CXDM6053N

SURFACE MOUNT N-CHANNEL ENHANCEMENT-MODE SILICON MOSFET

SOT-89 CASE

APPLICATIONS:

- Load/Power switches
- Power supply converter circuits
- Battery powered portable equipment

Central Semiconductor Corp.

www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CXDM6053N is a high current N-channel enhancement-mode silicon MOSFET, designed for high speed pulsed amplifier and driver applications. This MOSFET offers high current, low rDS(ON), low threshold voltage, and low leakage current.

MARKING: FULL PART NUMBER

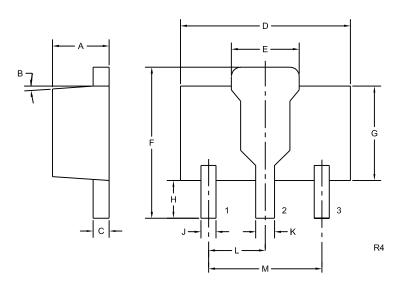
FEATURES:

- Low $r_{DS(ON)}$ (52m Ω MAX @ V_{GS} =4.5V)
- High current (I_D=5.3A)
- Logic level compatibility

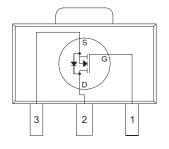
MAXIMUM RATINGS: (T _A =25°C)	SYMBOL		UNITS
Drain-Source Voltage	V_{DS}	60	V
Gate-Source Voltage	V_{GS}	20	V
Continuous Drain Current (Steady State)	I_{D}	5.3	Α
Maximum Pulsed Drain Current, tp=10µs	I_{DM}	30	Α
Power Dissipation	P_{D}	1.2	W
Operating and Storage Junction Temperature	T _J , T _{stg}	-55 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	104	°C/W

ELECTRICAL CHARACTERISTICS: (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{GSSF} , I _{GSSR}	V_{GS} =20V, V_{DS} =0			100	nA
IDSS	V_{DS} =60V, V_{GS} =0			1.0	μΑ
BV _{DSS}	$V_{GS}=0, I_{D}=250\mu A$	60			V
V _{GS(th)}	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	1.0	1.3	3.0	V
V _{SD}	$V_{GS}=0, I_{S}=2.0A$			1.2	V
r _{DS(ON)}	V_{GS} =10V, I_D =5.3A		30	41	$m\Omega$
r _{DS(ON)}	V_{GS} =4.5V, I_{D} =4.7A		33	52	$m\Omega$
Q _{g(tot)}	V_{DS} =30V, V_{GS} =5.0V, I_{D} =5.3	3A	8.8		nC
Q _{gs}	V_{DS} =30V, V_{GS} =5.0V, I_{D} =5.3A		1.9		nC
Q _{gd}	V_{DS} =30V, V_{GS} =5.0V, I_{D} =5.3	3A	3.6		nC
C _{rss}	V_{DS} =30V, V_{GS} =0, f=1.0MHz	<u> </u>	53		pF
C _{iss}	V_{DS} =30V, V_{GS} =0, f=1.0MHz	<u> </u>	920		pF
C _{oss}	V_{DS} =30V, V_{GS} =0, f=1.0MHz	<u> </u>	49		pF
t _{on}	V_{DD} =30V, V_{GS} =4.5V, I_{D} =4.4	4A			
	R_G =1.0 Ω , R_L =6.8 Ω		33		ns
t _{off}	V_{DD} =30V, V_{GS} =4.5V, I_{D} =4.4	4A			
	R_G =1.0 Ω , R_L =6.8 Ω		42		ns


R1 (9-August 2012)

CXDM6053N


SURFACE MOUNT N-CHANNEL ENHANCEMENT-MODE SILICON MOSFET

SOT-89 CASE - MECHANICAL OUTLINE

PIN CONFIGURATION

(Top View)
Tab is common to pin 2

DIMENSIONS							
	INCHES		MILLIMETERS				
SYMBOL	MIN	MAX	MIN	MAX			
Α	0.055	0.067	1.40	1.70			
В	4°		4°				
С	0.014	0.018	0.35	0.46			
D	0.173	0.185	4.40	4.70			
Е	0.064	0.074	1.62	1.87			
F	0.146	0.177	3.70	4.50			
G	0.090	0.106	2.29	2.70			
Н	0.028	0.051	0.70	1.30			
J	0.014	0.019	0.36	0.48			
K	0.017	0.023	0.44	0.58			
Ĺ	0.059		1.50				
М	0.118		3.00				

SOT-89 (REV: R4)

LEAD CODE:

- 1) Gate
- 2) Drain
- 3) Source

MARKING: FULL PART NUMBER

R1 (9-August 2012)

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9