ecoSWITCH™ Advanced Load Management

Controlled Load Switch with Low Ron

The NCP45541 load switch provides a component and areareducing solution for efficient power domain switching with inrush current limit via soft-start. In addition to integrated control functionality with ultra low on-resistance, this device offers system monitoring via power good signaling. This cost effective solution is ideal for power management and hot-swap applications requiring low power consumption in a small footprint.

Features

- Advanced Controller with Charge Pump
- Integrated N-Channel MOSFET with Low RON
- Input Voltage Range 0.5 V to 13.5 V
- Soft-Start via Controlled Slew Rate
- Adjustable Slew Rate Control
- Power Good Signal
- Extremely Low Standby Current
- Load Bleed (Quick Discharge)
- This is a Pb–Free Device

Typical Applications

- Portable Electronics and Systems
- Notebook and Tablet Computers
- Telecom, Networking, Medical, and Industrial Equipment
- Set-Top Boxes, Servers, and Gateways
- Hot-Swap Devices and Peripheral Ports

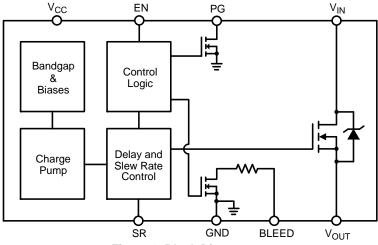


Figure 1. Block Diagram

ON Semiconductor®

www.onsemi.com

R _{ON} TYP	V _{CC}	V _{IN}	I _{MAX}
$3.3~\text{m}\Omega$	3.3 V	1.8 V	
$3.6~\text{m}\Omega$	3.3 V	5.0 V	20 A
$4.8~\text{m}\Omega$	3.3 V	12 V	

DFN12, 3x3 CASE 506CD

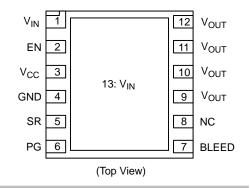
MARKING DIAGRAM

x = H for NCP45541-H

= L for NCP45541-L

A = Assembly Location

L = Wafer Lot


Y = Year

W = Work Week

■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet

Table 1. PIN DESCRIPTION

Pin	Name	Function
1, 13	V _{IN}	Drain of MOSFET (0.5 V – 13.5 V), Pin 1 must be connected to Pin 13
2	EN	NCP45541-H - Active-high digital input used to turn on the MOSFET, pin has an internal pull down resistor to GND
		NCP45541-L - Active-low digital input used to turn on the MOSFET, pin has an internal pull up resistor to V _{CC}
3	V _{CC}	Supply voltage to controller (3.0 V – 5.5 V)
4	GND	Controller ground
5	SR	Slew rate adjustment; float if not used
6	PG	Active-high, open-drain output that indicates when the gate of the MOSFET is fully driven, external pull up resistor \geq 1 k Ω to an external voltage source required; tie to GND if not used.
7	BLEED	Load bleed connection, must be tied to V_{OUT} either directly or through a resistor $\leq 100~M\Omega$
8	NC	No connect, internally floating but pin may be tied to V _{OUT}
9–12	V _{OUT}	Source of MOSFET connected to load

