

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

October 2008

PN100/PN100A/MMBT100/MMBT100A **NPN General Purpose Amplifier**

- This device is designed for general purpose amplifier applications at collector currents to 300mA.
- Sourced from process 10.

Absolute Maximum Ratings* T_a = 25°C unless otherwise noted

Symbol	Parameter	Units			
V_{CEO}	Collector-Emitter Voltage	45			
V _{CBO}	Collector-Base Voltage	75			
V _{EBO}	Emitter-Base Voltage	6.0			
I _C	Collector current	500			
T _J , T _{stg}	Junction and Storage Temperature				

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA=25°C unless otherwise noted

		Ma			
Symbol	Parameter	PN100 PN100A	*MMBT100 *MMBT100A	Units	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W	

^{*} Device mounted on FR-4 PCB 1.6" × 1.6" × 0.06."

^{*} Pulse Test: Pulse Width≤300μs, Duty Cycle≤2%

Electrical Characteristics $\rm T_C = 25\,^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units	
Off Charact	eristics					
BV _{CBO}	Collector-Base Breakdown Voltage $I_C = 10\mu A, I_E = 0$					V
BV _{CEO}	Collector-Emitter Breakdown Voltage *	$I_{C} = 1 \text{mA}, I_{B} = 0$		45		V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$		6.0		V
I _{CBO}	Collector-Base Cutoff Current	V _{CB} = 60V			50	nA
I _{CES}	Collector-Emiitter Cutoff Current	V _{CE} = 40V			50	nA
I _{EBO}	Emitter Cutoff Current	V _{EB} = 4V			50	nA
On Characte	eristics	•			•	
h _{FE}	DC Current Gain	$I_C = 100\mu A, V_{CE} = 1.0V$ $I_C = 10mA, V_{CE} = 1.0V$ $I_C = 100mA, V_{CE} = 1.0V^*$ $I_C = 150mA, V_{CE} = 5.0V^*$	100 100A 100 100A	80 240 100 300 100 100	450 600 350	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 10mA, I _B = 1.0mA I _C = 200mA, I _B = 20mA	TOUA	100	0.2 0.4	V V
V _{BE(sat)}	Base-Emitter Saturation Voltage $I_C = 10mA$, $I_B = 1.0mA$ $I_C = 200mA$, $I_B = 20mA$			0.85 1.0	V V	
Small Signa	l Characteristics					
f _T	Current Gain Bandwidth Product	$V_{CE} = 20V, I_{C} = 20mA$		250		MHz
C _{obo}	Output Capacitance	V _{CB} = 5.0V, f = 1.0MHz			4.5	pF
NF	Noise Figure	$I_C = 100 \mu A, V_{CE} = 5.0 V$ $R_G = 2.0 k\Omega, f = 1.0 KHz$	100 100A		5.0 4.0	dB dB

^{*} Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2.0\%$

Typical Characteristics

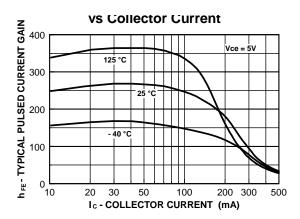


Figure 1. Typical Pulsed Current Gain vs Collector Current

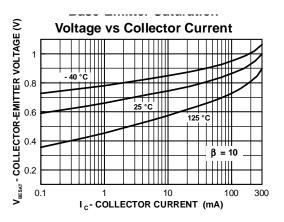


Figure 3. Base-Emitter Saturation Voltage vs Collector Current

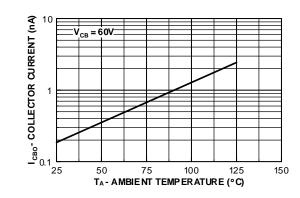


Figure 5. Collector Cutoff Current vs Ambient Temperature

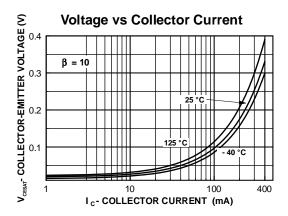


Figure 2. Collector-Emitter Saturation Voltage vs Collector Current

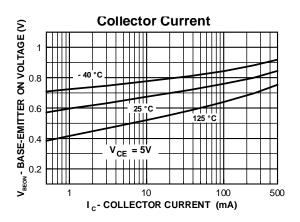


Figure 4. Base-Emitter On Voltage vs Collector Current



Figure 6. Input and Output Capacitance vs Reverse Voltag

Typical Characteristics (Continued)

