 A / 10 A to 1000 A) Flexible Current Probe (Range: 30 A to 3000 A / 60 A to 6000 A) Clip-on Current Transformer (Range: 0.01 A to 1 A / 0.1 A to 10 A) Clip-on Current Transformer (Range: 0.05 A to 5 A / 0.5 A to 50 A) Clip-on Current Transformer (Range: 0.2 A to 20 A / 2 A to 200 A) 20 mA ac/dc Shunt (Range: 0 to 55 mA) 5 A ac/dc Shunt (Range: 0 to 10 A)

FLUKE

Fluke. Keeping your world up and running.™

Fluke Corporation P.O. Box 9090 Everett, WA USA 98206

Fluke Europe B.V. P.O. Box 1186 5602 BD Eindhoven The Netherlands

For more information call: In the U.S.A. (800) 443-5853 or Fax (425) 446 -5116 In Europe/M-East/Africa +31 (0)40 2 675 200 or Fax +31 (0)40 2 675 222 In Canada (905) 890-7600 or Fax (905) 890-6866 From other countries +1 (425) 446 -5500 or Fax +1 (425) 446 -5116

Visit us on the worldwide web at:

www.fluke.com

Fluke (UK) Ltd. 52 Hurricane Way Norwich Norfolk NR6 6JB United Kingdom Tel.: (020) 7942 0700 Fax: (020) 7942 0701 E-mail: industrial@uk.fluke.nl

Visit us on the worldwide web at: **www.fluke.co.uk**

© Copyright 2006, Fluke Corporation. All rights reserved. Printed in the Netherlands 06/06 Data subject to alteration without notice.

Pub_ID: 11138-eng

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9