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage Range	V _{CC}	-0.3 to 6	V
Input Voltage Range	V _{IN}	-0.3 to 18	V
Output Voltage Range	V _{OUT}	-0.3 to 18	V
EN Digital Input Range	V _{EN}	-0.3 to (V _{CC} + 0.3)	V
PG Output Voltage Range (Note 1)	V _{PG}	-0.3 to 6	V
Thermal Resistance, Junction-to-Ambient, Steady State (Note 2)	$R_{\theta JA}$	30.9	°C/W
Thermal Resistance, Junction-to-Ambient, Steady State (Note 3)	$R_{\theta JA}$	51.3	°C/W
Thermal Resistance, Junction-to-Case (V _{IN} Paddle)	$R_{ heta JC}$	3.5	°C/W
Continuous MOSFET Current @ T _A = 25°C (Note 2)	I _{MAX}	20	А
Continuous MOSFET Current @ T _A = 25°C (Note 3)	I _{MAX}	15.5	А
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 2) Derate above $T_A = 25^{\circ}C$	P _D	3.24 32.4	W mW/°C
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 3) Derate above $T_A = 25^{\circ}C$	P _D	1.95 19.5	W mW/°C
Storage Temperature Range	T _{STG}	-40 to 150	°C
Lead Temperature, Soldering (10 sec.)	T _{SLD}	260	°C
ESD Capability, Human Body Model (Notes 4 and 5)	ESD _{HBM}	3.0	kV
ESD Capability, Charged Device Model (Note 4)	ESD _{CDM}	1.0	kV
Latch-up Current Immunity (Notes 4 and 5)	LU	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. PG is an open–drain output that requires an external pull up resistor $\geq 1 \text{ k}\Omega$ to an external voltage source.
- Surface—mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface—mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.
- Tested by the following methods @ T_A = 25°C:
 ESD Human Body Model tested per JESD22–A114
 ESD Charged Device Model per ESD STM5.3.1

 - Latch-up Current tested per JESD78
- 5. Rating is for all pins except for VIN and VOUT which are tied to the internal MOSFET's Drain and Source. Typical MOSFET ESD performance for V_{IN} and V_{OUT} should be expected and these devices should be treated as ESD sensitive.

Table 3. OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	3	5.5	V
Input Voltage	V _{IN}	0.5	13.5	V
Ground	GND		0	V
Ambient Temperature	T _A	-40	85	°C
Junction Temperature	TJ	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Conditions (Note 6)	Symbol	Min	Тур	Max	Unit
MOSFET	•				•	
On-Resistance	$V_{CC} = 3.3 \text{ V}; V_{IN} = 1.8 \text{ V}$	R _{ON}		3.3	4.5	mΩ
	V _{CC} = 3.3 V; V _{IN} = 5 V			3.6	4.9	
	V _{CC} = 3.3 V; V _{IN} = 12 V			4.8	7.7	
Leakage Current (Note 7)	V _{EN} = 0 V; V _{IN} = 13.5 V	I _{LEAK}		0.1	1.0	μΑ
CONTROLLER	•				•	
Supply Standby Current (Note 8)	V _{EN} = 0 V; V _{CC} = 3 V	I _{STBY}		0.65	2.0	μΑ
	V _{EN} = 0 V; V _{CC} = 5.5 V			3.2	4.5	
Supply Dynamic Current (Note 9)	V _{EN} = V _{CC} = 3 V; V _{IN} = 12 V	I _{DYN}		180	300	μΑ
	V _{EN} = V _{CC} = 5.5 V; V _{IN} = 1.8 V			475	680	1
Bleed Resistance	V _{EN} = 0 V; V _{CC} = 3 V	R _{BLEED}	86	115	144	Ω
	V _{EN} = 0 V; V _{CC} = 5.5 V		72	97	121	
EN Input High Voltage	V _{CC} = 3 V - 5.5 V	V_{IH}	2.0			V
EN Input Low Voltage	V _{CC} = 3 V - 5.5 V	V _{IL}			0.8	V
EN Input Leakage Current	NCP45541-H; V _{EN} = 0 V	I _{IL}		90	500	nA
	NCP45541-L; V _{EN} = V _{CC}	I _{IH}		90	500	1
EN Pull Down Resistance	NCP45541-H	R _{PD}	76	100	124	kΩ
EN Pull Up Resistance	NCP45541-L	R _{PU}	76	100	124	kΩ
PG Output Low Voltage (Note 10)	V _{CC} = 3 V; I _{SINK} = 5 mA	V _{OL}			0.2	V
PG Output Leakage Current (Note 11)	V _{CC} = 3 V; V _{TERM} = 3.3 V	I _{OH}		5.0	100	nA
Slew Rate Control Constant (Note 12)	V _{CC} = 3 V	K _{SR}	26	33	40	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions.