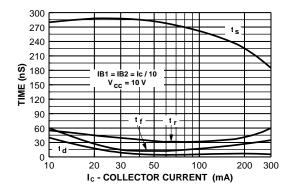


Figure 7. Switching Times vs Collector Current

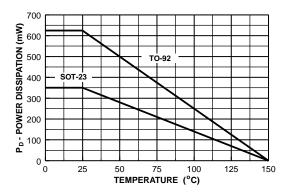
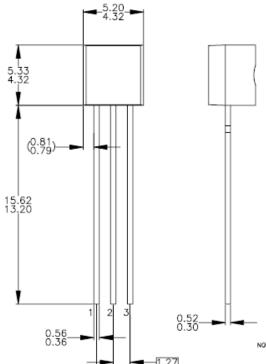
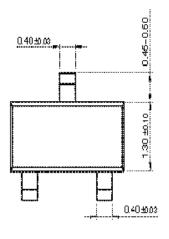



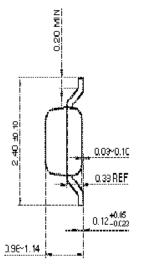
Figure 8. Power Dissipation vs Ambient Temperature

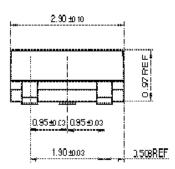
Package Dimension (TO92)

_4.19 3.05 2

2.54


NOTES: UNLESS OTHERWISE SPECIFIED


- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
 B) ALL DIMENSIONS ARE IN MILLIMETERS.
 C) DRAWING CONFORMS TO ASME Y14.5M-1994.
 D) TO-92 (92,94,96,97,98) PIN CONFIGURATION:


z	92 P F M		94		96		97		98						
•	Р	F	М	Р	F	М	В	F	м	Р	F	М	Р	F	М
1	Ε	S	S	Ε	s	S	В	D	G	С	G	D	C	G	D
2	В	D	G	C	G	D	Ε	S	S	В	D	G	Ε	S	D S
3	C	G	D	В	۵	G	c	G	D	Ε	S	S	В	D	G

- E EMITTER B BASE C COLLECTOR
 - FOR PACKAGE 92, 94, 96, 97 AND 98: PIN CONFIGURATION DRAIN "D" AND SOURCE "S" ARE INTERCHANGEAGLE AT JFET "F" OPTION. DRAWING FILENAME: MKT-ZAO3DREVS.

Package Dimension (SOT23)

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

Power247® Green FPS™ **ACEx®** SuperSOT™-8 POWEREDGE® Build it Now™ Green FPS™ e-Series™ SvncFET™ The Power Franchise® CorePLUS™ GTO™ Power-SPM™ CROSSVOLT™ i-Lo™ PowerTrench® p wer CTL™ IntelliMAX™ Programmable Active Droop™ QFET® ISOPLANAR™ Current Transfer Logic™ TinyBoost™ QS™ EcoSPARK® MegaBuck™ TinyBuck™ $\mathsf{TinyLogic}^{\mathbb{B}}$ MICROCOUPLER™ QT Optoelectronics™ Fairchild® MicroFET™ Quiet Series™ TINYOPTO™ Fairchild Semiconductor® MicroPak™ RapidConfigure™ TinyPower™ TinyPWM™ FACT Quiet Series™ MillerDrive™ SMART START™ FACT[®] Motion-SPM™ SPM[®] TinyWire™ $\mathsf{FAST}^{\mathbb{R}}$ OPTOLOGIC® STEALTH™ µSerDes™ FastvCore™ OPTOPLANAR® **UHC®** SuperFET™ FPS™ SuperSOT™-3 UniFET™ $\mathsf{FRFET}^{\mathbb{R}}$ SuperSOT™-6 PDP-SPM™ VCX™ Power220® Global Power ResourceSM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition					
		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.					
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.					
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.					

Rev. I31

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9