6. V_{EN} shown only for NCP45541–H, (EN Active–High) unless otherwise specified.

7. Average current from V_{IN} to V_{OUT} with MOSFET turned off.

8. Average current from V_{CC} to GND with MOSFET turned off.

9. Average current from V_{CC} to GND after charge up time of MOSFET.

- 10. PG is an open-drain output that is pulled low when the MOSFET is disabled.
- 11. PG is an open-drain output that is not driven when the gate of the MOSFET is fully charged, requires an external pull up resistor $\geq 1~\mathrm{k}\Omega$ to an external voltage source, V_{TERM}.
- 12. See Applications Information section for details on how to adjust the slew rate.

Table 5. SWITCHING CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (Notes 13 and 14)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Output Slew Rate	V _{CC} = 3.3 V; V _{IN} = 1.8 V	SR		11.8		kV/s
	V _{CC} = 5.0 V; V _{IN} = 1.8 V			12.0		
	V _{CC} = 3.3 V; V _{IN} = 12 V			13.3		
	V _{CC} = 5.0 V; V _{IN} = 12 V			13.5		1
Output Turn-on Delay	V _{CC} = 3.3 V; V _{IN} = 1.8 V	T _{ON}		200		μs
	V _{CC} = 5.0 V; V _{IN} = 1.8 V			170		
	V _{CC} = 3.3 V; V _{IN} = 12 V			260		
	V _{CC} = 5.0 V; V _{IN} = 12 V			250		1
Output Turn-off Delay	V _{CC} = 3.3 V; V _{IN} = 1.8 V	T _{OFF}		2.0		μs
	V _{CC} = 5.0 V; V _{IN} = 1.8 V			1.6		
	V _{CC} = 3.3 V; V _{IN} = 12 V			0.7		
	V _{CC} = 5.0 V; V _{IN} = 12 V			0.4		
Power Good Turn-on Time	V _{CC} = 3.3 V; V _{IN} = 1.8 V	$T_{PG,ON}$		1.02		ms
	V _{CC} = 5.0 V; V _{IN} = 1.8 V			0.95		
	V _{CC} = 3.3 V; V _{IN} = 12 V			1.52		
	V _{CC} = 5.0 V; V _{IN} = 12 V			1.23		
Power Good Turn-off Time	V _{CC} = 3.3 V; V _{IN} = 1.8 V	$T_{PG,OFF}$	T _{PG,OFF}	20		ns
	V _{CC} = 5.0 V; V _{IN} = 1.8 V			14		
	$V_{CC} = 3.3 \text{ V}; V_{IN} = 12 \text{ V}$			20		1
	V _{CC} = 5.0 V; V _{IN} = 12 V			14		1

^{13.} See below figure for Test Circuit and Timing Diagram. 14. Tested with the following conditions: $V_{TERM} = V_{CC}$; $R_{PG} = 100 \text{ k}\Omega$; $R_{L} = 10 \Omega$; $C_{L} = 0.1 \mu\text{F}$.

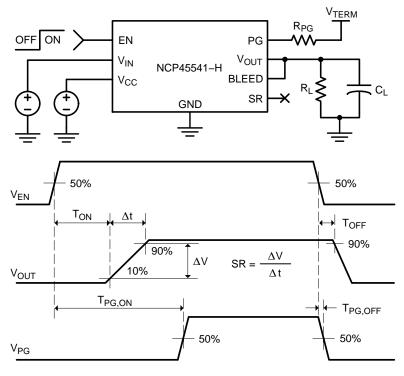


Figure 2. Switching Characteristics Test Circuit and Timing Diagrams

TYPICAL CHARACTERISTICS

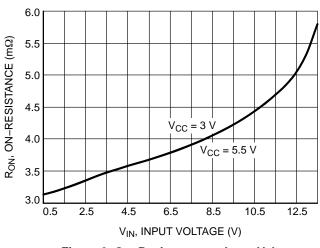


Figure 3. On-Resistance vs. Input Voltage

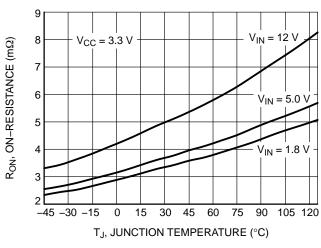


Figure 4. On-Resistance vs. Temperature

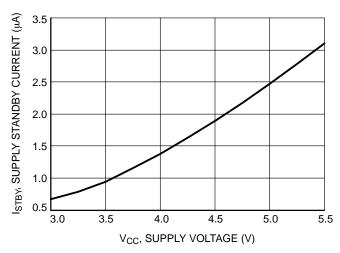


Figure 5. Supply Standby Current vs. Supply Voltage

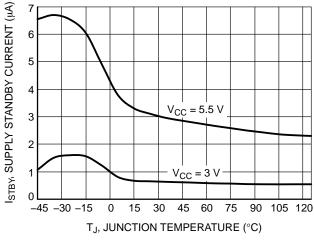


Figure 6. Supply Standby Current vs. Temperature

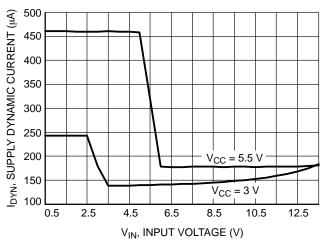


Figure 7. Supply Dynamic Current vs. Input Voltage

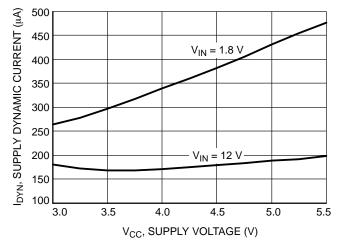
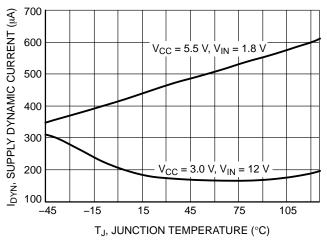
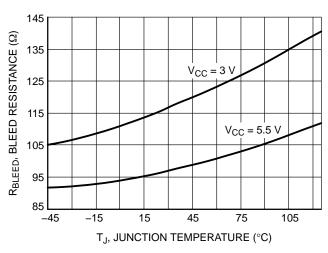



Figure 8. Supply Dynamic Current vs. Supply Voltage


TYPICAL CHARACTERISTICS

115 (G) HOLL SIGNATURE (N) 110 105 106 107 108 109 3.0 3.5 4.0 4.5 5.0 5.5 V_{CC}, SUPPLY VOLTAGE (V)

Figure 9. Supply Dynamic Current vs. Temperature

Figure 10. Bleed Resistance vs. Supply Voltage

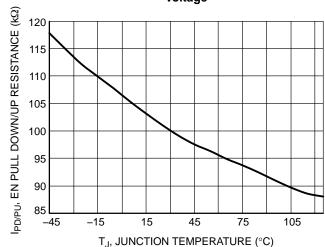
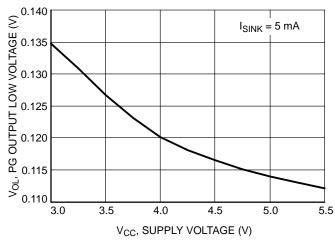



Figure 11. Bleed Resistance vs. Temperature

Figure 12. EN Pull Down/Up Resistance vs.
Temperature

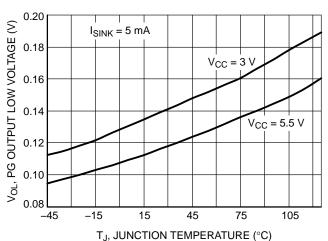


Figure 13. PG Output Low Voltage vs. Supply Voltage

Figure 14. PG Output Low Voltage vs. Temperature

TYPICAL CHARACTERISTICS

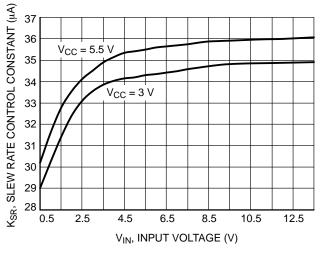


Figure 15. Slew Rate Control Constant vs. Input Voltage

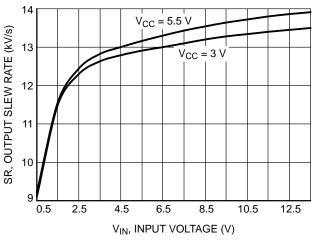


Figure 17. Output Slew Rate vs. Input Voltage

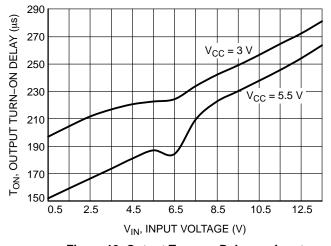


Figure 19. Output Turn-on Delay vs. Input Voltage

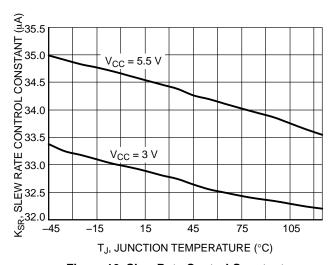


Figure 16. Slew Rate Control Constant vs.
Temperature

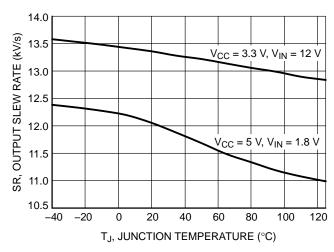


Figure 18. Output Slew Rate vs. Temperature

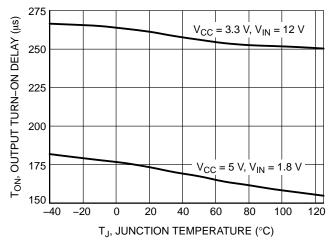
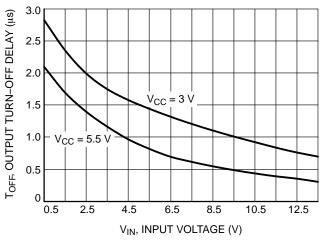
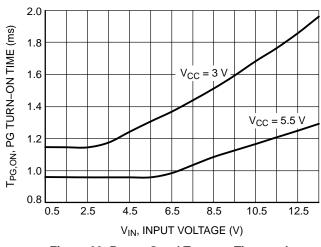



Figure 20. Output Turn-on Delay vs.
Temperature


TYPICAL CHARACTERISTICS

2.00 T_{OFF}, OUTPUT TURN-OFF DELAY (μs) 1.75 $V_{CC} = 5 \text{ V}, V_{IN} = 1.8 \text{ V}$ 1.50 1.25 1.00 $V_{CC} = 3.3 \text{ V}, V_{IN} = 12 \text{ V}$ 0.75 0.50 -20 20 40 60 80 100 120 -40 T_J, JUNCTION TEMPERATURE (°C)

Figure 21. Output Turn-off Delay vs. Input Voltage

Figure 22. Output Turn-off Delay vs. Temperature

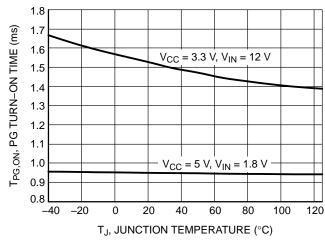
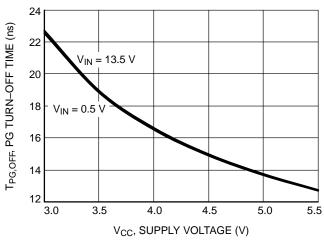



Figure 23. Power Good Turn-on Time vs. Input Voltage

Figure 24. Power Good Turn-on Time vs.
Temperature

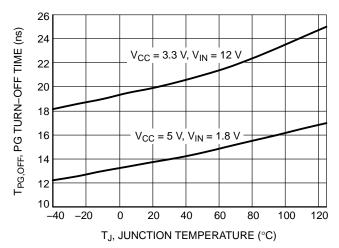


Figure 25. Power Good Turn-off Time vs. Supply Voltage

Figure 26. Power Good Turn-off Time vs.
Temperature

APPLICATIONS INFORMATION

Enable Control

The NCP45541 has two part numbers, NCP45541–H and NCP45541–L, that only differ in the polarity of the enable control.

The NCP45541–H device allows for enabling the MOSFET in an active–high configuration. When the $V_{\rm CC}$ supply pin has an adequate voltage applied and the EN pin is at a logic high level, the MOSFET will be enabled. Similarly, when the EN pin is at a logic low level, the MOSFET will be disabled. An internal pull down resistor to ground on the EN pin ensures that the MOSFET will be disabled when not being driven.

The NCP45541–L device allows for enabling the MOSFET in an active–low configuration. When the V_{CC} supply pin has an adequate voltage applied and the EN pin is at a logic low level, the MOSFET will be enabled. Similarly, when the EN pin is at a logic high level, the MOSFET will be disabled. An internal pull up resistor to V_{CC} on the EN pin ensures that the MOSFET will be disabled when not being driven.

Power Sequencing

The NCP45541 devices will function with any power sequence, but the output turn—on delay performance may vary from what is specified. To achieve the specified performance, there are two recommended power sequences:

1.
$$V_{CC} \rightarrow V_{IN} \rightarrow V_{EN}$$

2.
$$V_{IN} \rightarrow V_{CC} \rightarrow V_{EN}$$

Load Bleed (Quick Discharge)

The NCP45541 devices have an internal bleed resistor, R_{BLEED}, which is used to bleed the charge off of the load to ground after the MOSFET has been disabled. In series with the bleed resistor is a bleed switch that is enabled whenever the MOSFET is disabled. The MOSFET and the bleed switch are never concurrently active.

It is required that the BLEED pin be connected to V_{OUT} either directly (as shown in Figure 28) or through an external resistor, R_{EXT} (as shown in Figure 27). R_{EXT} should not exceed $100~M\Omega$ and can be used to increase the total bleed resistance and decrease the load bleed rate.

Care must be taken to ensure that the power dissipated across R_{BLEED} is kept at a safe level. The maximum

continuous power that can be dissipated across R_{BLEED} is 0.4 W. R_{EXT} can be used to decrease the amount of power dissipated across R_{BLEED} .

Power Good

The NCP45541 devices have a power good output (PG) that can be used to indicate when the gate of the MOSFET is fully charged. The PG pin is an active—high, open—drain output that requires an external pull up resistor, R_{PG} , greater than or equal to 1 k Ω to an external voltage source, V_{TERM} , compatible with input levels of other devices connected to this pin (as shown in Figures 27 and 28).

The power good output can be used as the enable signal for other active—high devices in the system (as shown in Figure 29). This allows for guaranteed by design power sequencing and reduces the number of enable signals needed from the system controller. If the power good feature is not used in the application, the PG pin should be tied to GND.

Slew Rate Control

The NCP45541 devices are equipped with controlled output slew rate which provides soft start functionality. This limits the inrush current caused by capacitor charging and enables these devices to be used in hot swap applications.

The slew rate can be decreased with an external capacitor added between the SR pin and ground (as shown in Figures 27 and 28). With an external capacitor present, the slew rate can be determined by the following equation:

Slew Rate =
$$\frac{K_{SR}}{C_{SR}}$$
 [V/s] (eq. 1)

where K_{SR} is the specified slew rate control constant, found in Table 4, and C_{SR} is the slew rate control capacitor added between the SR pin and ground. The slew rate of the device will always be the lower of the default slew rate and the adjusted slew rate. Therefore, if the C_{SR} is not large enough to decrease the slew rate more than the specified default value, the slew rate of the device will be the default value. The SR pin can be left floating if the slew rate does not need to be decreased.

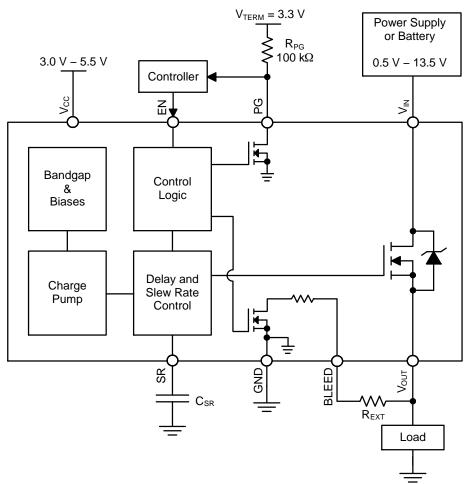
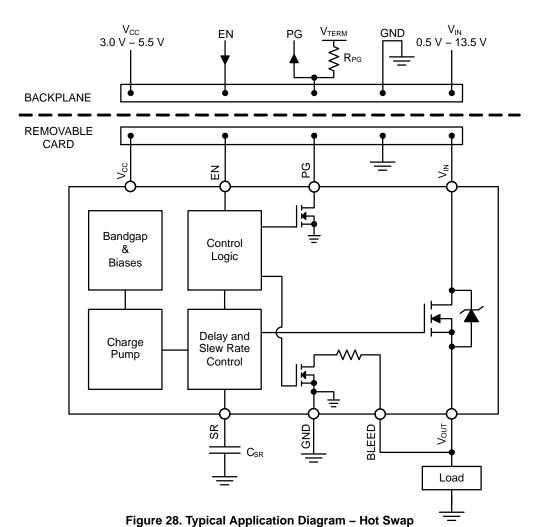



Figure 27. Typical Application Diagram - Load Switch

Controller R_{PG} R_{PG} R_{PD} R_{PD}

Figure 29. Simplified Application Diagram - Power Sequencing with PG Output

ORDERING INFORMATION

Device	EN Polarity	Package	Shipping [†]
NCP45541IMNTWG-H	Active-High	DFN12	2000 / Tono & Dool
NCP45541IMNTWG-L	Active-Low	(Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN12 3x3, 0.5P CASE 506CD **ISSUE A** NOTES: -A B D DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION 6 APPLIES TO PLATED TERMINAL AND 1S MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. **DETAIL A** ALTERNATE CONSTRUCTIONS PIN ONE INDICATOR E MILLIMETERS 1.00 0.10 С MOLD CMPD A1 0.00 0.05 EXPOSED Cu 0.20 REF 0.20 0.30 С 0.10 3.00 BSC **TOP VIEW** 2.60 2.80 D2 3.00 BSC Е DETAIL B 0.05 C Α1 **A3** 0.50 BSC **DETAIL B** 0.20 0.40 --- 0.15 ALTERNATE CONSTRUCTION 0.10 REF 0.05 C 0.15 MIN NOTE 4 SEATING PLANE C SIDE VIEW **RECOMMENDED** ⊕ 0.10 M C A B SOLDERING FOOTPRINT* D2 DETAIL A 2.86 -12X L 11X 0.32

 \oplus 0.10 \oplus C A B

0.10 M C A-B B

0.05 M C NOTE 3

E₂

12X h

PITCH
DIMENSIONS: MILLIMETERS

0.50

2.10

3.30

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

0.48

PACKAGE OUTLINE

0.45

ecoSWITCH is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subscilaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

12

е

BOTTOM VIEW

e/2

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 of 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9